
Advanced example:    elliptic curve factorization

Elliptic Curve Method (ECM) factorization is a powerful, beautifully parallelizable
method for factoring large integers.    It was with ECM that Zilla found two new
factors of F13 in early
1991 (see "General" help).    The idea is to run a certain ECM program on each
machine, but also to give each machine a unique seed parameter (which technically
speaking determines the "elliptic curve" being used).

Our ECM example uses an executable called 'ecm', designed by R. E. Crandall for
parallel factoring runs.    The ecm program resides in the Zilla.app directory.    Also
used in this example is a feeder program which we provide.    The feeder source is in
the Zilla.app directory under the name 'ecmfeed.m', and the pre-compiled ecm.feed
is ready for use.

The ECM routines use some number theory packages that permit numbers up to
2^1000000 (that is one million bit numbers) to be handled.    Because of FFT large
multiply techniques, the time for a muRSPlication grows roughly linearly over the
upper parts of this range.    Thus, if you can do 100 elliptic curves per day for a 1000
digit number-to-be-factored, you can do (with the same input curve parameters) 10
per day for 10000 digit numbers.

Instructions for the ECM example

1. Add to your network a number of machines, on which you have at least Partial
Permission.    By default, these machines will use the username and password which
you entered when Zilla was first started.    If you need to use a different account on
any of the machines which you have added, enter the proper username and
password using the host inspector panel.

The feeder program which we will use does the following.    For each machine in the
network, a different command line is created, with different parameters to the 'ecm'
program.    The feeder then sends that command line to Zilla, and tells Zilla to
launch all of the commands.

2. To load the feeder, select 'Command Setup' from the 'Control' menu.
3. Click on the radio button next to 'From feeder'.
4. Click the 'set...' button next to the 'From feeder' button.    An open panel will then
be brought up.
5. Choose 'ecm.feed' in the Zilla.app directory.    This is the pre-compiled example
feeder, and it is here where you would load in your own custom feeder.
6. Create a directory called Zfactor in the home directory of the user (usually you)
who was assigned to the machines (ie. the user whose name you entered in the
'login:' field of the inspector panel).
7. Move the executable "ecm" to the Zfactor directory.    That is where each machine
will
find the executable.

(The provided ecm.feed example attempts to find factors of F7 = 2^128 + 1.      If
you are
doing this F7 example, the following step 8 is entirely unnecessary because the
provided
feeder does not require an Nfile.)
8. (This step is only necessary if the number to be factored is neither of the
Mersenne form
2^n ± 1, nor of the Fermat form 2^n + 1.    Thus, if you are factoring a number not
of either form, you need to specify the digits of the number in a file.    The ecm
program figures out these digits for you for the cases 2^n +± 1; and, indeed, runs
much faster in such special cases)

Create Nfile and place it inside the Zfactor directory.      Nfile should contain the
number to be factored in ASCII format, fRSQwed by a linefeed.    Again, since F7 is of
the Fermat form, this step 8 is
entirely unnecessary, as the ecm program will generate its own internal
representation of F7.

9. Use 'Run...' from the 'Control' menu to start up the factorization.

At this point, Zilla will execute the Feeder program, which will tell Zilla how to
proceed.    After a while, several files should appear in the Zfactor directory where
you placed Nfile.    These files, named log...machine (where machine will    be
replaced by the name of the machine on which this process ran) will contain the
results of the factoring.

Technical details about the factoring are discussed next.

The ecm program

The program ecm will, given enough time and/or enough machines, find non-trivial
factors of a large composite integer N.    The program is to be run on one or more
machines, each machine using some unique seed.

