Libraries

Libraries

] COLLABORATORS
TITLE :
Libraries
ACTION NAME DATE SIGNATURE
WRITTEN BY March 14, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1
1.1 Amiga® RKM Libraries: B Boopsi Class Reference 1
1.2 B Boopsi Class Reference / Introduction e 2
1.3 B Boopsi Class Reference /rootclass e 4
1.4 B /rootclass / New Methods: OM_NEW e e 5
1.5 B /rootclass / New Methods: OM_DISPOSE e 7
1.6 B /rootclass / New Methods: OM_ADDTAIL e 8
1.7 B /rootclass / New Methods: OM_REMOVE s 8
1.8 B /rootclass / New Methods: OM_ADDMEMBER 8
1.9 B /rootclass / New Methods: OM_REMMEMBER 9
1.10 B/rootclass / New Methods: OM_GET s s 9
1.11 B/rootclass / New Methods: OM_SET e e s s e s e e 9
1.12 B /rootclass / New Methods: OM_UPDATE e e e 10
1.13 B /rootclass / New Methods: OM_NOTIFY e e s s e s s e 11
1.14 B Boopsi Class Reference /icclass 0 0 0 e e e e e 12
1.15 B/icclass / Changed Methods: OM_SET e 13
1.16 B/icclass / Changed Methods: OM_UPDATE/OM_NOTIFY 13
1.17 B/icclass/ Attributes: ICA_TARGET (IS) e e e e e e 13
1.18 B/icclass / Attributes: ICA_MAP (IS) 14
1.19 B/icclass / Attributes: ICSPECIAL_CODE (*) e e s e s 14
1.20 B Boopsi Class Reference / modelclass e 15
1.21 B/modelclass / Changed Methods: OM_ADDMEMBER 15
1.22 B /modelclass / Changed Methods: OM_REMMEMBER 16
1.23 B/ modelclass / Changed Methods: OM_DISPOSE 16
1.24 B /modelclass / Changed Methods: OM_NOTIFY/OM_UPDATE 16
1.25 B Boopsi Class Reference /imageclass i i e e e e 16
1.26 B /imageclass / New Methods: IM_DRAW e 17
1.27 B/imageclass / New Methods: IM_HITTEST i 19
1.28 B/imageclass / New Methods: IM_ERASE e 19
1.29 B /imageclass / New Methods: IM_DRAWFRAME 20

Libraries iv

1.30 B/imageclass / New Methods: IM_HITFRAME 21
1.31 B/imageclass / New Methods: IM_ERASEFRAME 21
1.32 B/imageclass / New Methods: IM_FRAMEBOX i 22
1.33 B /imageclass / Changed Methods: OM_NEW e 23
1.34 B/imageclass / Changed Methods: OM_SET i 23
1.35 B /imageclass / Attributes:IA_Left, IA_Top, IA_Width, IA_Height ISG) 24
1.36 B /imageclass / Attributes: IA_FGPen, IA_BGPen (ISG) 24
1.37 B/imageclass / Attributes: IA_Data (ISG) e e 24
1.38 B/imageclass / Attributes: IA_Pens () 24
1.39 B Boopsi Class Reference / frameiclass e e 24
1.40 B/ frameiclass / Changed Methods: IM_DRAW 25
1.41 B/ frameiclass / IDS_NORMAL, IDS_INACTIVENORMAL, IDS_DISABLED 25
1.42 B/ frameiclass / Changed Methods: IDS_SELECTED, IDS_INACTIVESELECTED 25
1.43 B/ frameiclass / Changed Methods: IM_DRAWFRAME 26
1.44 B /frameiclass / Changed Methods: IM_FRAMEBOX 26
1.45 B/ frameiclass / Attributes: IA_Recessed (IS) e 26
1.46 B/ frameiclass / Attributes: IA_EdgesOnly (IS) 27
1.47 B Boopsi Class Reference / sysiclass 0 e e 27
1.48 B/sysiclass / Attributes: SYSIA_DrawInfo (I) 27
1.49 B /sysiclass / Attributes: SYSIA_Which (I) e 28
1.50 B/sysiclass/ Attributes: SYSIA_Size (I) e 28
1.51 B Boopsi Class Reference / fillrectclass e e e 29
1.52 B/fillrectclass / Changed Methods: IM_DRAW 29
1.53 B/ fillrectclass / Changed Methods: IM_DRAWFRAME 29
1.54 B/ fillrectclass / Attributes: IA_APattern, IA_APatSize (IS) 30
1.55 B/fillrectclass / Attributes: IA_Mode (IS) 30
1.56 B Boopsi Class Reference /itexticlass L e 30
1.57 B/itexticlass / New Methods: IM_DRAW/IM_DRAWFRAME 31
1.58 B Boopsi Class Reference / gadgetclass e 31
1.59 B/ gadgetclass / New Methods: GM_HITTEST e 33
1.60 B/ gadgetclass / New Methods: GM_RENDER L o 33
1.61 B/ gadgetclass / New Methods: GM_GOACTIVE et 34
1.62 B/ gadgetclass / New Methods: GM_HANDLEINPUT 35
1.63 B/ gadgetclass / New Methods: GM_GOINACTIVE i 37
1.64 B/ gadgetclass / Changed Methods: OM_NEW 38
1.65 B/ gadgetclass / Changed Methods: OM_NOTIFY 38
1.66 B/ gadgetclass / Attributes: GA_Previous (I) oL 39
1.67 B/ gadgetclass / Attributes: ICA_TARGET (IS) e 39

1.68 B/ gadgetclass / Attributes: ICA_MAP (IS)o 40

Libraries M

1.69 B/ gadgetclass / Attributes:GA_Left, GA_Top, GA_Width, GA_Height IS) 40
1.70 B// GA_RelRight, GA_RelBottom, GA_RelWidth, GA_RelHeight (IS) 40
1.71 B/ gadgetclass / Attributes:GA_IntuiText, GA_Text, GA_Labellmage (IS) 41
1.72 B/ gadgetclass / Attributes: GA_Image (IS) e 41
1.73 B/ gadgetclass / Attributes: GA_Border - GA_Speciallnfo (IS) 41
1.74 B/ gadgetclass / Attributes: GA_GZZGadget, GA_SysGadget (IS), 41
1.75 B/ gadgetclass / Attributes: GA_Disabled, GA_Selected (IS) 41
1.76 B/ gadgetclass / Attributes: GA_EndGadget - GA_TabCycle (IS) 42
1.77 B/ gadgetclass / Attributes: GA_Highlight IS) 42
1.78 B/ gadgetclass / Attributes: GA_SysGType (IS) o e 42
1.79 B Boopsi Class Reference / propgelass o o o i e 42
1.80 B /propgclass / Changed Methods: GM_HANDLEINPUT 43
1.81 B /propgclass / Attributes: GA_Image (I) e 44
1.82 B/propgclass / Attributes: GA_Border (I) e e e 44
1.83 B/ propgclass / Attributes: GA_Highlight (I) 44
1.84 B /propgclass / Attributes: PGA_Freedom (IG) e 45
1.85 B /propgclass / Attributes: PGA_NewLook (I) 45
1.86 B /propgclass / Attributes: PGA_Borderless (I) e 45
1.87 B/ propgclass / PGA_Top ISGNU), PGA_Visible, PGA_Total ISU) 45
1.88 B Boopsi Class Reference / strgclass o 0 0 e e e 46
1.89 B/strgclass / Changed Methods: OM_NEW 0. ... 0 o o 47
1.90 B /strgclass / Attributes: STRINGA_LongVal ISGNU) et 47
1.91 B /strgclass / Attributes: STRINGA_TextVal ISGNU) o o o e 47
1.92 B/ strgclass / Attributes: STRINGA_MaxChars - STRINGA_WorkBuffer (I) 48
1.93 B/ strgclass / Attributes: STRINGA_BufferPos, STRINGA_DispPos (ISU) 48
1.94 B/ strgclass / Attributes: STRINGA_AltKeyMap (IS) e et 48
1.95 B /strgclass / Attributes: STRINGA_Font (IS) o . o o s 48
1.96 B /strgclass / Attributes: STRINGA_Pens (IS) e e 49
1.97 B/ strgclass / Attributes: STRINGA_ActivePens (IS) o o o o 49
1.98 B /strgclass / Attributes: STRINGA_EditHook (I). e 49
1.99 B /strgclass / Attributes: STRINGA_EditModes (IS) o oo e 49
1.100B / strgclass / STRINGA_ReplaceMode - STRINGA_NoFilterMode IS) 49
1.101B / strgclass / Attributes: STRINGA Justification (IS) oo o oo 49
1.102B / strgclass / Attributes: STRINGA_ExitHelp (IS) e 49
1.103B Boopsi Class Reference / buttongclass oL e 50
1.104B / buttongclass / Changed Methods: GM_HITTEST 50
1.105B / buttongclass / Changed Methods: GM_HANDLEINPUT 50
1.106B / buttongclass / Changed Methods: GM_RENDER 51

1.107B / buttongclass / Attributes: GA_Image (IS) Lo 51

Libraries vi

1.108B Boopsi Class Reference / frbuttonclass 51
1.109B / frbuttonclass / Changed Methods: OM_NEW i 52
1.110B / frbuttonclass / Changed Methods: GM_HITTEST i 53
1.111B / frbuttonclass / Changed Methods: GM_RENDER 53
1.112B / frbuttonclass / Attributes: GA_Width, GA_Height (S) 53
1.113B / frbuttonclass / Attributes: GA_DrawInfo (I) 53
1.114B / frbuttonclass / Attributes:GA_Text,GA_IntuiText, GA_Labellmage (IS) 54
1.115B Boopsi Class Reference / groupgclass 54
1.116B / groupgclass / Changed Methods: OM_SET 55
1.117B / groupgclass / Changed Methods: OM_ADDMEMBER 55
1.118B / groupgclass / Changed Methods: OM_REMMEMBER 55
1.119B / groupgclass / Changed Methods: OM_DISPOSE 56
1.120B / groupgclass / Changed Methods: GM_HITTEST 56
1.121B / groupgclass / Changed Methods: GM_RENDER 56
1.122B / groupgclass / Changed: GM_GOACTIVE/GM_GOINACTIVE/GM_HANDLEINPUT 56

1.123B / groupgclass / Attributes: GA_Left, GA_Top (IS) 56

Libraries 1/56

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: B Boopsi Class Reference

The Boopsi Class Reference documents all of the classes built into

Intuition. Each class entry in the reference starts off with:
Class: The class’s name (for example,
gadgetclass
)
Superclass: The class’s superclass (for example,
rootclass

)
Include File: The class’s include file (for example,
<intuition/gadgetclass.h>)

The include file contains the class’s message structures, attribute IDs,
and method IDs. This is followed by a short description of the class.

The rest of a class entry is broken up into three sections:
* New Methods Describes each new method that the class defines.

* Changed Methods Describes each method to which this class makes
significant changes.

* Attributes Describes the attributes that this class defines as
well as inherited ones that this class alters.
Introduction
imageclass
itexticlass
buttongclass
rootclass

frameiclass

Libraries 2/56

gadgetclass
frbuttonclass
icclass
sysiclass
propgclass
groupgclass
modelclass
fillrectclass

strgclass

1.2 B Boopsi Class Reference / Introduction

There are 14 public classes built into the Release 2.04 ROM:

rootclass

icclass
/
gadgetclass

/ / \

imageclass
/ / \ \
/ / / / \ \

modelclass
/
propgclass

strgclass

buttongclass

groupgclass

/ \
/

frbuttongclass
/ \ \ \

Libraries

3/56

frameiclass
sysiclass
fillrectclass

itexticlass

This appendix documents all the standard Boopsi classes, including <+

their
methods and attributes.

