Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY March 14, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1
1.1 Amiga® RKM Libraries: D Troubleshooting Guide 1
1.2 D Troubleshooting Guide / Errors e |
1.3 D/ Errors / Audio--Corrupted Samples e e e 3
1.4 D/ Errors / Character Input/Output Problems 3
1.5 D/ Errors/ CLI Error Message Problems 3
1.6 D/Ermors/CLIWon'tCloseon RUN 3
1.7 D/ Errors / Crashes and Memory Corruptiont i i i i e e 3
1.8 D/Errors/Crashes-—-After Exit 4
1.9 D/ Errors / Crashes--Only on 68000 and 68010 5
1.10 D/ Errors / Crashes--Only on 68040 e 5
1.11 D/ Errors / Crashes--Subtasks, Interrupts e e e 5
1.12 D/ Errors / Crashes--Window Related 5
1.13 D/Errors / Crashes--Workbench Only 5
1.14 D/Errors / Device-related Problems L 6
1.15 D/Errors /Disk Icon Won’t Go Away L e 6
1.16 D/Errors/DOS-related Problems e 6
1.17 D/ Errors / Fails only on 68020/30 e e 6
1.18 D/Errors/Fails only on 68000 e 7
1.19 D/ Errors/Fails only on Older ROMs or Older WB 7
1.20 D/ Errors / Fails only on Newer ROMsor Newer WB 7
1.21 D/ Errors / Fails only on Chip-RAM-Only Machines 8
1.22 D/ Errors / Fails only on machines with Fast RAM o 8
1.23 D/ Errors / Fails only with Enhanced Chips 8
1.24 D/Errors /Fireworks e e e 8
1.25 D/ Errors / Graphics--Corrupted Images e e 9
1.26 D/Errors/Hang--One Program Only e 9
1.27 D/Errors / Hang--Whole System e e 9
1.28 D/Errors /Memory Loss e e e 9
1.29 D/Errors/Memory Loss--CLIOnly e 10

Libraries iv

1.30 D/ Errors/ Memory Loss--Ctrl-C ExitOnly e 10
1.31 D/ Errors/ Memory Loss--During Execution L e 10
1.32 D/ Errors / Memory Loss--Workbench Only 11
1.33 D/Errors/Menu Problems L e 11
1.34 D/ Errors / Out-of-Sync Response to Input 11
1.35 D/ Errors / Performance Loss in Other Processes o 11
1.36 D/ Errors / Performance Loss--On A3000 e 11
1.37 D/ Errors / Trackdisk Data not Transferred 12
1.38 D/ Errors / Windows--Borders Flicker after Resize 12
1.39 D/Errors/ Windows--Visual Problems L 12
1.40 D Troubleshooting Guide / General Debugging Techniques 12

1.41 D Troubleshooting Guide / A Final Word About Testing 13

Libraries 1/13

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: D Troubleshooting Guide

Many Amiga programming errors have classic symptoms. This guide <
will help
you to eliminate or avoid these problems in your software.
Errors

General Debugging Techniques

A Final Word About Testing

1.2 D Troubleshooting Guide / Errors

Audio--Corrupted Samples
Character Input/Output Problems
CLI Error Message Problems

CLI Won’t Close on RUN

Crashes and Memory Corruption
Crashes——-After Exit
Crashes—--Only on 68000 and 68010
Crashes--Only on 68040
Crashes—-—-Subtasks, Interrupts
Crashes—-Window Related

Crashes—-Workbench Only

Libraries

2/13

Device-related Problems

Disk Icon Won’t Go Away

DOS-related Problems

Fails only on 68020/30

Fails

Fails

Fails

Fails

Fails

Fails

Firewo

only

only

only

only

only

only

rks

on

on

on

on

on

68000

Older ROMs or Older WB
Newer ROMs or Newer WB
Chip-RAM-Only Machines

machines with Fast RAM

with Enhanced Chips

Graphics——-Corrupted Images

Hang—--One Program Only

Hang—--Whole System

Memory

Memory

Memory

Memory

Memory

Loss

Loss—-CLI Only

Loss——-Ctrl-C Exit Only

Loss—--During Execution

Loss——-Workbench Only

Menu Problems

Out-of-Sync Response to Input

Performance Loss in Other Processes

Performance Loss—-0n A3000

Trackdisk Data not Transferred

Windows——-Borders Flicker after Resize

Windows——-Visual Problems

Libraries 3/13

1.3 D/ Errors / Audio--Corrupted Samples

The bit data for audio samples must be in Chip RAM. Check your compiler
manual for directives or flags which will place your audio sample data in
Chip RAM. Or dynamically allocate Chip RAM and copy or load the audio
sample there.

