
Object Links for Draw (file: gvLinks.m)
There are a number of things you have to do to implement Object Links in an 
application.    Many of them are optional (depending on the level of 
functionality you want or are able to provide), but Draw does them ALL, so this
should be a good reference point for you.

Please refer to the documentation in the system about Object Links to get an 
overall background in place before reading this document.

DrawDocument

Note first that Object Links only works on a document basis, so the 
GraphicView object cannot do links on its own.    Only the DrawDocument 
object knows the name of the file, for example, and this is crucial to making 



links work.    So, even though most of the implementation of Object Links in 
Draw is in GraphicView (actually, a category thereof found in gvLinks.m), 
you'll notice that it is the DrawDocument which creates (and is the delegate of) 
the NXDataLinkManager, etc.    However, it usually forwards most of the 
messages it gets from the NXDataLinkManager onto the GraphicView.

Note also that a significant part of making Object Links work in Draw is all the 
messages that DrawDocument sends TO the NXDataLinkManager (grep for 
``[linkManager'' in DrawDocument.m to find all those calls).    DrawDocument is
responsible for letting the system know when something about the document 
changes (e.g. the document is saved or closed or reverted to saved or 
whatever).

The ``Publish'' aspect of Draw is done via the saveLink: method in 
DrawDocument.    You should be able to understand the implementation of this 
method after reading allRWd description of how Object Links works below.



It also calls updateLinksPanel from its windowDidUpdate: method to keep 
the Link Inspector panel up to date.

Now let's dive into how Draw actually implements the Object Links mechanism
...

Selections

The most important part of participating in Object Links is also the part that 
requires the most thought.    It is the process of representing a ``selection'' in 
your document.    It is appropriate that this be the most ``difficult'' thing to do 
in Object Links because it is the part of the Object Links mechanism that is 
purely application-dependent.    NeXTSTEP tries to do as much of the Object 
Links functionality for you, but it cannot do the things that are dependent 
upon what your application does for a living.



A ``linked-to'' selection (``source'' selections):

If you want people to link to documents in your application, you must be able 
to describe a selection that the user makes and then copies and pastes (and 
links) into another document in another application.    This selection 
description can be anything you want (it's a ``bag o' bits''), but it must survive
and make sense no matter what happens to the source document (unless, of 
course, the items in the selection the user originally made eventually get 
deleted, but even that case you must detect).

How you represent this selection is really something you must think about 
carefully.    Draw actually has more than one way of representing the selection 
(this may well be true in the case of your application too).    Draw's selection-
representation choice is purely for example purposes and you should, by no 
means, draw the conclusion that Draw's way is the only way (or even the best 



way) to represent a selection in an application that manipulates graphical 
elements (and obviously, Draw's way is not appropriate for text manipulation, 
spreadsheets, and other kinds of applications).

Okay, now that the disclaimer is out of the way, let's talk about how Draw 
represents selections that it exports to other applications.    First, note that you
can get the ``selection'' that the user has made in a GraphicViewRWe    at any
time by calling the currentSelection method defined in this file.    It returns 
an NXSelection object (the bag o' bits mentioned above) representing the 
current selection.

So, how does Draw represent is current selection?

1. [NXSelection allSelection]
This is the selection that is created when the user does Select All (and only in 



that case).    The allSelection method of NXSelection returns a ``special'' 
selection that Draw just chooses to know how to interpret.    Most applications 
will want to handle this special-case of allSelection.

2. Drag-Selection

When the user drags out a box to make a selection in Draw, the NXSelection 
that Draw uses to represent that state is the rectangle the user dragged out.    
Then, whenever Draw is asked about this NXSelection, it just intersects that 
rectangle with the current state of the Graphic's in the view.

This is a particularly questionable type of selection because the user often 
ends up with ``not quite what she expected.''    On the other hand, it is a bit 
more accurate than selection type #3 below because it remembers a bit more
of the semantics of what the user selected.    In any case, I have included it to 
show you what an alternative selection mechanism might be like and how to 



handle it.

The getRect:forSelection: method returns YES if the NXSelection passed 
to it is of the drag-select type (and, obviously, the ``rect'' that it ``gets'' is the
rect the user dragged out to make her original selection).

3. Individual Graphic Selection

In this case, Draw just remembers the unique identifiers of each of the 
Graphic's in the selection.    Then, when the system asks Draw about a 
selection of this kind, it looks in the current state of the Draw document for all 
of these items.    Note that it also includes any Group objects which include 
one of the GraRWf's in the original selection.    Users can use this to, for 
example, have a background which they include in the original copy/paste link
and then group whatever image they want to be the ``currently exported 
thing'' with that background.



The best selection mechanism would probably be some mixture of #2 and #3 
(and perhaps some other types of selection mechanisms).    I've chosen these 
two because they are easy to understand.