Each class entry in this document can have two sets of methods: new
methods that the class defines and inherited methods that the class has

modified significantly. Similarly, each class entry can have two sets of
attributes: those that the class defines and those that the class
inherited and modified. Unless documented otherwise, all classes inherit

all of its superclass’s methods and attributes.

Each method has a Boopsi message associated with it. These messages are
in the form of C structures. Many methods use the default message
structure:

typedef struct
{

ULONG MethodID;
} xMsg;

Some methods require a customized message so they can pass other
parameters besides the Method ID. If a method requires a custom message,
its custom message structure is documented along with the method.

All methods have to return some sort of return value. The meaning of the
return value depends on the class and method. Normally a return value of
zero indicates that either the method failed or it is not supported by the
class. A method can use the return value to return a pointer to an

object. 1If a class does not directly support a particular method, the
class’s dispatcher should pass the method on to its superclass for
processing. The class dispatcher should record the return value it gets

from its superclass and use that as its return value. Methods that assign
no meaning to their return value can return 1L to indicate that the method
is implemented.

The description of each attribute contains a code which lists the

rootclass
methods that apply to that attribute:

I
OM_NEW
Attribute can be set at initialization
S
OM_SET
Attribute can be set with OM_SET method
G

OM_GET

Libraries

4 /56

Attribute can be read with OM_GET method

N
OM_NOTIFY
Changing the attribute triggers object to send
notifications
U
OM_UPDATE

Attribute can be set with OM_UPDATE method

For example, the
itexticlass
attribute
IA_Left
has the code (ISG) after
it. This means an application can set IA_Left when it creates an instance
of itexticlass (
OM_NEW
) and when it uses the OM_SET method. The
application can also ask an itexticlass object what the IA_Left value is,
using the
OM_GET
method.

The
OM_NEW

14

OM_SET

4

OM_NOTIFY

, and

OM_UPDATE

messages all contain a
pointer to a tag list. This tag list contains the attributes and
corresponding values that the method affects. Each TagItem in this list
makes up an attribute/value pair. The ti_Tag portion of the TagItem
contains the attribute’s ID while the ti_Data field contains the
attribute’s value. Note that these tag lists can also contain
utility.library Global System control tags (like TAG_SKIP and TAG_DONE),
so dispatchers should use the tag functions from utility.library to
process these lists. See documentation on the Utility library for more
information.

All methods are called via a class dispatcher:
classDispatcher (Class =xclass, Object xobject, Msg msqg);

The first argument, class, is a pointer to the dispatcher’s Class

structure (defined in <intuition/classes.h>). The second parameter,
object, is a pointer to the Boopsi object to which the Boopsi message (the
third argument, msg) refers. Both Object and Msg are defined in

<intuition/classusr.h>.

1.3 B Boopsi Class Reference / rootclass

Libraries 5/56
Class: rootclass
Superclass: None
Include File: <intuition/classusr.h>
This is the universal base class for all other classes.
New Methods:
OM_NEW
OM_ADDTAIL
OM_DISPOSE
OM__REMOVE
The following methods are described at the rootclass level <«
although its up
to the subclasses to actually implement them. If a class does not
implement these methods, it should either return zero, indicating that
this class does not support the method, or defer processing on to its
superclass.
OM_ADDMEMBER
OM_GET
OM_UPDATE
OM__REMMEMBER
OM_SET
OM_NOTIFY
Changed Methods:
Not applicable.
Attributes:
None
1.4 B /rootclass / New Methods: OM_NEW
This method tells a class to create a new instance of itself. If <+

is successful,
returns NULL.

OM_NEW
it returns a pointer to the new object, otherwise it

For programmers who are only creating Boopsi objects rather than creating

custom classes,

use the intuition.library function NewObject () :

Libraries 6/56

APTR NewObiject (struct IClass =xprivateclass,
UBYTE *publicclassname,
ULONG firsttag,
.)

The OM_NEW method receives the following arguments (defined in
<intuition/classusr.h>):

struct opSet /* The OM_NEW method uses the same structure as OM_SET x/
{

ULONG MethodID; /* OM_NEW =/
struct Tagltem xops_AttrList; /* tag attributes to initialize =/
struct GadgetInfo *ops_GInfo; /+ Always NULL for OM_NEW x/

}i

The ops_AttrList field contains a pointer to a tag list of attribute/value
pairs. Each pair contains an attribute ID and the initial value of the
corresponding attribute.

The ops_GInfo field is always NULL for the OM_NEW method.

Unlike other methods, when the dispatcher gets an OM_NEW message, the
object pointer (newobject from the dispatchRKMModel () prototype above)
does not point to an object, since the idea is to create a new object.
The pointer normally used to pass a Boopsi object is instead used to pass
the address of the object’s "true class" (the class of which the object
is an instance).

The first thing the dispatcher does when it processes an OM_NEW message is
pass the OM_NEW message on to its superclass’s dispatcher. It does this
using the amiga.lib function DoSuperMethodA() :

ULONG DoSuperMethodA (Class =xcl, Object *trueclass, Msg msg);

Each superclass’s dispatcher does this until the message gets to the
rootclass dispatcher.

Each class keeps a record of how much memory its local instance data
requires. The

rootclass

dispatcher’s OM_NEW method looks at the object’s
true class (newobject from the prototype) to find out how much memory to
allocate for the object’s instance data. The rootclass dispatcher
allocates enough memory for the true class’s local instance data, plus
enough memory for the local instance data of each of the true class’s
superclasses. If all goes well, the rootclass dispatcher increments the
true class’s internal count of instances of true class, and returns a
pointer to the newly created object. it passes control back to the
subclass dispatcher that called it. TIf there was a problem, the rootclass
dispatcher passes back a NULL.

When the

rootclass

dispatcher returns, the subclass dispatcher regains
control from DoSuperMethodA() . DoSuperMethodA () will return either a

pointer to the new object or NULL if there was an error. Although the
rootclass dispatcher allocated all the memory the object needs, it did not

Libraries 7156

set up any of that memory. Now its the the subclass dispatcher’s turn to
do some work. It has to initialize the instance data that is local to its
class. A dispatcher finds its local instance data by using the
INST_DATA () macro (defined in <intuition/classes.h>).

After initializing its local instance data, the subclass dispatcher passes
control down to its subclass dispatcher, which in turn, initializes its
local instance data. Control passes down from class to subclass until the
true class dispatcher regains control.

Now the true class dispatcher has to initialize its local instance data.
It has to scan through the tag list of attribute/value pairs passed in the
OM_NEW message (opSet.ops_AttrList). If the dispatcher finds any
attributes that the true class recognizes, it has to initialize them to
the value passed in the attribute/value pair.

At this point, the new object can allocate other resources it needs that
it did not allocate as part of its instance data. For example, the new
Boopsi object might need a frame image around itself, so it can create a
new one using a Boopsi frame image. If the object allocates any resources
in this step, it must deallocate these resources later when it is disposed
in the

OM_DISPOSE

method.

Finally, the dispatcher can return. When the dispatcher returns from an
OM_NEW method, it returns a pointer to the new object.

1.5 B/ rootclass / New Methods: OM_DISPOSE

This method instructs an object to delete itself. The
rootclass
dispatcher’s OM_DISPOSE method decrements the true class’s <
internal count
of instances of true class. The return value for this method is not
explicitly defined.

This method uses the default Boopsi message.

Applications should not call this method directly. Instead they should
use the intuition.library function DisposeObject ().

For the OM_DISPOSE method, an object should do the following:
Free any additional resources the object explicitly allocated itself in
the

OM_NEW

method (this does not include the instance data).

Pass the message up to the superclass, which will eventually reach

rootclass
, which will free the instance data allocated for the object.

Libraries

8/56

If a class does not allocate any extra resources when it creates an
object, it can defer all OM_DISPOSE processing to its superclass.

1.6 B /rootclass / New Methods: OM_ADDTAIL

This method tells an object to add itself to the end of a specified Exec
list. Boopsi objects contain a MinNode structure used for this purpose.
The return value for this method is not explicitly defined.

The method uses a custom message (defined in <intuition/classusr.h>):
struct opAddTail {
ULONG MethodID; /+* OM_ADDTAIL =/

struct List *opat_List; /* The exec list to add the object to =/
i

The opat_List can be any Exec list. Use the Intuition function
NextObject () to step through this list.

1.7 B/ rootclass / New Methods: OM_REMOVE

Remove an object from an Exec list. The return value for this method is
not explicitly defined. This method uses the default Boopsi message.

1.8 B /rootclass / New Methods: OM_ADDMEMBER

Tells an object to add another object to its personal Exec list.

What the
list is for depends on the class. The return value for this method is not
explicitly defined.

One class that uses this method is

modelclass
A modelclass object
maintains a broadcast list. When a modelclass object gets an
OM_NOTIFY
message, 1t broadcasts an
OM_UPDATE

message about the OM_NOTIFY to every
object in its broadcast list.

This method uses a custom message (defined in <intuition/classusr.h>):

#define opAddMember opMember
struct opMember {
ULONG MethodID; /+ OM_ADDMEMBER (or OM_REMMEMBER) =/
Object +opam_Object; /* add (or remove) this object */
}i /* to (from) personal list. */

Libraries 9/56
opam_Object is the object to add to the list. A dispatcher typically
implements OM_ADDMEMBER by sending the
OM_ADDTATL
message to the
opam_Object object.
1.9 B/ rootclass / New Methods: OM_REMMEMBER
Tells an object to remove a member object from its personal list. <+

The
member object should have already been added with
OM_ADDMEMBER
This
method uses the same custom message as OM_ADDMEMBER. Normally a
dispatcher implements OM_REMMEMBER by sending the
OM_REMOVE
message to the
opam_Object object. The return value for this method is not explicitly
defined.

1.10 B/ rootclass / New Methods: OM_GET

Tells an object to report an attribute’s value. Applications should not
call this method directly. 1Instead, use the intuition.library function
GetAttr (). The return value for this method is not explicitly defined.

This method uses a custom message (defined in <intuition/classusr.h>):

struct opGet {

ULONG MethodID; /+ OM_GET «*/

ULONG opg_AttrID; /* ID of attribute to get «/

ULONG *opg_Storage; /* place to put attribute value =/
bi

If the object’s dispatcher recognizes opg_AttrID as one of the attributes
defined by this class, the dispatcher should copy the value of that
attribute to where opg_Storage points:

struct opGet xmyopget;

* (myopget—->opg_Storage) = my_attribute_value;

If the dispatcher does not recognize opg_AttrID, it should pass the
message on to the superclass.

1.11 B/ rootclass / New Methods: OM_SET

Libraries 10/56

This method tells an object to set one or more of its attributes.
Applications should not call this method directly. 1Instead, use the
intuition.library functions SetAttrs () and SetGadgetAttrs () to call this
method. The return value for this method is not explicitly defined.

The return value for this method is not explicitly defined. However, in
general, when implementing the OM_SET method, if setting an object
attribute causes some sort of visual state change, the OM_SET method
should return a value greater than zero. If changing an attribute does
not affect the visual state, OM_SET should return zero.

This method uses a custom message (defined in <intuition/classusr.h>):

struct opSet {
ULONG MethodID; /* OM_SET x/
struct TagItem xops_AttrList; /+ tag list of attributes to setx/
struct GadgetInfo xops_GInfo;

}i

The ops_AttrList field contains a pointer to a tag list of attribute/value

pairs. These pairs contain the IDs and the new values of the attributes
to set. The dispatcher has to look through this list (see docs for the
utility.library NextTagItem() function) for attributes its class

recognizes and set the attribute’s value accordingly. The dispatcher
should let its superclass handle any attributes it does not recognize.