1.4 D/ Errors / Character Input/Output Problems

RAWKEY users must be aware that RAWKEY codes can be different letters or
symbols on national keyboards. If you need to use RAWKEY, run the codes
through RawKeyConvert () (see the "Intuition Input and Output Methods"
chapter) to get proper translation to correct ASCII codes. Improper
display or processing of high-ASCII international characters can be caused
by incorrect tolower () /toupper (), or by sign extension of character values
when switched on or assigned into larger size variables. Use unsigned
variables such as UBYTE (not char) for strings and characters whenever
possible. Internationally correct string functions are provided in the 2.0
utility.library.

1.5 D/ Errors/CLI Error Message Problems

Improper error messages are caused by calling exit(n) with an invalid or
missing return value n. Assembler programmers using startup code should
jump to the startup code’s _exit with a valid return value on the stack.
Programs without startup code should return with a valid value in DO.
Valid return values such as RETURN_OK, RETURN_WARN, RETURN_FAIL are
defined in <dos/dos.h> and <dos/dos.i>. Values outside of these ranges
(-1 for instance) can cause invalid CLI error messages such as "not an
object module". Useful hint--if your program is called from a script,
your valid return value can be conditionally branched on in the script
(i.e., call program, then perform actions based on IF WARN or IF NOT
WARN) . RETURN_FAIL will cause the script to stop if a normal FAILAT value
is being used in script.

1.6 D/ Errors/CLI Won’t Close on RUN

A CLI can’t close if a program has a Lock () on the CLI input or output
stream ("x"). If your program is RUN >NIL: from a CLI, that CLI should be
able to close unless your code or your compiler’s startup code explicitly
opens "x".

1.7 D/ Errors / Crashes and Memory Corruption

Libraries 4/13

Memory corruption, address errors, and illegal instruction errors <
are

generally caused by use of an uninitialized, incorrectly initialized, or
already freed/closed pointer or memory. You may be using the pointer
directly, or it may be one that you placed (or forgot to place) in a
structure passed to system calls. Or you may be overwriting one of your
arrays, or accidentally modifying or incrementing a pointer later used in
a free/close. Be sure to test the return of all open/allocation type
functions before using the result, and only close/free things that you
successfully opened/allocated. Use watchdog/torture utilities such as
Enforcer and MungWall in combination to catch use of uninitialized
pointers or freed memory, and other memory misuse problems. Use the
debugging tool TNT to get additional debugging information instead of a
Software Error requester. You may also be overflowing your stack--your
compiler’s stack checking option may be able to catch this. Cut stack
usage by dynamically allocating large structures, buffers, and arrays
which are currently defined inside your functions.

Corruption or crashes can also be caused by passing wrong or missing
arguments to a system call (for example SetAPen(3) or SetAPen(win, 3),
instead of SetAPen(rp,3)). C programmers should use function prototypes
to catch such errors. 1If using short integers be sure to explicitly type
long constants as long (e.g., 42L). (For example, with short ints, 1 << 17
may become zero). If corruption is occurring during exit, use printf ()
(or KPrintF (), etc.) with Delay(n) to slow down your cleanup and broadcast
each step. A bad pointer that causes a system crash will often be reported
as an standard 680x0 processor exception $00000003 or 4, or less often a
number in the range of $00000006-B. Or an Amiga-specific alert number may
result. See <exec/alerts.h> for Amiga-specific alert numbers. Also see
n

Crashes—-—-After Exit

" below.

