
RXtx4800Dragging stuff into Draw (file: gvDrag.m)
This file is intended to handle things that are dragged into a Draw document 
(files and colors mostly).    There are a couple of things to keep in mind about 
the files case.    The first is whether the file being dragged in is being ``linked'' 
(via ObjectLinks).    The second is whether we are going to display the contents
of the file or just the file's icon (or even just the little link button icon).

Registering

The basic idea is that we call registerForDragging in GraphicView's 
initFrame: and in awake.    That calls the registerForDraggedTypes:count: 
method to let the system know which types of things (represented by 
Pasteboard types) we are interested in having dragged into our view.



Reacting to a Dragging Session

Next, we implement some of the dragging protocol as follows:

1. draggingEntered:
This is sent to us the first time something that we are interested in enters our 
view.    We respond by letting the system know whether we are actually 
interested in the dragged thing at the time the thing is dragged into our view 
(depending both on the state of our view and where the drag is) and what 
operations we will support.

Basically, if the dragged thing is a color, we return that we will perform the 
``generic'' thing on that color if dropped only if the Graphic that is currently 
being dragged over can deal with having a color dropped on it (the 
acceptsColor:atPoint: method is what we have created to figure this out).



Otherwise, we will accept the dragged thing if it is a file of any sort or if 
NXImage says that it can make some sense out of the Pasteboard of stuff 
being dragged in (this last case is very rare, applications rarely let you drag 
raw EPS out of themselves and into other apps--maybe more applications will 
start doing this in the future, we'll have to see).

IRXality, we shouldn't say that we can accept any sort of file.    We can really 
only accept files that NXImage can handle, RTF files, and (most of the time) 
plain files (because their usually ASCII).    We can easily determine if a 
filename is one NXImage can handle (and we can obviously tell whether it's an 
RTF file), but the only way we can tell if a file is a ``plain'' file (i.e. not a 
WriteNow file or some such) is by asking the Workspace Manager (see the 
message we send to [Application workspace] below).    Unfortunately, since
the drag protocol is a synchronous blocking protocol between the app and the 
Workspace, we can't talk to Workspace in the middle of the drag (what a drag,



huh?).

So, what we do is just accept any file, and, if you drop a WriteNow file in 
(without linking, of course), then we just ignore it.

Speaking of linking, if the link key (the Control key) is down during the drag, 
then we really can accept any file because we can just drop its icon into the 
Draw document (like Mail does).    Then we just use ObjectLinks to make the 
double-clicking on it open the file up.    We also provide the user the option of 
creating a little Link Button instead of the file's icon.

2. draggingUpdated:
This is called repeatedly as the dragged thing is dragged about our view.    
Again, just like draggingEntered: we return whether we are interested in 
accepting the dragged thing depending on where it currently is in our view 



and our current state.    This method must be pretty fast, and it is, because we 
have already examined the contents of the Pasteboard in draggingEntered:.

Basically all we really do of interest here is constantly reevaluate whether the 
Graphic underneath the dragging is willing to accept a color (but only, of 
course, if it is a color we are dragging).

3. performDragOperation:
This method is called just as the user lets go of the thing she's dragging.    This
is normally where you do the work that the drop of the dragged thing causes.   
And, indeed, if the dropped thing is a color, we update the color RXhe 
dropped-on Graphic here.

Unfortunately, often dropping something on a Draw document causes two 
very time-consuming things to happen.    First, a complicated PostScript or TIFF



image might have to be drawn.    Second, a question might need to be asked 
of the user about how to deal with the dropped thing (this happens when you 
link a file in and Draw wants to know whether you want the contents of the file
to appear in Draw, the file's icon, or a link button).

Thus, we don't do the work that the drop results in in this method, instead, we
wait until after the drag and drop is fully complete (as far as the system is 
concerned) and do the work in ...

4. concludeDragOperation:
This is called after the drag and drop is completely done (and Workspace is 
out of the loop).    Thus, if there's an error, we can't do the ``slide-back'' 
animation.    It's a bummer, but there's really no way around it in 3.0.

This method is implemented by first looping through any filenames that are in 



the dragged Pasteboard looking either for NXDataLink files (.objlink files) 
which represent links (these are similar to the little things dropped in the 
filesystem in the Publish/Subscribe mechanism) or for files that NXImage can 
handle (TIFF, EPS, other formats if you have filters lying around), or for RTF or 
plain files that the Text object can handle.

createGraphicForDraggedLink:at: handles the .objlink files, and 
createGraphicForDraggedFile:withIcon:at:andLink: handles all other 
files.    createGraphicForDraggedLink:at: is implemented simply by 
instantiating the link from the file and then calling the one method in all of 
Draw that actually adds a linked thing to the document 
(addLink:toGraphic:at:update: -- see gvLinks.m).    
createGraphicForDraggedFile:withIcon:at:andLink: also calls that same 
method if we are linking the dragged file in.    The method called when you do 
a Paste and Link from the menu also RXs that method.



Finally, if we can't find any files that we can do anything with, we just call the 
same method that is called when you hit Paste in the menu (except that we go
straight to handling only non-Draw formats).    Nice code reuse, huh?    Again, 
this last thing is pretty rare (at least it is today, who knows what tomorrow will
bring?).

By the way, you may will ask what this ERROR thing is all about.    Well, the 
create functions return YES if they were able to successfully incorporate 
something into the document, NO if they weren't, and ERROR if they found a 
problem with the thing being incorporated (i.e. a PostScript error in a dragged 
EPS file, for example).