If the object is a gadget, the ops_GInfo field contains a pointer to a
GadgetInfo structure. Otherwise, the value in ops_GInfo is undefined.
Intuition use the GadgetInfo structure to pass display information to
gadgets. See the

gadgetclass

methods for more details.

1.12 B/ rootclass / New Methods: OM_UPDATE

This method tells an object to update one or more of its <+
attributes. No
application should call this method. Only Boopsi objects send OM_UPDATE
messages. The return value for this method is not explicitly defined.

A Boopsi object uses an OM_UPDATE message to notify another Boopsi object
about transitory changes to one or more attributes.

From the point of view of most objects, an OM_UPDATE message is almost
identical to
OM_SET
Because the methods are so similar, When a typical
dispatcher receives an OM_UPDATE message, 1t processes the OM_UPDATE the
same way it would process an OM_SET message, usually using the same code.

There are actually two kinds of OM_UPDATE, an interim and final one.
While a Boopsi object’s attribute is in a transient state, it can send out
interim OM_UPDATE messages to its target(s). For example, while the user

Libraries

11/56

is sliding a Boopsi prop gadget, the prop gadget sends interim OM_UPDATE

message about changes to its
PGA_Top

value (the integer value of the prop
gadget is the PGA_Top attribute) to some target object. When th
lets go of the prop gadget, the gadget is no longer in a transient state,
so the gadget sends out a final OM_UPDATE about its PGA_Top attribute.
The target object can choose to change one of its attributes based on the

OM_UPDATE messages it receives.

e user

The layout of the OM_UPDATE message is almost identical to the OM_SET

message:

struct opUpdate { /% the OM_NOTIFY method also uses this structure
ULONG MethodID; /* OM_UPDATE
struct TaglItem *Oopu_AttrList; /* tag list of attributes
struct GadgetInfo »opu_GInfo; / * that changed.
ULONG opu_Flags; /+ The extra field

}i

#define OPUF_INTERIM (1<<0)

*/
*/
*/
*/
*/

Some dispatchers need to know the difference between an interim and final
OM_UPDATE. A dispatcher can tell the difference between an interim and
final OM_UPDATE message because the OM_UPDATE message has an extra field
for flags. If the low order bit (the OPUF_INTERIM bit) is set,
interim OM_UPDATE message. The interim flag is useful to a class that
wants to ignore any interim messages, processing only final attribute

values.

1.13 B/ rootclass / New Methods: OM_NOTIFY

this is an

This method tells an object to broadcast an attribute change to a <+

set of
target objects using
OM_UPDATE

messages. The return value for this method

is not explicitly defined.

The OM_NOTIFY method uses the same message structure as

OM_UPDATE

Most dispatchers do not handle the OM_NOTIFY message directly.
so they pass the OM_NOTIFY

they inherit this method from a superclass,
message on to the superclass dispatcher.

Normally

Although most dispatchers don’t have to process OM_NOTIFY messages, most
do have to send them. Whenever an object receives an

OM_SET

or

OM_UPDATE

about one of its attributes,
of the

it may need to notify other objects

(_)

Libraries

12 /56

change. For example, when a prop gadget’s
PGA_Top
value changes, its

target object(s) need to hear about it.

If an object needs to notify other objects about a change to one or more
of its attributes, it sends itself an OM_NOTIFY message. The OM_NOTIFY
message will eventually end up in the hands of a superclass that
understands OM_NOTIFY and it will send

OM_UPDATE

messages to the target
objects.

1.14 B Boopsi Class Reference / icclass

Class: icclass (interconnection class)
Superclass:

rootclass

Include File: <intuition/icclass.h>

Base class of simple OM_UPDATE forwarding objects. When an icclass object
gets an
OM_UPDATE
message, it maps the attributes in the OM_UPDATE message
according to its mapping list (its
ICA_MAP
attribute) and forwards the

OM_UPDATE
to its target (its
ICA_TARGET

attribute) .
New Methods:
None
Changed Methods:

OM_SET

OM_UPDATE/OM_NOTIFY
Attributes:

ICA_TARGET (IS)

ICA_MAP (IS)

ICSPECIAL_CODE (*)

Libraries 13 /56
1.15 B/ icclass / Changed Methods: OM_SET
This method sets its attributes and returns O.
1.16 B /icclass / Changed Methods: OM_UPDATE/OM_NOTIFY
These methods tell the object to notify its
ICA_TARGET
of attribute
changes by sending the target an OM_UPDATE message. If the object has an
ICA_MAP
, 1t maps the attribute IDs it finds to new attribute IDs. See <=
the
rootclass
descriptions of
OM_NOTIFY
and
OM_UPDATE

for more information.
The return value for this method is not explicitly defined.

1.17 B/ icclass / Attributes: ICA_TARGET (IS)

This attribute stores the address of the
icclass
object’s target object.
Whenever the icclass object receives an
OM_NOTIFY
or
OM_UPDATE
message, it
forwards that message to its target in the form of an OM_UPDATE message.
If the icclass object has an attribute mapping list (see the
ICA_MAP
attribute below), it also maps the
OM_NOTIFY/OM_UPDATE
message’s attribute
IDs to new ones before forwarding the message.

If the value of ICA_TARGET is ICTARGET_IDCMP, the
icclass
object sends an
IDCMP_IDCMPUPDATE IntuiMessage to its window instead of forwarding an
OM_UPDATE message. See the
rootclass
description of
OM_UPDATE
for more
information.

Libraries 14 /56

1.18 B/ icclass / Attributes: ICA_MAP (IS)

This attribute points to a tag list of attribute mappings which <+

the
icclass
object uses to change the attribute IDs of an
OM_UPDATE
"'s
attribute/value pairs. For example, if an icclass object had the

following ICA_MAP:

struct TagItem map[] =

{
{PGA_Top, STRINGA_LongVal},
{MYATTR, MYNEWATTR},
{TAG_END, }

}i

before sending an

OM_UPDATE

to its

ICA_TARGET

, the

icclass

object scans
through the

OM_UPDATE

message’s attribute/value pairs looking for the

PGA_Top
and MYATTR attributes. If it finds the PGA_Top attribute, it
changes PGA_Top to
STRINGA_LongVal
Likewise, if the icclass object finds
the MYATTR attribute, it changes MYATTR to MYNEWATTR. The icclass object
does not disturb the attribute’s wvalue.

1.19 B/ icclass / Attributes: ICSPECIAL_CODE (*)

This is a dummy attribute for the
ICA_MAP
If any attribute maps to

ICSPECIAL_CODE and

ICA_TARGET

is ICTARGET_IDCMP, then the value of the
mapped attribute will be copied into the IntuiMessage.Code field of the
IDCMP_IDCMPUPDATE message (Jjust the lower sixteen bits of the attribute
value will fit).

Libraries 15/56

1.20 B Boopsi Class Reference / modelclass

Class: modelclass
Superclass:

icclass

Include File: <intuition/icclass.h>

A class of OM_UPDATE forwarding objects that have multiple targets. 1In
addition to the features the modelclass object inherits from

icclass

, when
a modelclass object gets an

OM_UPDATE

message, it forwards that

OM_UPDATE

message to all of the objects in its broadcast list.

New Methods:

OM_ADDMEMBER
OM_REMMEMBER
OM_DISPOSE

OM_NOTIFY/OM_UPDATE
Attributes:

1.21 B/ modelclass / Changed Methods: OM_ADDMEMBER

This method tells a model to add an object to its broadcast list. <+

When
the object disposes of itself, it will also dispose of any objects
remaining on its broadcast list. The return value for this method is not
explicitly defined. See the
rootclass

description of
OM_ADDMEMBER
for
more information.

Libraries 16/56

1.22 B/ modelclass / Changed Methods: OM_REMMEMBER

This method tells a model to remove an object from its broadcast <«
list.
The return value for this method is not explicitly defined. See the

rootclass

description of
OM_REMMEMBER

for more information.

1.23 B/ modelclass / Changed Methods: OM_DISPOSE

This method tells a model to dispose of itself plus the objects remaining
on its broadcast list. The return value for this method is not explicitly
defined.

1.24 B/ modelclass / Changed Methods: OM_NOTIFY/OM_UPDATE

This method tells an object to forward the message in the form of <=
an
OM_UPDATE message to all the objects in its broadcast list. The

modelclass
does not map the attributes in these OM_UPDATE messages.
Because modelclass inherits behavior from
icclass
, if the model has an

ICA_TARGET

and

ICA_MAP

, it will also send a mapped OM_UPDATE message to
its ICA_TARGET. The return values for these methods are not explicitly
defined. See the

rootclass

OM_NOTIFY

/

OM_UPDATE
and icclass

OM_NOTIFY/OM_UPDATE
descriptions for more information.

1.25 B Boopsi Class Reference / imageclass

Libraries

17 /56

Class: imageclass
Superclass:

rootclass

Include File: <intuition/imageclass.h>
This class is the base class for Boopsi Images. These images are
backwards compatible with the conventional Intuition Images. Every Boopsi
image has an Intuition Image structure embedded in it so Intuition can
access the Boopsi image as a conventional Image structure when necessary.
Normally there are no direct instances of this class, only instances of
subclasses of imageclass.

New Methods:

IM_DRAW
IM_ERASE
IM_HITFRAME
IM_FRAMEBOX
IM_HITTEST
IM_DRAWERAME

IM_ERASEFRAME
Changed Methods:

OM_NEW

OM_SET
Attributes:

IA_Left, IA_Top, IA_Width, IA Height (ISG)
IA_FGPen, IA_BGPen (ISG)
IA_Data (ISG)

IA_Pens ()

1.26 B /imageclass / New Methods: IM_DRAW

This method tells an image object to draw itself. Applications

should not
call this method directly, instead use the intuition.library function
DrawImageState (). The return value for this method is not explicitly
defined.

<

Libraries

18 /56

The IM_DRAW method uses a custom message structure:

struct impDraw

{

ULONG MethodID; /% IM_DRAW */

struct RastPort =ximp_RPort; /* RastPort to render into */

struct

{ /* X and Y offset relative to =*/
WORD X; /+ the image’s IA_Left and */
WORD Y; /* IA_Top attributes */

} imp_Offset;

ULONG imp_State; /+ Visual state of image */

struct DrawInfo *imp_DrInfo; /* describing rendering area =/

}i

The imp_State field contains the visual state to render the image. The
visual states (defined in <intuition/imageclass.h>) are:

IDS_NORMAL

IDS_SELECTED

IDS_DISABLED

IDS_INACTIVENORMAL

IDS_INACTIVESELECTED

IDS_INACTIVEDISABLED

IDS_BUSY

IDS_INDETERMINATE

Most image objects do
imp_State. See the

Render using normal imagery. This is the only
kind of imagery available to non-Boopsi images.

Render using "selected" imagery. "Selected"
refers to the state of a gadget’s imagery when it
is the selected gadget.

Render using "disabled" imagery. "Disabled"
refers to the state of a gadget’s imagery when it
is disabled. Typically, a disabled image has a
ghosting pattern on top of it.

This is a special version of IDS_NORMAL for a
"normal" image that is in the border of an
inactive window.

This is a special version of IDS_SELECTED for a
"selected" image that is in the border of an
inactive window.

This is a special version of IDS_DISABLED for a
"disabled" image that is in the border of an
inactive window.

Render using "busy" imagery as if the object
was the image of a gadget in a busy state. The
busy gadget state is not yet supported by
Intuition.

Render using "indeterminate" imagery as if the
object was the image of a gadget in an
indeterminate state. The indeterminate gadget
state is not yet supported by Intuition.

not have different visual states for each possible

imageclass

Libraries 19/56

entries in this index for more details.