1.8 D/ Errors / Crashes--After Exit

If this only happens when you start your program from Workbench, then you
are probably UnLock ()ing one of the WBStartup message wa_Locks, or
UnLock () ing the Lock () returned from an initial CurrentDir() call. If you
CurrentDir (), save the lock returned initially, and CurrentDir () back to
it before you exit. Only UnLock () locks that you created.

If you are crashing from both Workbench and CLI, and you are only crashing
after exit, then you are probably either freeing/closing something twice,
or freeing/closing something your did not actually allocate/open, or you
may be leaving an outstanding device I/0 request or other wakeup request.
You must abort and WaitIO() any outstanding I/0O requests before you free
things and exit (see the Autodocs for your device, and for Exec AbortIO()
and WaitIO()). Similar problems can be caused by deleting a subtask that
might be in a WaitTOF (). Only delete subtasks when you are sure they are
in a safe state such as Wait (0L).

Libraries

5/13

1.9 D/ Errors/ Crashes--Only on 68000 and 68010

This can be caused by illegal instructions (80000000.00000004) such as new
68020/30/40 instructions or inline 68881/882 code. But this is usually
caused by a word or longword access at an odd address. This is legal on
the 68020 and above, but will generate an Address Error
(80000000.00000003) on a 68000 or 68010. This can be caused by using
uninitialized pointers, using freed memory, or using system structures
improperly (for example, referencing into IntuiMessage—->IAddress as a
struct Gadget * on a non—-Gadget message) .

1.10 D/ Errors / Crashes--Only on 68040

Because of the instruction pipelining of the 68040, it is very difficult
to recover from a bus error. If your program has an "Enforcer hit" (i.e.,
an illegal reference to memory), the resulting 68040 processor bus error
will probably crash the machine. Use Enforcer (on an "030) to track down
your problems, then correct them.

1.11 D/ Errors / Crashes--Subtasks, Interrupts

If part of your code runs on a different stack or the system stack, you
must turn off compiler stack-checking options. If part of your code is
called directly by the system or by other tasks, you must use long
code/long data or use special compiler flags or options to assure that the
correct base registers are set up for your subtask or interrupt code.

1.12 D/ Errors / Crashes--Window Related

Be careful not to CloseWindow() a window during a while (msg=GetMsg(...))
loop on that window’s port (next GetMsg() would be on freed pointer).
Also, use ModifyIDCMP (NULL) with care, especially if using one port with
multiple windows. Be sure to ClearMenuStrip () any menus before closing a
window, and do not free items such as dynamically allocated gadgets and
menus while they are attached to a window. Do not reference an
IntuiMessage’s IAddress field as a structure pointer of any kind before
determining it is a structure pointer (this depends on the Class of the
IntuiMessage). If a crash or problem only occurs when opening a window
after extended use of your program, check to make sure that your program
is properly freeing up signals allocated indirectly by CreatePort (),
OpenWindow () or ModifyIDCMP () .

1.13 D/ Errors / Crashes--Workbench Only

Libraries 6/13

If you are crashing near the first DOS call, either your stack is <

too
small or your startup code did not GetMsg() the WBStartup message from the
process message port. If your program crashes during execution or during

your exit procedure only when started from Workbench, and your startup
opens no stdio window or NIL: file handles for WB programs, then make sure
you are not writing anything to stdout (printf(), etc.) when started from
WB (argc==0). See also "

Crashes—--After Exit

n

1.14 D/ Errors / Device-related Problems

Device-related problems may caused by: improperly initialized port or I/0
request structures (use CreatePort () and CreateExtIO()); use of a
too-small I/0 request (see the device’s <.h> files and Autodocs for
information on the required type of I/O request); re-use of an I/0 request
before it has returned from the device (use the debugging tool IO_Torture
to catch this); failure to abort and wait for an outstanding device
request before exiting; waiting on a signal/port/message allocated by a
different task.

1.15 D/ Errors / Disk lcon Won’t Go Away

This occurs when a program leaves a Lock () on one or more of a disk’s
files or directories. A memory loss of exactly 24 bytes is usually Lock ()
which has not been UnLock ()ed.