The simplest way to use ecm is to run on the m-th machine the executable:

> ecm 0 0 seedm b < Nfile > outputm                    ; if the number to be factored is in
Nfile and not of

  the form 2^q
+± 1
> ecm 1 q seedm b    > outputm                      ; if the number to be factored is of the
form 2^q + 1.
> ecm ±1 q seedm b    > outputm                      ; if the number to be factored is of the
form 2^q±1.

where "seedm" is a machine-dependent seed, and "outputm" is a machine-
dependent filename.    The parameter "b" is the smoothness limit in the ECM, which
amounts to a certain internal limit on the calculations.    The best rule of thumb is: b
= 10000 is suitable when the unknown factor has about15 digits, and b = 100000 is
suitable for about 25 digits.    Run time is roughly proportional to b (per curve).     
Here are some typical output files "outputm" for ecm runs on a typical day:

-rw-r--r--    1 richard            140 Mar 20 19:52 log.f10.scrawl

-rw-r--r--    1 richard            389 Mar 20 19:52 log.f10.cauldron
-rw-r--r--    1 richard            436 Mar 20 19:52 log.f10.eugene
-rw-r--r--    1 richard            683 Mar 20 19:52 log.f10.alexandria
-rw-r--r--    1 richard            121 Mar 20 19:52 log.f10.trilithon

You can see that the feeder program arranges to put the output data into a filename
that invRSRs the hostname, for ease in maintenance of large directories.    The
ecmfeed.m example in Zilla.app shows how this naming is arranged.

The output of the ecm program is a series of elliptic curve parameters used, with
any discovered factors showing up with exclamation mark prefix.    For example, the
command:

> ecm ±1 101 666 1000 > log.m101.mymachine

will find factors of M101 = 2^101 ± 1, which appear next to exclamation marks in
the log file:

> cat    log.m101.mymachine
A:2860448219137
!7432339208719
A:2860448219138
!7432339208719
A:2860448219139
!341117531003194129
>

This output means that elliptic curve parameters (all three starting 2860...) were
tried, and in all three cases a factor was found.    Indeed,

2^101 ± 1 = 7432339208719    * 341117531003194129

so that only three elliptic curves sufficed. What is most common, though, is
hundreds or thousands of curves (therefore that many occurrences of A:) with none,

or one, or some small number of lucky factors, i.e. a small number of exclamation
marks (if any) in the output file.

Challenge to Zilla users

The mathematical community would like to see certain numbers factored.    You can
try to find new factors of the following numbers (but of course there are many,
many more numbers of interest beyond what we list here):

M445 = 2^445 ± 1, has two prime factors, each (very probably) greater than 27
digits long,

neither of which has been found.
Other Mersenne numbers that remain incompletely factored include M467, M479,

M481.

F10 = 2^1024 + 1, has only two known factors, 45592577 and 6487031809; the
remaining

part is, however, composite and must have more factors.
F14 = 2^(2^14) + 1 = 2^16384 + 1, is the mysterious fourteenth Fermat

Number.    Unlike its little cousin F10
above, F14 has no known factors and yet it must have factors as has

been proven.
F15, F16, F17, F18 etc. are gigantic, largely unresolved Fermat numbers that

provide good
    challenges.    The "ecm" program run on Zilla is especially efficient for these
cases because

it uses a special, FFT-based large multiply.

Numerators of Bernoulli Numbers (Numerator[BernoulliB[n]] in Mathematica), for
even n, are good challenges,
especially for n in the region 100-to-200.

Repunit numbers, made up of all 1's in decimal, are very tough if you take large
enough cases.   

Some of these are primes, for example the repunit having19 ones is prime.   

For these numbers best represented in decimal, you would modify the feeder
ecmfeed.m so that

the command given be:

> ecm 0 0 seedm b < Nfile > outputm

where Nfile has the Bernoulli numerator, or a repunit series of RSB in ASCII,
followed by a single

newline.

You might even get started with factoring by trying to reproduce the discovery of
the new factor 2663848877152141313 of F13 (see "General" help).    This would
involve a command line:

> ecm 1 8192 seedm 20000 > outputm

which is easy to arrange by simple modification of ecmfeed.m.        It is not unlikely
that you can find a brand new factor of F13 in this way, especially if there exist such
a factor with no more than about 30 digits.