When setting the pens to render an image, use the values from the
imp_DrInfo->dri_Pens pen array (Note that it is possible for imp_DrInfo to
be NULL). The possible pen values are defined in <intuition/screens.h>.
See the "Intuition Screens" chapter of the Amiga ROM Kernel Reference
Manual: Libraries for more information on the pen array.

1.27 B /imageclass / New Methods: IM_HITTEST

This method returns TRUE if a point is within the old Image <
structure box

defined by the Image structure’s LeftEdge, TopEdge, Width, and Height
fields. Subclasses of

imageclass

can redefine this method if they need to
change the criteria for deciding if a point is within an image.
Application programs should not call this method directly, instead use the
Intuition function PointInImage (). The IM_HITTEST method uses a custom
message structure:

struct impHitTest
{
ULONG MethodID; /% IM_HITTEST =/
struct
{
WORD X; /* Coordinates of point to test for hit =*/
WORD Y;
} imp_Point;

}i

If an image object doesn’t need to make any changes to how its superclass
handles IM_HITTEST, it can blindly pass this method on to its superclass.

1.28 B /imageclass / New Methods: IM_ERASE

The IM_ERASE method tells an image to erase itself. Applications <+

should
not call this method directly, instead they should call the Intuition
function EraselImage (). The return value for this method is not explicitly

defined.
The IM_ERASE method uses a custom message structure:

struct impErase

{
ULONG MethodID; /+* IM_ERASE =/
struct RastPort ximp_RPort; /% The image’s RastPort =/
struct

{

Libraries 20/56

WORD X; /x X and Y offset relative =/
WORD Y; /+ to the image’s IA_Left */
} imp_Offset; /* and IA_Top attributes. =/
}i
The
imageclass
dispatcher calls the graphics.library function EraseRect ()
to erase the image. The imageclass dispatcher gets the position of the
image using the offsets from the IM_ERASE message and the dimensions it
finds in the object’s Image structure. The imageclass dispatcher does not

do any bounds checking before calling EraseRect ().

1.29 B /imageclass / New Methods: IM_DRAWFRAME

The IM_DRAWFRAME method instructs an image object to render itself <
within
the confines of a given rectangle. The return value for this method is
not explicitly defined.

This method uses a custom message structure that is basically an extension
of the

IM_DRAW
message: struct
impDraw
{
ULONG MethodID; /+ IM_DRAWFRAME »*/
struct RastPort =ximp_RPort; /* RastPort to render into x/
struct
{
WORD X; /+* X and Y offset relative to the */
WORD Y; /* image’s IA_Left and IA_Top attributes x/
} imp_Offset;
ULONG imp_State; /+ Visual state of image (see defines below) x/

struct DrawInfo ximp_DrInfo;

/+ DrawInfo describing target RastPort (can be NULL) =/
struct

{
WORD Width; /* scale, clip, restrict, etc. to these bounds =/
WORD Height;

} imp_Dimensions;

}i

The Width and Height fields provide the object’s rectangular bounds. How

the image object deals with the frame is implementation specific. If the
imageclass
dispatcher sees this message, it will convert it to an
IM_DRAW
message and send it back to the image’s true class. An image <
subclass
which assigns proper meaning to this method (i.e.,
frameiclass

) should

Libraries

21/56

handle this method itself.

This method is useful to classes of images that can scale or clip
themselves to arbitrary dimensions. Typically, an instance of a class
that truly supports this method will massage its imagery as best it can to
fit into the rectangle.

In general, applications that use this method to draw an object should use
the

IM_ERASEFRAME

method to erase it (see below). This will ensure that
the image erases itself at the proper scale.

1.30 B /imageclass / New Methods: IM_HITFRAME

This method is a special version of
IM_HITTEST
for images that support

IM_DRAWEFRAME

It asks an image if a point would be inside it if the image

was confined (scaled, clipped, etc.) to a rectangular bounds. The return
value for this method is not explicitly defined.

This method uses a custom message structure:

struct impHitTest
{

ULONG MethodID; /+ IM_HITFRAME «*/

struct

{
WORD X; /+ Coordinates of point to test for hit =/
WORD Y;

} imp_Point;

struct

{
WORD Width; /+ scale, clip, restrict, etc. to these bounds */
WORD Height;

} imp_Dimensions;

i

The
imageclass
dispatcher treats IM_HITFRAME just like
IM_HITTEST

4
ignoring the restricting dimensions.

1.31 B/imageclass / New Methods: IM_ERASEFRAME

Libraries 22/ 56

This method is a special version of
IM_ERASE
for images that support

IM_DRAWEFRAME
It asks an image to erase itself as if it were confined
(scaled, clipped, etc.) to a rectangular bounds. The return value for
this method is not explicitly defined.

This method uses a custom message structure:

struct impErase /+ NOTE: This is a subset of impDraw =*/

{

ULONG MethodID; /* IM_ERASEFRAME «/
struct RastPort ximp_RPort; /% The image’s RastPort =/
struct
{

WORD X; /+* X and Y offset relative to the x/

WORD Y; /+ image’s IA_Left and IA_Top attributes x/
} imp_Offset;
struct

{
WORD Width; /+ scale, clip, restrict, etc. to these bounds */
WORD Height;

} imp_Dimensions;

i

The
imageclass
dispatcher handles an IM_ERASEFRAME message as if it was an
IM_ERASE message, ignoring the bounds. See the imageclass description for
IM_ERASE

for more details.

1.32 B /imageclass / New Methods: IM_FRAMEBOX

This method applies to image classes that are used to put a frame <+

centered
around some other objects. This method asks a framing image what its
dimensions should be if it had to frame some object or set of objects that
fit into a rectangular bounds. For example, to draw an
frameiclass
image

around a group of gadgets that fit into a specific rectangle, you first
send the frameiclass object an IM_FRAMEBOX message describing the
dimensions and position of that rectangle. The frame reports what its
position and dimensions would have to be to surround those gadgets. Use
these results to draw the frameiclass image. The return value for this
method is not explicitly defined.

IM_FRAMEBOX uses a custom message structure:

Libraries

23/56

struct impFrameBox

{

ULONG MethodID; /* IM_FRAMEBOX «*/

struct IBox ximp_ContentsBox; /* The object fills in this «/
/% structure with the */
/+ dimensions of a rectangle */
/+ big enough to frame... */

struct IBox *imp_FrameBox; [x <——————= this rectangle. =/

struct DrawInfo ximp_DrInfo; /+ imp_DrInfo can be NULL. */

ULONG imp_FrameFlags;

}i
#define FRAMEF_SPECIFY (1<<0) /* Make do with the dimensions x/
/* passed in FrameBox. */

The imp_FrameBox field points to an IBox structure (defined in
<intuition/intuition.h>) describing the dimensions and position of the
rectangle to frame. After the framing image determines the position and
size it should be in order to properly frame imp_FrameBox, it stores the
result in the imp_ContentsBox IBox. This method allows an application to
use a framing image without having to worry about image specific details
such as the thickness of the frame or centering the frame around the
object.

The imp_FrameFlags field is a bit field used to specify certain options
for the IM_FRAMEBOX method. Currently, there is only one defined for it,
FRAMEF_SPECIFY. If this bit is set, the imp_FrameBox contains a width and
height that the frame image has to use as its width and height, even if
the imp_FrameBox is smaller than imp_ContentsBox. The frame is free to
adjust its position, but it is stuck with the imp_FrameBox dimensions.
This allows an application to set the size of the frame image and still
allow the frame image to position itself so it is centered on a rectangle.

The
imageclass
dispatcher does not support this method. It returns zero.

1.33 B /imageclass / Changed Methods: OM_NEW

The instance data for

imageclass

contains an Image structure, and its
Depth field is initialized to CUSTOMIMAGEDEPTH, which identifies such
images to Intuition. The Image’s Width and Height fields default to
arbitrary positive numbers for safety, but an imageclass subclass or an
application should set these attributes to something meaningful.

1.34 B /imageclass / Changed Methods: OM_SET

Libraries

24 /56

This method applies to all
imageclass
attributes. OM_SET returns 1.

1.35 B /imageclass / Attributes:IA_Left, IA_Top, IA_Width, IA_Height (ISG)

These attributes correspond to similarly named fields in the <
Intuition
Image structure. The
imageclass
dispatcher stores these attributes in
their corresponding fields in the image object’s embedded Image structure.

1.36 B /imageclass / Attributes: IA_FGPen, IA_BGPen (ISG)

These attributes are copied into the Image structure’s PlanePick and
PlaneOnOff fields, respectively.

1.37 B /imageclass / Attributes: |IA_Data (ISG)

A pointer to general image data. This value is stored in the ImageData
field of the Image structure.

1.38 B /imageclass / Attributes: IA_Pens ()

This attribute points to an alternative pen array for the image.

Imageclass
does not support this attribute, it is described here for
subclasses to use. See the "Intuition Screens" chapter of the Amiga ROM

Kernel Reference Manual: Libraries for more information on the pen array.

1.39 B Boopsi Class Reference / frameiclass

Class: frameiclass
Superclass:
imageclass
Include File: <intuition/imageclass.h>
This is a class of framing image, which can optionally fill itself. Its

purpose is to frame other display elements using an embossed or recessed

Libraries 25/56

rectangular frame. The frame renders itself using the appropriate
DrawInfo pens (SHINEPEN, SHADOWPEN, etc.). This class is intelligent
enough to bound or center its contents.

New Methods:

IM_DRAW

IDS_NORMAL, IDS_INACTIVENORMAL, IDS_DISABLED
IDS_SELECTED, IDS_INACTIVESELECTED
IM_DRAWEFRAME

IM_FRAMEBOX
Attributes:

IA_Recessed (IS)

IA_EdgesOnly (IS)

1.40 B/ frameiclass / Changed Methods: IM_DRAW

This method tells a

frameiclass
object to render itself using the position
and dimensions of its Image structure. It supports two sets of drawing

states (passes in the
impDraw.imp_State
field) :

1.41 B/ frameiclass / IDS_NORMAL, IDS_INACTIVENORMAL, IDS_DISABLED

In these states, the frame renders its edges using SHADOWPEN and SHINEPEN.
If it is a filled frame the frame uses the BACKGROUNDPEN for its interior.
Note that the frame renders the same imagery for all three of these states.

1.42 B/frameiclass/Changed Methods: IDS_SELECTED, IDS_INACTIVESELECTED

Libraries 26 /56

In these states, the frame renders its edges using SHADOWPEN and <
SHINEPEN.
If it is a filled frame the frame uses the FILLPEN for its interior.

See the
imageclass
description for
IM_DRAW
for more details.

1.43 B/ frameiclass / Changed Methods: IM_DRAWFRAME

This method is almost the same as the
frameiclass

IM_ DRAW
method, except
this method accepts a width and height that overrides the width and height

stored in the object’s Image structure. It uses the same drawing states
as the frameiclass’s IM_DRAW method. See the
imageclass

description for

IM_DRAWEFRAME
for more information.

1.44 B /frameiclass / Changed Methods: IM_FRAMEBOX

This method asks a

frameiclass

image what its dimensions would be if it
has to frame a specific rectangular area. See the

imageclass

description

for
IM_FRAMEBOX
for more information.

1.45 B/ frameiclass / Attributes: IA_Recessed (IS)

If this attribute is TRUE, a

frameiclass

object will appear recessed into
the drawing surface. It does this by swapping its use of the SHADOWPEN
and SHINEPEN. By default, the frame appears to be raised from the surface.

Libraries 27 /1 56

1.46 B/ frameiclass / Attributes: IA_EdgesOnly (IS)

If this attribute is TRUE, the frame does not fill itself, it just draws
its edges.