1.16 D/ Errors / DOS-related Problems

In general, any dos.library function which fills in a structure for you

(for example, Examine()), requires that the structure be longword aligned.
In most cases, the only way to insure longword alignment in C is to
dynamically allocate the structure. Unless documented otherwise,

dos.library functions may only be called from a process, not from a task.
Also note that a process’s pr_MsgPort is intended for the exclusive use of
dos.library. (The port may be used to receive a WBStartup message as long
as the message is GetMsg()’d from the port before DOS is used.

1.17 D/ Errors / Fails only on 68020/30

The following programming practices can cause this problem: using the
upper bytes of addresses as flags; doing signed math on addresses;
self-modifying code; using the MOVE SR assembler instruction (use Exec
GetCC () instead); software delay loops; assumptions about the order in
which asynchronous tasks will finish. The following differences in

Libraries 7/13

68020/30 can cause problems: data and/or instruction caches must be
flushed if data or code is changed by DMA or other non-processor
modification; different exception stack frame; interrupt autovectors may
be moved by VBR; 68020/30 CLR instruction does a single write access
unlike the 68000 CLR instruction which does a separate read and write
access (this might affect a read-triggered register in I/0 space--use MOVE
instead) .

1.18 D/ Errors / Fails only on 68000

The following programming practices can be the cause of this problem:
software delay loops; word or longword access of an odd address (illegal
on the 68000). Note that this can occur under 2.0 if you reference
IntuiMessage—>IAddress as a structure pointer without first determining
that the IntuiMessage’s Class is defined as having a structure pointer in
its IAddress; use of the assembler CLR instruction on a hardware register
which is triggered by any access. The 68000 CLR instruction performs two
accesses (read and write) while 68020/30 CLR does a single write access.
Use MOVE instead; assumptions about the order in which asynchronous tasks
will finish; use of compiler flags which have generated inline 68881/68882
math coprocessor instructions or 68020/30 specific code.

1.19 D/ Errors / Fails only on Older ROMs or Older WB

This can be caused by asking for a library version higher than you need
(Do not use the #define LIBRARY_VERSION when compiling!). Can also be
caused by calling functions or using structures which do not exist in the
older version of the operating system. Ask for the lowest version which
provides the functions you need (usually 33), and exit gracefully and
informatively if an OpenLibrary() fails (returns NULL). Or code
conditionally to only use new functions and structures if the available
Library’s lib_Version supports them.

1.20 D/ Errors/ Fails only on Newer ROMs or Newer WB

This should not happen with proper programming. Possible causes include:
running too close to your stack limits or the memory limits of a base
machine (newer versions of the operating system may use slightly more
stack in system calls, and usually use more free memory); using system
functions improperly; not testing function return values; improper
register or condition code handling in assembler code. Remember that
result, if any, 1s returned in DO, and condition codes and D1/A0/Al are
undefined after a system call; using improperly initialized pointers;
trashing memory; assuming something (such as a flag) is B if it is not A;
failing to initialize formerly reserved structure fields to zero;
violating Amiga programming guidelines (for example: depending on or
poking private system structures, jumping into ROM, depending on
undocumented or unsupported behaviors); failure to read the function
Autodocs.

Libraries 8/13

See Appendix E, "Release 2 Compatibility", for more information on 2.0
compatibility problem areas.

1.21 D/ Errors / Fails only on Chip-RAM-Only Machines

Caused by specifically asking for or requiring MEMF_FAST memory. If you
don’t need Chip RAM, ask for memory type 0L, or MEMF_CLEAR, or
MEMF_PUBLIC|MEMF_CLEAR as applicable. If there is Fast memory available,
you will be given Fast memory. If not, you will get Chip RAM. May also
be caused by trackdisk-level loading of code or data over important system
memory or structures which might reside in low Chip memory on a
Chip-RAM-Only machine.

1.22 D/ Errors / Fails only on machines with Fast RAM

Data and buffers which will be accessed directly by the custom chips must
be in Chip RAM. This includes bitplanes (use OpenScreen() or
AllocRaster()), audio samples, trackdisk buffers, and the graphic image
data for sprites, pointers, bobs, images, gadgets, etc. Use compiler or
linker flags to force Chip RAM loading of any initialized data needing to
be in Chip RAM, or dynamically allocate Chip RAM and copy any
initialization data there.