The findGraphicsInSelection: method returns a List object with all the 
Graphic's in the current document represented by the NXSelection passed to
it.    This method can handle all three sorts of ``source'' selections (i.e. #1, #2,
and #3 above).    This method calls the above-mentioned 
getRect:forSelection: method to handle case #2.

A ``linked-from'' selection (``destination'' selections):

If you allow the user to copy something from another application and Paste and 
Link it into the documents your application edits, you must be able to describe 
where in your document the thing was Paste and Link'ed.    This, too, is just a 



description of a selection in your document.

Since Draw only allows PostScript and TIFF (i.e. NXImage-handled data types) 
and RTF and ASCII (i.e. Text object-handled data types) to be Paste and Link'ed in
(of course, these are the only types Draw allows to be normal-pasted in as 
well!), Draw represents this sort of ``destination'' selection by just 
remembering which Image or TextGraphic was created to import the data 
(since all objects in Draw have a unique identifier associated with them, this is
an easy task).

There is a method implemented in the Graphic base class called ``selection'' 
which returns an NXSelection which describes the Graphic you sent the 
message to in terms of its unique identifier (i.e., it creates an NXSeRWgion and 
tosses the unique identifier of the receiving Graphic into the bag o' bits and 
returns it to you).    The findGraphicInSelection: method in this file 
searches through the document to find the Graphic with the corresponding 



unique identifier extracted from the NXSelection passed to it.

Importing/Exporting Link Data

Okay, so now you understand how Draw creates an NXSelection object to 
represent either a selection made in a Draw document which is going to be 
exported to another application via Copy/Paste and Link and also how it represents
a selection which describes which Graphic is the receiving end of an Object 
Link.    Let's quickly talk about how Draw exports a link and how it imports a 
link.

Exporting:

It exports a link via the method writeLinkToPasteboard:types:.    This is a 
very simple method, but very important to the Object Links mechanism.    It 
does two distinct things:



1. It creates and writes an NXDataLink object to the Pasteboard which 
includes all the stuff another application would need to know to create an 
Object Link to the current selection the user has made in Draw (primarily just 
the currentSelection itself and the data types Draw will export (e.g. 
PostScript and TIFF)).    This is the most important thing this method does.

2. It writes all of the links in the GraphicView to the Pasteboard.

Why, you may ask, does it do this?    Well, if you copy an Image in Draw which 
is actually the destination of an Object Link (not the source of a link, but the 
DESTINATION), then if you pasted that Image into another Draw document, 
you want it to keep its ``linkness'', i.e., you want the thing you pasted to also 
get updates when the source of that Image gets updated.    Simple, huh?

Which brings us to the 



fc1readLinkForGraphic:fromPasteboard:useNewIdentifier: method.    It's the 
thing that is called every time you paste a Graphic into Draw to get that 
pasted Graphic properly linked up with the NXDataLinkManager in the Draw 
document you paste it into.

It is implemented by calling the addLinkPreviouslyAt:fromPasteboard:at: 
method in NXDataLinkManager which simply reestablishes the link that Image 
has to another document (that was at oldSelection in the old document) by 
setting the destination selection of the link to the selection which represents 
the Image's location in the new document ([graphic selection]).

The useNewIdentifier thing is so that if you copy and immediately paste back 
into the same document, no actual change occurs (this is important in case 
someone else is linked to something that is in turn linked to something else--
just trust me, you want copy/paste from/to the same document to be a net 
``no-change'' in the document as far as links are concerned).



Importing:

Importing a linked thing happens only via the 
addLink:toGraphic:at:update: method.    No where else in Draw is a linked 
thing added to the document (except, of course in 
readLinkForGraphic:fromPasteboard:useNewIdentifier:, but that's a 
special case).

Let's quickly summarize how this method works:

The arguments are simple.    The link is an NXDataLink gotten either from a 
file (.objlink) or from a Pasteboard (during Paste and Link) or was alloc/init'ed 
pointing to a file.    See the callers of addLink:... to see about that.    The 
graphic is just an Image or TextGraphic created from the same Pasteboard 
we got the link out of or from the file that we alloc/init'ed the k to point to.    If 



graphic nil, then we probably got the link from a .objlink file, so we don't 
actually know what kind of data we're talking about yet.    We take care of that 
first thing in this method (see the next paragraph).    The update argument is 
used to describe whether this is a normal link, or a link which is never updated
(link buttons and links to files represented by the file's icon are the classic 
examples of these) or a link which must be updated immediately because we 
don't yet have any data for it (again, see the next paragraph).