1.47 B Boopsi Class Reference / sysiclass

Class: sysiclass
Superclass:
imageclass
Include File: <intuition/imageclass.h>

This is a class of system images and standard application images. As of
Intuition version 37, there are 11 possible sysiclass image glyphs to
choose from:

DEPTHIMAGE Window depth arrangement image.
ZOOMIMAGE Window Zoom image.

SIZEIMAGE Window Sizing image.

CLOSEIMAGE Window close image.

SDEPTHIMAGE Screen depth arrangement image.

LEFTIMAGE Left arrow image.
RIGHTIMAGE Right arrow image.
UPIMAGE Up arrow image.
DOWNIMAGE Down arrow image.
CHECKIMAGE Checkmark image.
MXIMAGE Radio button image.

The class caches the image’s bitmap to improve rendering speed.

New Methods:

SYSIA DrawInfo (I)
SYSIA_Which (I)

SYSIA_Size (I)

1.48 B/ sysiclass / Attributes: SYSIA_Drawinfo (1)

Libraries 28 /56

This attribute contains a pointer to a DrawInfo structure (defined in
<intuition/screens.h>) describing the target screen. The class requires
this attribute in order to generate the image into a bitmap cache.

1.49 B/ sysiclass / Attributes: SYSIA_Which (I)

This attribute identifies which of the system image glyphs the
sysiclass

object uses. It can be one of the 11 glyphs

described above

1.50 B/ sysiclass / Attributes: SYSIA_Size (l)

This attribute identifies which image size to use for the object. <+
This
generalizes Intuition’s older concept of two different system image
dimensions. There are three possible values for this attribute:

SYSISIZE_MEDRES Meant for Hires, non-interlaced 640x200/256 display.
SYSISIZE_HIRES Meant for Hires, interlaced 640x400/512 display.
SYSISIZE_LOWRES Meant for Lores 320x200/256 display.

These sizes do not apply to all of the glyphs consistently. See the chart
below for image dimensions (width x height) according to the SYSIA_Size
and the glyph type. An ’'H’ for the height means the glyph allows its
height to be specified with

IA_Height
SYSISIZE LOWRES SYSISIZE_MEDRES SYSISIZE_HIRES
DEPTHIMAGE 18 x H 24 x H 24 x H
ZOOMIMAGE 18 x H 24 x H 24 x H
SIZEIMAGE 13 x 11 18 x 10 18 x 10
CLOSEIMAGE 15 x H 20 x H 20 x H
SDEPTHIMAGE 17 x H 23 x H 23 x H
LEFTIMAGE 16 x 11 16 x 10 23 x 22
RIGHTIMAGE 16 x 11 16 x 10 23 x 22
UPIMAGE 13 x 11 18 x 11 23 x 22
DOWNIMAGE 13 x 11 18 x 11 23 x 22
CHECKIMAGE 26 x 11 26 x 11 26 x 11

MXIMAGE 17 x 9 17 x 9 17 x 9

Libraries 29/56

1.51 B Boopsi Class Reference / fillrectclass

Class: fillrectclass
Superclass:
imageclass
Include File: <intuition/imageclass.h>
This is a class of filled rectangles. The fillrectclass object can use a

pattern to fill in its interior.

New Methods:

IM_DRAW

IM_DRAW
Attributes:

IA_APattern, IA_APatSize (IS)

IA_ Mode (IS)

1.52 B /fillrectclass / Changed Methods: IM_DRAW

This method asks a

fillrectclass

object to render itself relative to the
position (LeftEdge and TopEdge) and dimensions (Width and Height) in its
embedded Image structure. See the

imageclass

description of

IM_DRAW

for

more details.

1.53 B/ fillrectclass / Changed Methods: IM_DRAWFRAME

This method asks a

fillrectclass

object to render itself relative to the
position in its embedded Image structure, but using the width and height
passed in the message’s Dimensions.Width and Dimensions.Height fields.
See the

imageclass

description of

Libraries 30/56

IM_DRAWEFRAME
for more details.

1.54 B/ fillrectclass / Attributes: IA_APattern, IA_APatSize (IS)

These attributes supply the

fillrectclass

object with an area fill
pattern. The IA_APattern attribute points to the area fill pattern for
the object. The IA_APatSize attribute is the depth of the area fill
pattern. These attribute values are similar to the parameters passed to
the SetAfPt () macro (defined in <graphics/gfxmacros.h>) and indirectly
correspond to fields in a RastPort structure. For more information on
these patterns, see the section on patterns in the "Graphics Primitives"
chapter of the Amiga ROM Kernel Reference Manual: Libraries.

1.55 B/ fillrectclass / Attributes: IA_Mode (IS)

This attribute contains the drawing mode for the pattern (JAM1, JAM2, etc.)

1.56 B Boopsi Class Reference / itexticlass

Class: itexticlass
Superclass:
imageclass
Include File: <intuition/imageclass.h>

This is a class of image objects that render an IntuiText structure.
Using some of the

imageclass
attributes, the object can override some of
the parameters in the IntuiText structure. This class makes it easy to

share an IntuiText structure between objects.

New Methods:

IM_DRAW/IM_DRAWFRAME

Libraries

31/56

1.57 B/ itexticlass / New Methods: IM_DRAW/IM_DRAWFRAME

These methods ask an

itexticlass

object to render its IntuiText structure,
which it gets from the

imageclass

IA_Data

attribute. An itexticlass
object renders its IntuiText relative to the

IA_Left

and

IA_Top

attributes
it inherits from imageclass. This method uses the JAM1l drawing mode and
the

IA_FGPen

to render the text. See the imageclass description of

IM_DRAW

/

IM_DRAWEFRAME

for more details.

1.58 B Boopsi Class Reference / gadgetclass

Class: gadgetclass
Superclass:

rootclass

Include File: <intuition/gadgetclass.h>
This is a base class for Intuition compatible gadget objects. The

dispatcher for this class takes care of creating an Intuition Gadget
structure as part of its local instance data. All of the standard Boopsi
gadget classes build on this class. Normally there are no direct
instances of this class, only instances of subclasses of gadgetclass.

The behavior of a Boopsi gadget depends on how it handles the five Boopsi
gadget methods: GM_HITTEST, GM_RENDER, GM_GOACTIVE, GM_HANDLEINPUT, and
GM_GOINACTIVE. Intuition controls a Boopsi gadget by sending it these
types of messages. The structures that these methods use for their
messages begin with the method’s ID followed by a pointer to a GadgetInfo
structure (defined in <intuition/cghooks.h>). The GadgetInfo structure is
a read-only structure that contains information about the gadget’s
rendering environment. The gadget uses this to find things like its
window, screen, or pen array. Although this structure does contain a
pointer to a RastPort for the gadget, the gadget must not use this
RastPort for rendering. The gadget can obtain a RastPort for rendering by
calling the Intuition function ObtainGIRPort () using the GadgetInfo
structure. See the intuition.library Autodocs for more details on this
function.

Libraries 32 /56

These methods are not defined directly by gadgetclass. It is up to
subclasses of gadgetclass to implement them.

Like all Boopsi methods, these methods run on the context of the task that
called the method. Normally, Intuition is the only entity that calls
these methods, so these normally operate in the input.device’s task.
Because a gadget may have to process a large number of input events, poor
implementations of gadget methods (especially the GM_HANDLEINPUT method)
can degrade system performance.

New Methods:

GM_HITTEST
GM_GOACTIVE
GM_GOINACTIVE
GM_RENDER

GM_HANDLEINPUT
Changed Methods:

OM_NEW

OM_NOTIFY
Attributes:

GA_Previous (I)

ICA_TARGET (IS)

ICA_MAP (IS)

GA_Left, GA_Top, GA_Width, GA_Height (IS)

GA_RelRight, GA_RelBottom, GA_RelWidth, GA_RelHeight (IS)
The remaining attributes defined by gadgetclass are used to set <«
the fields
in the Gadget structure of the Boopsi gadget. Some Boopsi gadgets do not
pay attention to many of the fields in its Gadget structure, so most
applications will not have to worry about the majority of these

attributes. Some gadget classes assign special meanings to these
attributes. See the documentation of the specific gadget classes for more
details.

GA_IntuiText, GA_Text, GA_LabelImage (IS)
GA_Image (IS)

GA_Border, GA_SelectRender, GA_ID, GA_UserData, GA_SpeciallInfo (¢
IS)

Libraries 33/56

GA_GZZGadget, GA_SysGadget (IS)
GA_Disabled, GA_Selected (IS)
GA_EndGadget, GA_Immediate, GA_RelVerify, GA_FollowMouse, (IS)

GA_RightBorder, GA_LeftBorder, GA_TopBorder, GA_BottomBorder, (IS <«
)

GA_ToggleSelect, GA_TabCycle (IS)
GA_Highlight (IS)

GA_SysGType (IS)

1.59 B/ gadgetclass / New Methods: GM_HITTEST

This method asks a gadget if a point is within its bounds. Usually the
point corresponds to a mouse click. Intuition sends a gadget this message
when the user clicks inside the rectangular bounds found in the object’s
Gadget structure (using its TopEdge, LeftEdge, Width, and Height fields).
This method returns GMR_GADGETHIT if a point is within the gadget,
otherwise it returns zero. Because the gadget decides if it was hit, the
gadget can be almost any shape or pattern. Boopsi gadgets that default to
using the bounds of their Gadget structure should always return
GMR_GADGETHIT.

GM_HITTEST uses a custom message structure (defined in
<intuition/gadgdetclass.h>):

struct gpHitTest
{

ULONG MethodID; /* GM_HITTEST */
struct GadgetInfo xgpht_GInfo;
struct
{
WORD X; /* Is this point inside «/
WORD Y; /* of the gadget? */
} gpht_Mouse;

i
The gpht_Mouse.X and gpht_Mouse.Y fields make up the X and Y coordinates

of the hit point. These coordinates are relative to the upper-left corner
of the gadget (Gadget.LeftEdge, Gadget.TopEdge).

1.60 B /gadgetclass / New Methods: GM_RENDER

This method tells a gadget to render itself. The return value for this
method is not explicitly defined.

GM_RENDER uses a custom message structure (defined in

Libraries 34 /56

<intuition/gadgetclass.h>):

struct gpRender
{

ULONG MethodID; /+ GM_RENDER x/

struct GadgetInfo *xgpr_GInfo;

struct RastPort x*gpr_RPort; /* all ready for use =/

LONG gpr_Redraw; /+ might be a "highlight pass" */
}i

The GM_RENDER message contains a pointer to the Gadget’s RastPort which it

can use for rendering. The Gadget renders itself according to how much
imagery it needs to replace. The gpr_Redraw field contains one of three
values:

GREDRAW_REDRAW Redraw the entire gadget.

GREDRAW_UPDATE The user has manipulated the gadget changing the
imagery. Update only that part of the gadget’s
imagery that is effected by the user manipulating the
gadget (for example, the knob and scrolling field of
the prop gadget) .

GREDRAW_TOGGLE If this gadget supports it, toggle to or from the
highlighting imagery.

1.61 B/ gadgetclass / New Methods: GM_GOACTIVE

This method asks a gadget if it is OK to make it the active gadget
. The
active gadget is the gadget that is currently receiving user input.
Intuition sends this message after a gadget responds affirmatively to the

GM_HITTEST
method. A gadget becomes active because it needs to process
input events (like a prop gadget or string gadget).

Some types of gadget do not need to become active. These gadgets do not
have to process input from the user, they only have to deal with a single
mouse click to toggle their state. Because that mouse click triggered
this method, the button already has all of the user input it requires.
Note that the behavior of the GadTools button differs from a Boopsi
buttongclass gadget, which processes other input events besides a single
mouse click. See the entry for

buttongclass

in this Appendix for more

details.