1.23 D/ Errors / Fails only with Enhanced Chips

Usually caused by writing or reading addresses past the end of <
older
custom chips, or writing something other than 0 (zero) to bits which are
undefined in older chip registers, or failing to mask out undefined bits
when interpreting the value read from a chip register. Note that system
copper lists are different under 2.0 when ECS chips are present. See

n

Fails only on Chip-RAM-Only Machines

1.24 D/ Errors / Fireworks

A dazzling pyrotechnic video display is caused by trashing or <
freeing a
copper list which is in use, or trashing the pointers to the copper list.
If you aren’t messing with copper lists, see above section called

n

Crashes and Memory Corruption
"

Libraries 9/13

1.25 D/ Errors / Graphics--Corrupted Images

The bit data for graphic images such as sprites, pointers, bobs, and
gadgets must be in Chip RAM. Check your compiler manual for directives or
flags which will place your graphic image data in Chip RAM. Or
dynamically allocate Chip RAM and copy them there.

1.26 D/ Errors / Hang--One Program Only

Program hangs are generally caused by Wait ()ing on the wrong signal bits,
on the wrong port, on the wrong message, or on some other event that will

never occur. This can occur if the event you are waiting on is not
coming, or if one task tries to Wait (), WaitPort (), or WaitIO() on a
signal, port, or window that was created by a different task. Both
WaitIO () and WaitPort () can call Wait (), and you cannot Wait () on another
task’s signals. Hangs can also be caused by verify deadlocks. Be sure to

turn off all Intuition verify messages (such as MENUVERIFY) before calling
AutoRequest () or doing disk access.

1.27 D/ Errors / Hang--Whole System

This is generally caused by a Disable() without a corresponding <+
Enable () .
It can also be caused by memory corruption, especially corruption of low
memory. See "
Crashes and Memory Corruption

n

1.28 D/ Errors / Memory Loss

First determine that your program is actually causing a memory <
loss. It
is important to boot with a standard Workbench because a number of third
party items such as some background utilities, shells, and network
handlers dynamically allocate and free pieces of memory. Open a Shell for
memory checking, and a Shell or Workbench drawer for starting your
program. Arrange windows so that all are accessible, and so that no
window rearrangement will be needed to run your program.

In the Shell, type Avail FLUSH<RET> several times (2.0 option). This will
flush all non-open disk-loaded fonts, devices, etc., from memory. Note the
amount of free memory. Now without rearranging any windows, start your
program and use all of your program features. Exit your program, wait a
few seconds, then type Avail FLUSH<RET> several times. Note the amount of
free memory. If this matches the first wvalue you noted, your program is
fine, and is not causing a memory loss.

If memory was actually lost, and your program can be run from CLI or

Libraries 10/13

Workbench, then try the above procedure with both methods of starting your
program. Note that under 2.0, there will be a slight permanent (until
reboot) memory usage of about 672 bytes when the audio.device or
narrator.device is first opened. See "

Memory Loss——-CLI Only

" and

Memory Loss—--WorkBench Only

" if appropriate. If you lose memory from
both WB and CLI, then check all of the open/alloc/get/create/lock type
calls in your code, and make sure that there is a matching
close/free/delete/unlock type call for each of them (note--there are a few
system calls that have or require no corresponding free--check the
Autodocs). Generally, the close/free/delete/unlock calls should be in
opposite order of the allocations.

If you are losing a fixed small amount of memory, look for a structure of
that size in the Structure Offsets listing in the Amiga ROM Kernel

Reference Manual: Includes and Autodocs. For example, a loss of exactly
24 bytes is probably a Lock () which has not been UnLock()ed. If you are
using ScrollRaster (), be aware that ScrollRaster () left or right in a
Superbitmap window with no TmpRas will lose memory under 1.3
(workaround—-—-attach a TmpRas). If you lose much more memory when started
from Workbench, make sure your program is not using Exit (n). This would

bypass startup code cleanups and prevent a Workbench-loaded program from
being unloaded. Use exit(n) instead.