The first if-statement handles the case of pasting or dragging in an 
NXDataLink without any corresponding data (i.e. no PostScript or TIFF to go 
with it).    This is always the case for a .objlink file, and could conceivably be 
the case for a Copy/Paste and Link if the app that copied the stuff in only copied 
the NXDataLink and forgot to (or chose not to for some reason) put the thing 
being linked to itself in the Pasteboard.    Anyway, what that first if-statement 
does is figure out what data types the NXDataLink deals in (again, e.g., 
PostScript or RTF or some such) and creates an ``empty'' Graphic (an Image 



or TextGraphic) which will be filled in immediately when, later in the method, 
we force an updateDestination to occur (setting the update mode to 
UPDATE_IMMEDIATELY is what does this).

The second if-statement is what's doing all the work, of course.    First, it asks 
the Graphic which is going to be the destination of this Object Link (it'll be an 
Image or TextGraphic) for an NXSelection object which represents it.    Then 
it ``adds'' the link to the NXDataLinkManager.        If the link is successfully 
added, then we let the Image or TexRWpphic know about the link to it (only so 
that we can ask for it back later, the Image and TextGraphic's never actually 
do anything themselves with the link).    Next, we put the Graphic into the 
document using the standard placeGraphic:at: method that we always use 
to add foreign data to the view (see gvPasteboard.m).

Finally, if we need to update the link immediately because we have no data, 
we do so by calling updateDestination, then ensuring that the update 



actually caused some data to flow over by seeing if the Graphic isValid.    
This works well for Image's, but not so well for TextGraphic's, I'm afraid (they 
always say they are valid!).    Anyway, it's better than nothing.

That's it for exporting and importing links.    Not so bad, is it?

Updating Links

Now, how do we actually update links (in either direction)?    This, too, is 
simple.    Whenever NeXTSTEP wants you to update someone else who is 
linked to you, it sends you the message 
copyToPasteboard:at:cheapCopyAllowed:.    Whenever NeXTSTEP asks 
someone else to update something that is linked into your document, it sends 
you the message pasteFromPasteboard:at: (or importFile:at: if it's a 
whole file).    All you have to do is to responds to these messages sensibly (you
should assume that they can be called at any time).    Return nil from these 



methods if the NXSelection's in question no longer exist (in their entirety).

Draw's implementation of these methods is very straightforward (these 
methods are almost always really easy to implement if you already implement
Copy/Paste or Services).

In pasteFromPasteboard:at:, it just finds the Image or TextGraphic 
represented by the NXSelection passed to it (see 
findGraphicInSelection:), then sends a message to that Graphic to 
reinitialize itself with the data in the Pasteboard passed to it.    It then updates
the view and marks the view as edited.

The method importFile:at: is just like pasteFromPasteboard:at:, except 
that the source of the data comes out of a file instead of from a Pasteboard.    
This happens when you create an Object Link to a whole file without involving 
the application that knows how to edit that file (see gvDrag.m and the stuff 



where we drag a file into Draw with the Control key down (which means create
a link to this file)).

In copyToPasteboard:at:cheapCopyAllowed:, there are basically two paths 
that can be taken depending on whether cheapCopyAllowed is true.    
cheapCopyAllowed just means that you can use the lazy pasteboard 
mechanism to the fullest because NeXTSTEP guarantees that no changes to 
your document can occur between the time this method is called and the time
the lazy provideData: is called.    In other words, when cheapCopyAllowed is 
true, we don't actually have to write the Draw objects in the selection to the 
pasteboard by value, we can simply write a reference to them.

So, in Draw, when cheapCopyAllowed is true, we just declare that we can 
provide PostScript and TIFF, but write neither to the Pasteboard (we'll provide 
it lazily).    Of course, when the lazy provideData: is called, we have to know 
what part of our document to put into the Pasteboard, so we simply drop in 



the NXSelection that we were asked to copyToPasteboard:.

Thus, in the cheapCopyAllowed case, the actual work of putting the data in is 
done in the INSTANCE method pasteboard:provideData:!    It is okay to use 
the instance as the owner of the Pasteboard because thRWrstem has 
guaranteed us that our document would not be changed (especially not 
FREED!).    The implementation of provideData: is really simple since we 
already had methods lying around that could write the PostScript or TIFF for a 
list of Graphic's into a stream (write{PS,TIFF}ToStream:usingList:).    We 
get the list of Graphic's to write from the NXSelection we put in there (see 
how this all just dovetails together? Idn it great?).

When cheapCopyAllowed is not true, then we just do what we normally do 
when the user hits Copy, we just do it with the Graphic's that are in the passed
NXSelection instead of the ones in the current selection.    We plop the list of 
Graphic's into the Pasteboard and let the normal lazy Pasteboard stuff take 



care of the rest (the CLASS method pasteboard:provideData: in this case, 
see gvPasteboard.m).

Miscellaneous methods.

There's a few other little methods you may want to implement.