GM_GOACTIVE uses a custom message structure (defined in
<intuition/gadgetclass.h>) :

struct gplnput

{
ULONG MethodID; /* GM_GOACTIVE or GM_HANDLEINPUT =/
struct GadgetInfo *gpi_GInfo;

Libraries 35/56

struct InputEvent xgpi_IEvent; /x The input event that triggered =/
/* this method (can be NULL for */

/* GM_GOACTIVE) . */
LONG *gpi_Termination; /% For GADGETUP IntuiMessage.Code =/
struct
{
WORD X; /+ Mouse position relative to upper */
WORD Y; /+ left corner of gadget (LeftEdge, */
} gpi_Mouse; /+ TopEdge) . */

}i

The gpi_IEvent field points to the struct InputEvent that triggered the
GM_GOACTIVE message. If gpi_IEvent is NULL, the GM_GOACTIVE message was
triggered by a function like intuition.library’s ActivateGadget () and not
by the user clicking the gadget.

For gadgets that only want to become active as a direct result of a mouse
click, this difference is important. For example, the prop gadget becomes
active only when the user clicks on its knob. Because the only way the
user can control the prop gadget is via the mouse, it would not make sense
for it to be activated by anything besides the mouse. On the other hand,
a string gadget gets input from the keyboard, so a string gadget doesn’t
care what activates it. Its input comes from the keyboard rather than the
mouse.

A gadget’s GM_GOACTIVE method returns GMR_MEACTIVE (defined in
<intuition/gadgetclass.h>) 1if it wants to be the active gadget. Otherwise
it returns

GMR_NOREUSE

For a description of what these values mean, See

their description in the

gadgetclass

"'s

GM_HANDLEINPUT

method, below.

If necessary, a gadget’s GM_GOACTIVE method can precalculate and cache
information before it becomes the active gadget. The gadget will use this
information while it’s processing user input with the

GM_HANDLEINPUT

method. When it is time for the active gadget to become inactive,
Intuition will send the gadget a GM_GOINACTIVE message. The gadget can
clean up its precalculations and cache in the GM_GOINACTIVE method. For
more information on GM_GOINACTIVE, see its description below.

1.62 B/ gadgetclass / New Methods: GM_HANDLEINPUT

This method asks an active gadget to handle an input event. After
Intuition gets an OK to make this gadget object active (see the

GM_GOACTIVE

method above), Intuition starts sending input events to the
gadget. Intuition sends them in the form of a GM_HANDLEINPUT message.
This method uses the same custom message structure as GM_GOACTIVE (see the

Libraries 36 /56

gplnput
structure above).

The information in the
gpInput
structure is the same for GM_HANDLEINPUT as
it is for
GM_GOACTIVE
The only difference is that the GM_HANDLEINPUT
message’s
gpi_IEvent
can never be NULL. It always points to an InputEvent
structure.

The gadget has to examine the incoming InputEvents to see how its state
may have changed. For example, a string gadget processes key presses,
inserting them into the gadgets string. When the string changes, the
gadget has to update its visual state to reflect that change. Another
example is the prop gadget. If the user picks up the prop gadget’s knob,
the prop gadget has to track the mouse to process changes to the gadget’s
internal values. It does this by processing IECLASS_RAWMOUSE events.

If the GM_HANDLEINPUT method needs to do some rendering, it must call
ObtainGIRPort () on the GM_HANDLEINPUT message’s

gpi_GInfo

to get a pointer
to a RastPort. To relinguish this RastPort, the GM_HANDLEINPUT method
must call ReleaseGIRPort (). The GM_HANDLEINPUT method has to allocate and
release this RastPort, it cannot be cached in the

GM_GOACTIVE

method.

The return value from GM_HANDLEINPUT informs Intuition if the gadget wants
to remain active. The return values for the GM_HANDLEINPUT are similar to

GM_GOACTIVE
The gadget tells Intuition that it wants to remain active by
returning GMR_MEACTIVE. A gadget tells Intuition it wants to become
inactive by returning one of the "go inactive" return values:

GMR_NOREUSE Tells Intuition to throw away the
gpInput.gpi_IEvent
InputEvent.
GMR_REUSE Tells Intuition to reprocess the

gpInput.gpi_IEvent
InputEvent after deactivating the gadget.

GMR_NEXTACTIVE Tells Intuition to throw away the
gpInput.gpi_IEvent
InputEvent and activate the next GFLG_TABCYCLE <
gadget.

GMR_PREVACTIVE Tells Intuition to throw away the
gpInput.gpi_IEvent

Libraries 37 /56

InputEvent and activate the previous GFLG_TABCYCLE <>
gadget.

GMR_NOREUSE tells Intuition that the gadget does not want to be active and
should throw away the InputEvent that triggered the GM_HANDLEINPUT message
(or the

GM_GOACTIVE

message) . For example, an active prop gadget returns
GMR_NOREUSE when the user lets go of the left mouse button (thus letting
go of the prop gadget’s knob).

A gadget can also return GMR_REUSE, which tells Intuition to reuse the
InputEvent. For example, if the user clicks outside of an active string
gadget, that string gadget returns GMR_REUSE so Intuition can process that
mouse click, which could be over another gadget. Another case where a
string gadget returns GMR_REUSE is when the user pushes the right mouse
button (the menu button). The string gadget becomes inactive and the menu
button InputEvent gets reused by Intuition so it can pop up the menu bar.

The other two possible return values, GMR_NEXTACTIVE and GMR_PREVACTIVE
were added to the 0S for Release 2.04. These tell Intuition that a gadget
no longer wants to be active and that the GM_HANDLEINPUT message
InputEvent should be discarded. Intuition then looks for the next
non-disabled (GMR_NEXTACTIVE) or previous (GMR_PREVACTIVE) gadget that has
its GFLG_TABCYCLE flag set in its Gadget.Activation field (see the

gadgetclass

GA_TabCycle
attribute below), and attempts to activate it.

For both
GM_GOACTIVE
and GM_HANDLEINPUT, the gadget can bitwise OR any of
these "go inactive" return values with GMR_VERIFY. The GMR_VERIFY flag
tells Intuition to send a IDCMP_GADGETUP IntuiMessage to the gadget’s
window. If the gadget uses GMR_VERIFY, it has to supply a value for the
IntuiMessage’s Code field. It does this by passing a value in the

gplnput

s gpi_Termination field. This field points to a long word, the
lower 16-bits of which Intuition copies into the Code field. The upper
16-bits are for future enhancements, so clear these bits.

1.63 B/ gadgetclass / New Methods: GM_GOINACTIVE

This method tells the active gadget to become inactive. The <
return value
for this method is not explicitly defined.

GM_GOINACTIVE uses a custom message structure (defined in
<intuition/gadgetclass.h>) :

struct gpGolnactive

Libraries

38 /56

ULONG

MethodID; /* GM_GOINACTIVE =/

struct GadgetInfo *gpgi_GInfo;

/* V37 field only! DO NOT attempt to read under V36! */

ULONG

}i

gpgi_Abort; /x gpgi_Abort=1 if gadget was
/+ aborted by Intuition and 0 if
/+ gadget went inactive at its
/* own request.

The gpgi_Abort field contains either a 0 or 1. If it is 0, the gadget

became inactive

at its own request (because the
GM_HANDLEINPUT
method

returned something besides

GMR_MEACTIVE
). If gpgi_Abort is 1, Intuition

aborted this active gadget. Some cases where Intuition aborts a gadget
include: the user clicked in another window or screen, an application
removed the active gadget with RemoveGList (), and an application called

ActivateWindow ()

If the gadget allocated any resources to cache or precalculate information

in the

method.

on a window other than the gadget’s window.

GM_GOACTIVE
method, it should deallocate those resources in this

1.64 B/ gadgetclass / Changed Methods: OM_NEW

<intuition/intuition.h>)

*/
*/
*/
*/

This method allocates space for an embedded struct Gadget (defined

in

gadgetclass

1.65 B /gadgetclass / Changed Methods: OM_NOTIFY

object. Boopsi

gadget can have

This method tells a gadget to send an
OM_UPDATE

message to its target
gadgets have a function similar to
icclass

objects—-—-each

an

ICA_TARGET

and

ICA_MAP

and initializes some of the attributes defined by

Libraries 39/56
in order to notify some target
object of attribute changes. When a Boopsi gadget sends an OM_NOTIFY
message, it always includes its GA_ID. This makes it easy for an
application to tell which gadget initially sent the OM_NOTIFY. See the
description of icclass’s
OM_NOTIFY
and
OM_UPDATE
and the
rootclass
"'s
OM_NOTIFY
and
OM_UPDATE
methods for more details.
1.66 B/ gadgetclass / Attributes: GA_Previous ()
This attribute is used to insert a new gadget into a list of <
gadgets
linked by their Gadget.NextGadget field. When the
OM_NEW
method creates
the new gadget, it inserts the new gadget into the list following the
GA_Previous gadget. This attribute is a pointer to the gadget (struct
Gadget x) that the new gadget will follow. This attribute cannot be used
to link new gadgets into the gadget list of an open window or requester,
use AddGList () instead.
1.67 B/ gadgetclass / Attributes: ICA_TARGET (IS)
This attribute stores the address of the gadget’s target object. <

Whenever
the gadget receives an
OM_NOTIFY
message, it sends an
OM_UPDATE
message to
its target. If the gadget has an attribute mapping list (see the
ICA_MAP

attribute below), it also maps the IDs from the OM_NOTIFY message.

If the value of ICA_TARGET is ICTARGET_IDCMP, the gadget sends an
IDCMP_IDCMPUPDATE IntuiMessage to its window. See the
rootclass
description of
OM_UPDATE
for more information.

Libraries

40/56

1.68 B/ gadgetclass / Attributes: ICA_MAP (IS)

This attribute points to a tag list of attribute mappings which
the gadget
uses to change the attribute IDs of an
OM_UPDATE
s attribute/value pairs.
For example, if a gadget had the following ICA_MAP:

struct Tagltem map[] =

{
{PGA_Top, STRINGA_LongVal},
{MYATTR, MYNEWATTR},
{TAG_END, }

bi

before it sends an

OM_UPDATE

to its

ICA_TARGET

, the gadget scans through
the OM_UPDATE message’s attribute/value pairs looking for the

PGA_Top

and
MYATTR attributes. If it finds the PGA_Top attribute, it changes PGA_Top
to

STRINGA_LongVal

Likewise, if the gadget finds the MYATTR attribute,

it changes MYATTR to MYNEWATTR. The gadget does not disturb the
attribute’s wvalue, only its ID.

1.69 B/ gadgetclass / Attributes:GA_Left, GA_Top, GA_Width, GA_Height (IS)

These attributes correspond to the Gadget structure’s Leftkdge,
TopEdge,
Width, and Height fields. Setting these clears the "
gadget relative

n

flags (below).

1.70 B // GA_RelRight, GA_RelBottom, GA_RelWidth, GA_RelHeight (IS)

These attributes correspond to the Gadget structure’s LeftEdge, TopEdge,
Width, and Height fields. Setting any of these attributes also sets the
corresponding "relative" flag in the Gadget structure’s Flags field
(respectively, GFLG_RELRIGHT, GFLG_RELBOTTOM, GFLG_RELWIDTH, and
GFLG_RELHEIGHT). Note that the value passed in this attribute is normally
a negative LONG. See the "Intuition Gadgets" chapter of the Amiga ROM
Kernel Reference Manual: Libraries for more information on these flags.