1.29 D/ Errors / Memory Loss--CLI Only

Make sure you are testing in a standard environment. Some third-party
shells dynamically allocate history buffers, or cause other memory
fluctuations. Also, if your program executes different code when started
from CLI, check that code and its cleanup. And check your startup.asm if
you wrote your own.

1.30 D/ Errors / Memory Loss--Ctrl-C Exit Only

You have Amiga-specific resources opened or allocated and you have not
disabled your compiler’s automatic Ctrl-C handling (causing all of your
program cleanups to be skipped). Disable the compiler’s Ctrl-C handling
and handle Ctrl-C (SIGBREAKF_CTRL_C) yourself.

1.31 D/ Errors / Memory Loss--During Execution

A continuing memory loss during execution can be caused by failure to keep
up with voluminous IDCMP messages such as MOUSEMOVE messages. Intuition
cannot re-use IDCMP message blocks until you ReplyMsg() them. If your
window’s allotted message blocks are all in use, new sets will be
allocated and not freed till the window is closed. Continuing memory

Libraries

11/13

losses can also be caused by a program loop containing an allocation-type
call without a corresponding free.

1.32 D/ Errors / Memory Loss--Workbench Only

Commonly, this is caused by a failure of your code to unload after you
exit. Make sure that your code is being linked with a standard correct
startup module, and do not use the Exit (n) function to exit your program.
This function will bypass your startup code’s cleanup, including its
ReplyMsg () of the WBStartup message (which would signal Workbench to

unload your program from memory). You should exit via either exit (n)
where n is a valid DOS error code such as RETURN_OK (<dos/dos.h>), or via
final "}" or return. Assembler programmers using startup code can JMP to

_exit with a long return value on stack, or use the RTS instruction.

1.33 D/ Errors / Menu Problems

A flickering menu is caused by leaving a pixel or more space between menu
subitems when designing your menu. Crashing after browsing a menu
(looking at menu without selecting any items) is caused by not properly
handling MENUNULL select messages. Multiple selection not working is
caused by not handling NextSelect properly. See the "Intuition Menus"
chapter.

1.34 D/ Errors / Out-of-Sync Response to Input

Caused by failing to handle all received signals or all possible messages
after a Wait () or WaitPort () call. More than one event or message may
have caused your program to awakened. Check the signals returned by
Wait () and act on every one that is set. At ports which may have more
than one message (for instance, a window’s IDCMP port), you must handle
the messages in a while (msg=GetMsg(...)) loop.

1.35 D/ Errors / Performance Loss in Other Processes

This is often caused by a one program doing one or more of the following:
busy waiting or polling; running at a higher priority; doing lengthy
Forbid()s, Disable()s, or interrupts.

1.36 D/ Errors / Performance Loss--On A3000

If your program has "Enforcer hits" (i.e., illegal references to memory
caused by improperly initialized pointers), this will cause Bus Errors.
The A3000 bus error handler contains a built-in delay to let the bus

settle. 1If you have many enforcer hits, this could slow your program down

substantially.

Libraries 12/13

1.37 D/ Errors / Trackdisk Data not Transferred

Make sure your trackdisk buffers are in Chip RAM under 1.3 and lower
versions of the operating system.

1.38 D/ Errors / Windows--Borders Flicker after Resize

Set the NOCAREREFESH flag. Even SMART_REFRESH windows may generate

refresh events if there is a sizing gadget. If you don’t have specific
code to handle this, you must set the NOCAREREFRESH flag. If you do have
refresh code, be sure to use the Begin/EndRefresh() calls. Failure to

do one or the other will leave Intuition in an intermediate state, and
slow down operation for all windows on the screen.

1.39 D/ Errors / Windows--Visual Problems

Many visual problems in windows can be caused by improper font
specification or improper setting of gadget flags. See the Appendix E on
"Release 2 Compatibility" for detailed information on common problems.