You'll probably want something akin to updateLinksPanel which just keeps 
the Link Inspector panel up to date (it is called from windowDidUpdate: in 
DrawDocument).

The showSelection: method in gvLinks.m (the actual names of some of 
these methods is different, see DrawDocument.m which forwards them onto 
GraphicView) is sent by NeXTSTEP when the user asks to show the source of 
an Object Link that comes from your document.    It is very nice to respond 
properly to this message (the user will certainly be expecting this to work in 



your application).    It is very easy for Draw to get the bounding box of the 
Graphic's in the passed selection (it even draws the little drag-sRWstion 
rectangle if that's the kind of NXSelection it is) since we already have 
methods lying around that, given a list of Graphic's can find their bounding 
box.

There is one notable thing that Draw does when showing source selections.    It
uses the fact that all the drawing done in a Draw document is actually done in 
an off-screen cache and composited to the screen.    When Draw shows a 
source selection, it draws them directly to the on-screen window, then 
remembers the areas in which it draw (this is the invalidRect).    Then, it 
leaves the source selection showing until the user touches the view (see 
drawSelf::) at which point, it just blows the invalidRect away by copying 
that rectangle from the off-screen cache.    If you do double-buffering like this 
in your application, this trick is easy and effective.



The breakLinkAndRedrawOutlines: method in Draw is what keeps the link 
outlines up-to-date.    When the user chooses Show Links from the menu, all 
things that are linked into your document should show a border around them 
(there is a NeXTSTEP function to draw this border).    These borders are kind of 
the opposite of what the showSelection: method draws (i.e. showSelection:
shows what Object Links originate in your document, and Show Links shows the 
Object Links that are linked into your document from somewhere else).    The 
argument to breakLinkAndRedrawOutlines: is a link that was recently broken
by NeXTSTEP (this method is called from DrawDocument's 
dataLinkManager:didBreakLink: and 
dataLinkManagerRedrawLinkOutlines: methods which are sent by 
NeXTSTEP).

If the link argument is nil, it means that no link was broken, so Draw just 
redraws all the link outlines.    If the argument is not nil, then the method 
searches for the Graphic which held that link and redraws it soRWtt it's 



outline goes away.    Furthermore, if it was a link that didn't show the source 
data (i.e. it was a link button or file icon or something), that Graphic is 
removed from the document (since it is now disconnected and useless--don't 
we all feel that way sometimes?).

Tracking Links

Finally, there is the task of tracking the sources of links.    This is optional 
behaviour but is really a must if you want to implement Continually updating 
links.    The idea here is that you tell NeXTSTEP when a selection which is the 
source of a link which you export has changed.    Otherwise, NeXTSTEP has to 
assume that every time your document is edited that all the links that you 
export have changed.    In other words, this is a performance optimization, but 
a valuable one.

Note that you don't have to track all your links, only the ones that are 



showing up in other documents that are on the screen at the same time.    
NeXTSTEP (through the NXDataLinkManager) will tell you when to start and 
stop tracking links (NeXTSTEP is such a polite entity, is it not?).

Draw tracks links very easily by making the assumption that if any region of 
the Draw document which is redrawn overlaps the source of a link, that link 
must have changed and needs to be updated.    Since Draw has a nice 
knothole through which all updates to the document go (cache:), this is a 
mere matter of keeping track of the boundaries of the sources of links which 
Draw exports.

Draw does this by keeping a Storage object which a struct in it that has three 
pieces of information.

1. The rectangle which encloses the source of the link.
2. The link in question.



3. What type of selection is involved (all, drag or normal).

Almost every time cache: is called (sometimes cache:andUpdateLinks: is 
called with NO as its argument, but not very often, grep the code and you find 
out the times when that is necessary) the method updateTrackedLinks: is 
called.    This method has a two-fold purpose:

1. Notify the NXDataLinkManager if any ofRX currently-being-tracked links 
intersects the area which was just cache:'ed.
2. Reevaluate the bounds of any of the source selections that intersects the 
area which was just cache:'ed.

We must do step #2, because the thing that might have caused cache: to get
called could have been that the user resized one of the objects which are 
linked to.    Thus, step #2 is not necessary for the drag-selection (since that 
originally dragged-out box can never ``change size'') and allSelection 



cases.    Step #2 is implemented simply by getting the NXSelection from the 
link, calling findGraphicsInSelection:, then calling the already-existing 
getBBox:of: method.

All we do in startTrackingLinks: and stopTrackingLinks: is add/remove 
structs from the Storage object.

Summary

Well, that's all there is about links and Draw.    I hope this document is 
illuminating.    The take-home messages should be that Object Links should be 
simple to implement if you already implement Copy/Paste and/or Services.    The 
only ``hard part'' might be figuring out how to represent a selection in your 
document.    Good luck with that part. :-)