P

Libraries 41 /56

1.71 B/ gadgetclass / Attributes:GA_IntuiText, GA_Text, GA_Labellmage (IS)

These attributes correspond to one field in the object’s embedded Gadget
structure—--the GadgetText field. Setting any of these attributes copies
the attribute’s value blindly into the GadgetText field. In addition,
setting GA_Text also sets the GFLG_LABELSTRING flag in Gadget.Flags and
setting GA_LabelImage sets the GFLG_LABELIMAGE flag in Gadget.Flags. The
GA_IntuiText attribute must be an IntuiText pointer, as with old-style
gadgets. GA_Text takes a pointer to a NULL- terminated string (UBYTE x).
GA_LabelImage takes a pointer to a (Boopsi) image. Note that most gadget
classes do not support GA_Text and GA_LabelImage. See the description of
specific gadget classes for more details.

1.72 B/ gadgetclass / Attributes: GA_Image (IS)

This attibute is a pointer to either a Boopsi image or a Release
1.3-compatible Intuition image. This attribute corresponds to the
Gadget’s GadgetRender field. The

gadgetclass

dispatcher will not dispose
of this image when it disposes of the gadget object.

1.73 B/ gadgetclass / Attributes: GA_Border - GA_Speciallnfo (IS)

GA_Border, GA_SelectRender, GA_ID, GA_UserData, GA_SpecialInfo (IS) -
These attributes correspond to the similarly named fields in the Gadget
structure embedded in the gadget object.

1.74 B/ gadgetclass / Attributes: GA_GZZGadget, GA_SysGadget (IS)

These are boolean attributes that correspond to the flags in the object’s
Gadget .GadgetType field. If the value passed with the attribute is TRUE,
the corresponding flag in Gadget.GadgetType is set. If the value passed
with the attribute is FALSE, the corresponding flag in Gadget.GadgetType
is cleared. See the <intuition/intuition.h> include file or the
"Intuition Gadgets" chapter of the Amiga ROM Kernel Reference Manual:
Libraries for more information.

1.75 B/ gadgetclass / Attributes: GA_Disabled, GA_Selected (IS)

These are boolean attributes that correspond to the similarly named flags
in the object’s Gadget.Flags field. If the value passed with the
attribute is TRUE, the corresponding flag in Gadget.Flags is set. If the
value passed with the attribute is FALSE, the corresponding flag in
Gadget.Flags is cleared. See the <intuition/intuition.h> include file or
the "Intuition Gadgets" chapter of the Amiga ROM Kernel Reference Manual:
Libraries for more information.

Libraries 42 / 56

1.76 B/ gadgetclass / Attributes: GA_EndGadget - GA_TabCycle (IS)

GA_EndGadget, GA_Immediate, GA_RelVerify, GA_FollowMouse, (IS)
GA_RightBorder, GA_LeftBorder, GA_TopBorder, GA_BottomBorder, (IS)
GA_ToggleSelect, GA_TabCycle (IS) - These are boolean attributes that
correspond to the flags in the object’s Gadget.Activation field. If the
value passed with the attribute is TRUE, the corresponding flag in
Gadget.Activation is set. If the value passed with the attribute is
FALSE, the corresponding flag in Gadget.Activation is cleared. See the
<intuition/intuition.h> include file or the "Intuition Gadgets" chapter of
the Amiga ROM Kernel Reference Manual: Libraries for more information.

1.77 B/ gadgetclass / Attributes: GA_Highlight (IS)

This attribute corresponds to the GFLG_GADGHIGHBITS portion of the
gadget’s Gadget.Flags field. This attribute can be one of four wvalues
(from <intuition/intuition.h>):

GFLG_GADGHCOMP, GFLG_GADGHBOX, GFLG_GADGHIMAGE, GFLG_GADGHNONE

See the "Intuition Gadgets" chapter of the Amiga ROM Kernel Reference
Manual: Libraries for more information.

1.78 B/ gadgetclass / Attributes: GA_SysGType (IS)

This attribute corresponds to the system gadget type portion of the
gadget’s Gadget.GadgetType fields. This attribute is any one of the
following flags (from <intuition/intuition.h>):

GTYP_SIZING, GTYP_WDRAGGING, GTYP_SDRAGGING, GTYP_WUPFRONT,
GTYP_SUPFRONT, GTYP_WDOWNBACK, GTYP_SDOWNBACK, GTYP_CLOSE

See the "Intuition Gadgets" chapter of the Amiga ROM Kernel Reference
Manual: Libraries for more information.

1.79 B Boopsi Class Reference / propgclass

Class: propgclass
Superclass:
gadgetclass
Include File: <intuition/gadgetclass.h>

A Boopsi proportional ("prop") gadget. The Boopsi prop gadget is similar
to the conventional prop gadget, but extends its function to make it
easier to use. The Boopsi prop gadget keeps its current integer value in
its
PGA_Top
attribute.

Libraries 43 /56

New Methods:

GM_HANDLEINPUT
Attributes:

GA_Image (I)

PGA_Freedom (IG)

PGA_Top (ISGNU)

GA_Border (I)

PGA_NewLook (I)

PGA_Visible, PGA_Total (ISU)
GA_Highlight (I)

PGA_Borderless (I)

1.80 B/ propgclass / Changed Methods: GM_HANDLEINPUT

If the knob position changes sufficiently to change a
propgclass
object’s

PGA_Top
attribute, the gadget will send an
OM_NOTIFY
message to itself,
which the propgclass dispatcher passes on to the
gadgetclass
dispatcher
for processing (see the
rootclass
description of
OM_NOTIFY
and
OM_UPDATE
for more information).

The
OM_NOTIFY
message will contain two attribute/value pairs,
PGA_Top
and
GA_ID. While the prop gadget’s PGA_Top is in a transitory state (while it

Libraries 44 / 56

is active and the user is moving the prop gadget’s knob), the gadget sends
interim

OM_NOTIFY

messages. The interim OM_NOTIFY messages have the
OPUF_INTERIM flag of the

opUpdate.opu_Flags

field set. When the user

finishes manipulating the gadget (by letting go of the knob), the gadget
sends a final OM_NOTIFY message, which has a cleared OPUF_INTERIM flag.

1.81 B/ propgclass / Attributes: GA_Image ()

Propgclass
intercepts this
gadgetclass
attribute before passing it on to
gadgetclass. This attribute passes an image for the prop gadget’s knob,
which gets stored in the propgclass object’s Gadget.Image structure. If
the propgclass does not get a GA_Image when it creates a prop gadget, the
prop gadget’s knob defaults to an AUTOKNOB. An AUTOKNOB automatically
sizes itself according to how large the range of the gadget is compared to
the visible range of the gadget. See the
PGA_Visible
and
PGA_Total
attributes for more details.

1.82 B/ propgclass / Attributes: GA_Border ()

Propgclass
intercepts this
gadgetclass
attribute to prevent gadgetclass
from setting up a border. If an application tries to set this attribute
for a propgclass gadget, the prop gadget turns itself into an AUTOKNOB
gadget.

1.83 B/ propgclass / Attributes: GA_Highlight (I)

Propgclass
intercepts this
gadgetclass
attribute before passing it on to
gadgetclass. It does this to make sure the highlighting is not set to
GADGHBOX. GADGHBOX will be converted to GADGHCOMP. See the
"Intuition Gadgets" chapter of the Amiga ROM Kernel Reference Manual:
Libraries for more information on the types of gadget highlighting.

Libraries 45/ 56

Other
gadgetclass
attributes are passed along to the superclass.

1.84 B/ propgclass / Attributes: PGA_Freedom (IG)

This attribute tells a

propgclass
object on which axis the gadget’s knob
is free to move, the horizontal or the vertical. It is either FREEHORIZ

or FREEVERT. The default is FREEVERT.

1.85 B/ propgclass / Attributes: PGA_NewLook (I)

This is a boolean attribute which corresponds to the PROPNEWLOOK <>

flag
PropInfo structure’s Flags field (defined in <intuition/intuition.h>). If
this attribute is TRUE, the new
propgclass

object will use Release 2
imagery rather than the Release 1.3 imagery.

1.86 B /propgclass / Attributes: PGA_Borderless (1)

This is a boolean attribute which corresponds to the <
PROPBORDERLESS flag of
the PropInfo structure’s Flags field (defined in <intuition/intuition.h>).
If this attribute is TRUE, the new
propgclass
object will not have a
border around it. In an AUTOKNOB propgclass gadget, 1if the PROPNEWLOOK
flag is set as well (see the
PGA_NewLook
attribute), the knob will have a
3D appearance.

1.87 B/ propgclass / PGA_Top (ISGNU), PGA_Visible, PGA_Total (ISU)

These attributes replace the Pot and Body variables of the Release
1.3
prop gadget. They are based on the use of proportional gadgets to control
scrolling text. When scrolling 100 lines of text in a 25 line visible

Libraries 46 /56
window, you would set PGA_Total to 100, PGA_Visible to 25, and watch
PGA_Top run from 0 to 75 (the top line of the last page).
If the user clicks in the prop gadget but not on the knob, the entire knob
jumps one "page" (the size of the visible area minus one, PGA_Visible-1).
The page jump will leave an overlap of one line, unless the value
PGA_Visible is 1, in which case the prop gadget acts as an integer numeric
slider, sliding from 0 to PGA_Total - 1.
Note that when PGA_Top changes, the gadget sends itself an
OM_NOTIFY
message about this attribute change (see the
propgclass
description of
GM_HANDLEINPUT
for more information). All three of these attributes have
OM_UPDATE
access, so they can be controlled from other objects.
1.88 B Boopsi Class Reference / strgclass
Class: strgclass
Superclass:
gadgetclass
Include File: <intuition/gadgetclass.h>
Intuition compatible string gadgets. The Boopsi string gadget can either
be a plain string gadget or an integer string gadget. An integer gadget
filters out all characters except those that make up integer wvalues.
New Methods:
None
Changed Methods:
OM_NEW
Attributes:
STRINGA_LongVal (ISGNU)
STRINGA_TextVal (ISGNU)
The remaining strgclass attributes correspond to the flags and <+

fields that
the conventional Intuition string gadget uses. See the "STRING GADGET
TYPE" section of the "Intuition Gadgets" chapter of the Amiga ROM Kernel
Reference Manual: Libraries for more information.

STRINGA_MaxChars, STRINGA_Buffer, (I)

Libraries 47 | 56

STRINGA_UndoBuffer, STRINGA_WorkBuffer (I)
STRINGA_BufferPos, STRINGA_DispPos (ISU)
STRINGA_AltKeyMap (IS)

STRINGA_Font (IS)

STRINGA_Pens (IS)

STRINGA_ActivePens (IS)

STRINGA_EditHook (I)

STRINGA_EditModes (IS)

STRINGA_ReplaceMode, STRINGA_FixedFieldMode, STRINGA_NoFilterMode <
(IS)

STRINGA_Justification (IS)

STRINGA_ExitHelp (IS)

1.89 B/ strgclass / Changed Methods: OM_NEW

This method sets up the string gadget’s StringInfo and <+

StringExtend

structures. It allocates a buffer if needed and will use shared data
buffers for UndoBuffer and WorkBuffer if the MaxChars is less than
SG_DEFAULTMAXCHARS (128). Default text pens are: Foreground = 1,
Background = 0. See the

rootclass

description of the

OM_NEW

method for
more details.

1.90 B/ strgclass / Attributes: STRINGA_LongVal (ISGNU)

This attribute tells
strgclass
that this gadget is an integer string
gadget and the new value of the integer is this attribute’s wvalue.

1.91 B/ strgclass / Attributes: STRINGA_TextVal (ISGNU)

Libraries 48 /56

This attribute tells

strgclass

that this gadget is a plain string gadget.
The attribute points to a string which the object copies into the string
gadget’s current string value buffer.