1.40 D Troubleshooting Guide / General Debugging Techniques

Narrow the search
Use methodical testing procedures, and debugging messages if
necessary, to locate the problem area. Low level code can be
debugged using KPrintF () serial (or dprintf () parallel) messages.
Check the initial values, allocation, use, and freeing of all
pointers and structures used in the problem area. Check that all of
your system and internal function calls pass correct initialized
arguments, and that all possible error returns are checked for and
handled.

Isolate the problem
If errors cannot be found, simplify your code to the smallest
possible example that still functions. Often you will find that this
smallest example will not have the problem. If so, add back the
other features of your code until the problem reappears, then debug
that section.

Use debugging tools
A variety of debugging tools are available to help locate faulty
code. Some of these are source level and other debuggers, crash
interceptors, vital watchdog and memory invalidation tools like
Enforcer and MungWall.

Libraries

13/13

1.41 D Troubleshooting Guide / A Final Word About Testing

Test your program with memory watchdog and invalidation tools on a wide
variety of systems and configurations. Programs with coding errors may
appear to work properly on one or more configurations, but may fail or

cause fatal problems on another. Make sure that your code is tested on
both a 68000 and a 68020/30, on machines with and without Fast RAM, and on
machines with and without enhanced chips. Test all of your program

functions on every machine.

Test all error and abort code. A program with missing error checks or
unsafe cleanup might work fine when all of the items it opens or allocates
are available, but may fail fatally when an error or problem is
encountered. Try your code with missing files, filenames with spaces,
incorrect filenames, cancelled requesters, Ctrl-C, missing libraries or
devices, low memory, missing hardware, etc.

Test all of your text input functions with high-ASCII characters (such as
the character produced by pressing Alt-F then "A"). Note that RAWKEY
codes can be different keyboard characters on national keyboards (higher
levels of keyboard input are automatically translated to the proper
characters). 1If your program will be distributed internationally, support
and take advantage of the additional screen lines available on a PAL
system. Enhanced Agnus chip machines may be switched to be PAL or NTSC
via motherboard jumper J102 in A2000s and jumper J200 in A3000s. Note
that a base PAL machine will have less memory free due to the larger
display size.

Write good code. Test it. Then make it great.

	Libraries
	Amiga® RKM Libraries: D Troubleshooting Guide
	D Troubleshooting Guide / Errors
	D / Errors / Audio--Corrupted Samples
	D / Errors / Character Input/Output Problems
	D / Errors / CLI Error Message Problems
	D / Errors / CLI Won't Close on RUN
	D / Errors / Crashes and Memory Corruption
	D / Errors / Crashes--After Exit
	D / Errors / Crashes--Only on 68000 and 68010
	D / Errors / Crashes--Only on 68040
	D / Errors / Crashes--Subtasks, Interrupts
	D / Errors / Crashes--Window Related
	D / Errors / Crashes--Workbench Only
	D / Errors / Device-related Problems
	D / Errors / Disk Icon Won't Go Away
	D / Errors / DOS-related Problems
	D / Errors / Fails only on 68020/30
	D / Errors / Fails only on 68000
	D / Errors / Fails only on Older ROMs or Older WB
	D / Errors / Fails only on Newer ROMs or Newer WB
	D / Errors / Fails only on Chip-RAM-Only Machines
	D / Errors / Fails only on machines with Fast RAM
	D / Errors / Fails only with Enhanced Chips
	D / Errors / Fireworks
	D / Errors / Graphics--Corrupted Images
	D / Errors / Hang--One Program Only
	D / Errors / Hang--Whole System
	D / Errors / Memory Loss
	D / Errors / Memory Loss--CLI Only
	D / Errors / Memory Loss--Ctrl-C Exit Only
	D / Errors / Memory Loss--During Execution
	D / Errors / Memory Loss--Workbench Only
	D / Errors / Menu Problems
	D / Errors / Out-of-Sync Response to Input
	D / Errors / Performance Loss in Other Processes
	D / Errors / Performance Loss--On A3000
	D / Errors / Trackdisk Data not Transferred
	D / Errors / Windows--Borders Flicker after Resize
	D / Errors / Windows--Visual Problems
	D Troubleshooting Guide / General Debugging Techniques
	D Troubleshooting Guide / A Final Word About Testing