When a

strgclass

gadget’s internal

STRINGA_LongVal

or STRINGA_TextVal
value changes (usually because the user manipulated the gadget), it sends
itself an

OM_NOTIFY

message. The OM_NOTIFY message will contain two
attribute/value pairs, GA_ID and either STRINGA_LongVal or STRINGA_TextVal
(depending on what kind of strgclass gadget it is). Strgclass gadgets

only send a final OM_NOTIFY message (one’s with the OPUF_INTERIM flag of
the
opUpdate.opu_Flags
field cleared).

1.92 B/ strgclass / Attributes: STRINGA_MaxChars - STRINGA_WorkBuffer (1)

STRINGA_MaxChars, STRINGA_Buffer, STRINGA_UndoBuffer, STRINGA_WorkBuffer
(I) - Specify various buffers defined for string gadgets and extended
string gadgets. If your value of STRINGA_MaxChars is less than
SG_DEFAULTMAXCHARS (128 for now), then this class can provide all these
buffers for you. Note that UndoBuffer and WorkBuffer can be shared by
many separate gadgets, providing they are as large as the largest MaxChars
they will encounter.

1.93 B/ strgclass / Attributes: STRINGA_BufferPos, STRINGA_ DispPos (ISU)

The attributes tell the object its cursor and scroll position.

1.94 B/ strgclass / Attributes: STRINGA_AltKeyMap (IS)

This attribute corresponds to the StringInfo.AltKeyMap field.

1.95 B/ strgclass / Attributes: STRINGA_Font (IS)

This attributes points to an open TextFont structure that the string
gadget uses for rendering its text.

Libraries 49 /56

1.96 B/ strgclass / Attributes: STRINGA_Pens (IS)

Pen numbers, packed as two WORDs into a longword, for rendering gadget
text.

1.97 B/ strgclass / Attributes: STRINGA_ActivePens (IS)

Optional pen numbers, packed as two WORDs into a longword, for rendering
gadget text when the gadget is active.

1.98 B/ strgclass / Attributes: STRINGA_EditHook (1)

Custom string gadget edit hook.

1.99 B/ strgclass / Attributes: STRINGA_EditModes (IS)

Value taken from flags defined in <intuition/cghooks.h> for initial
editing modes.

1.100 B/ strgclass / STRINGA_ReplaceMode - STRINGA_NoFilterMode (IS)

STRINGA_ReplaceMode, STRINGA_FixedFieldMode, STRINGA_NoFilterMode <
(Is) -
These three are independent Boolean equivalents to the individual flags
that you can set for
STRINGA_EditModes

1.101 B/ strgclass / Attributes: STRINGA _Justification (IS)

Takes the values STRINGCENTER, STRINGRIGHT, and STRINGLEFT (which is 0).

1.102 B/ strgclass / Attributes: STRINGA_ExitHelp (IS)

Set this if you want the gadget to exit when the "Help" key is pressed.
Look for a code of 0x5F, the rawkey code for help.

Libraries

50 /56

1.103 B Boopsi Class Reference / buttongclass

Class: buttongclass
Superclass:
gadgetclass
Include File: <intuition/gadgetclass.h>

A class of button gadget that continually sends interim

OM_UPDATE

messages
to its target while the user holds down the button. The button sends a
final OM_UPDATE message when the user lets go of the button. The imagery
for these objects is not built directly into the gadget. Instead, a
buttongclass object uses a Boopsi image object, which it gets from its
GA_Image attribute.

New Methods:

GM_HITTEST
GM_HANDLEINPUT

GM_RENDER
Attributes:

GA_IMAGE (IS)

1.104 B/ buttongclass / Changed Methods: GM_HITTEST

This method gets passed over to the button’s image for processing. <

The
button’s
IM_HITTEST
checks for the hit.

1.105 B/ buttongclass / Changed Methods: GM_HANDLEINPUT

This method continuously issues
OM_NOTIFY
messages for each IECLASS_TIMER
event it gets. The OM_NOTIFY message’s OPUF_INTERIM flag (from

opUpdate.opu_Flags
) is set for all but the final OM_NOTIFY.

Libraries 51/56
The
OM_NOTIFY
message contains one attribute/value pair, GA_ID. If the
pointer is currently over the gadget image, the value of this
attribute/value pair is the gadget’s actual GA_ID (from the
Gadget .GadgetID field). If the pointer isn’t over the image, the value is
the negative of the gadget’s actual GA_ID.
1.106 B/ buttongclass / Changed Methods: GM_RENDER
All rendering is passed along to the GadgetRender.Image (the
GA_TImage
attribute). This method can tell its image to render in any of <

four image
states:
IDS_INACTIVESELECTED

4

IDS_INACTIVENORMAL

4

IDS_SELECTED
, or

IDS_NORMAL

1.107 B/ buttongclass / Attributes: GA_Image (IS)

This attribute points to the gadget’s Boopsi image. Changing this
attribute will cause the gadget to refresh its imagery.

1.108 B Boopsi Class Reference / frbuttonclass

Class: frbuttonclass
Superclass:
buttongclass
Include File: <intuition/gadgetclass.h>

This is a special class of button gadget that puts a Boopsi framing image

around some other display element. This display element can be one of
three things: plain text from the
GA_Text

attribute, an IntuiText from the

GA_IntuiText

attribute, or an Image from the
GA_LabelImage

attribute.

Libraries 52 /56

The user activates the gadget by clicking within the bounds of the
gadget’s framing image, which it gets from the

GA_TImage

attribute.
Usually the framing image is an instance of an image class that supports
the IM_FRAMEBOX method (like

frameiclass

). If the framing image supports
the IM_FRAMEBOX method, the frbuttonclass object centers the frame image
around the display element. See the

imageclass

description of

IM_FRAMEBOX

for more information.

New Methods:

OM_NEW
GM_HITTEST

GM_RENDER
Attributes:

GA_Width, GA_Height (S)
GA_DrawInfo (I)

GA_Text, GA_IntuiText, GA_LabelImage (IS)

1.109 B/ frbuttonclass / Changed Methods: OM_NEW

When this class creates an object, it sets the object’s embedded
Gadget .Width and Gadget.Height fields according to the frame image in

GA_TImage
If the GA_Image understands the
IM_FRAMEBOX
method, the gadget
asks the GA_Image what it dimensions would be if it had to surround the
display element. If the GA_Image does not support IM_FRAMEBOX, it just
copies the GA_Image image’s width and height into the Gadget structure.

Libraries 53 /56

1.110 B/ frbuttonclass / Changed Methods: GM_HITTEST

The gadget delegates this method to the framing image’s
IM_HITFRAME
method.

1.111 B/ frbuttonclass / Changed Methods: GM_RENDER

For this method, the
frbuttonclass
object first draws the framing image by
sending the image an
IM_ DRAWFRAME
message. The object then draws its
display element.

1.112 B/ frbuttonclass / Attributes: GA_Width, GA_Height (S)

These attribute correspond to the gadget’s Width and Height fields ¢+
If
the framing image supports
IM_FRAMEBOX
, changing these resizes the framing

image. The framing image re-centers itself around the display element as
best it can, and the
frbuttonclass

gadget re-renders the whole itself.

1.113 B/ frbuttonclass / Attributes: GA_Drawinfo (I)

This attribute passes a pointer to a valid
DrawInfo
structure. If the

frbuttonclass
gadget is going to frame plain text (passed to it in the

GA_Text
attribute), the frbuttonclass gadget requires a DrawInfo <
structure

to properly calculate the dimensions of the text.

Libraries 54 /56

1.114 B/ frbuttonclass / Attributes:GA_Text,GA_IntuiText,GA_Labellmage (IS)

These attributes tell the

frbuttonclass
object what kind of imagery to use
as its display element. See their description in the
gadgetclass
entry

for more information.

1.115 B Boopsi Class Reference / groupgclass

Class: groupgclass
Superclass:
gadgetclass
Include File: <intuition/gadgetclass.h>

This is a class of objects that maintains an internal list of gadgets.

Its purpose 1s to make it easier to layout a group of gadgets. Any
gadgets that are a member of a groupgclass object are rendered relative to
the groupgclass object’s GA_Left and GA_Top attributes. As new gadgets
are added to the groupgclass object, the groupgclass object’s dimensions
grow to enclose the new gadgets. When the groupgclass object receives an

OM_DISPOSE

message, 1t not only disposes of itself, it also disposes of
all the gadgets in its list. Groupgclass does not support the gadget
relative flags (

GA_RelWidth, GA_RelHeight, GA_RelBottom, and GA_RelRight

) .

New Methods:

OM_SET

GM_HITTEST

OM_ADDMEMBER

GM_RENDER

OM_REMMEMBER
GM_GOACTIVE/GM_GOINACTIVE/GM_HANDLEINPUT

OM_DISPOSE
Attributes:

Libraries 55/56

GA_Left, GA_Top (IS)

1.116 B/ groupgclass / Changed Methods: OM_SET

This method passes most attributes to the superclass, but <+
propagates
changes in position to its members appropriately. Also,
GA_Width
and

GA_Height
are calculated from the position and dimension of the membership.

1.117 B/ groupgclass / Changed Methods: OM_ADDMEMBER

This method adds a gadget to the group object’s list. The group <
object
will increase the size of its select box to include the new gadget’s
select box. The group object moves the new member to an absolute location
(by changing the new member’s
GA_Left
and
GA_Top
attributes) relative to
the group object’s upper-left corner. Note that all members of the

groupgclass
object will be deleted by
OM_DISPOSE

1.118 B/ groupgclass / Changed Methods: OM_REMMEMBER

This method removes a gadget added to the group object’s list with
OM_ADDMEMBER. Note that all members of the
groupgclass
object will be
deleted by
OM_DISPOSE

Libraries 56 /56

1.119 B/ groupgclass / Changed Methods: OM_DISPOSE

This method disposes of the
groupgclass
object and all its member gadgets.

1.120 B/ groupgclass / Changed Methods: GM_HITTEST

This method works its way through the list of group members, <>
sending each

GM_HITTEST
message, looking for the first member in the list that says
it has been hit. This member gadget becomes the active member.

1.121 B/ groupgclass / Changed Methods: GM_RENDER

This method sends a
GM_HITTEST
message to each of its members.

1.122 B/groupgclass/Changed: GM_GOACTIVE/GM_GOINACTIVE/GM_HANDLEINPUT

This method passes the message to the active member’s dispatcher <+
for
processing. For GM_GOINACTIVE and GM_HANDLEINPUT, the coordinates passed
to the member’s dispatcher in the message’s
gpi_Mouse.X and gpi_Mouse.Y
fields are translated so that they are relative to the gadget’s <
upper-left
corner.

1.123 B/ groupgclass / Attributes: GA_Left, GA_Top (IS)

These attributes correspond to the embedded Gadget.LeftEdge and
Gadget .TopEdge fields. Setting these attributes in
groupgclass
object
causes it to change its position as well as the position of each of the
gadgets that have been added to the group gadget.

	Libraries
	Amiga® RKM Libraries: B Boopsi Class Reference
	B Boopsi Class Reference / Introduction
	B Boopsi Class Reference / rootclass
	B / rootclass / New Methods: OM_NEW
	B / rootclass / New Methods: OM_DISPOSE
	B / rootclass / New Methods: OM_ADDTAIL
	B / rootclass / New Methods: OM_REMOVE
	B / rootclass / New Methods: OM_ADDMEMBER
	B / rootclass / New Methods: OM_REMMEMBER
	B / rootclass / New Methods: OM_GET
	B / rootclass / New Methods: OM_SET
	B / rootclass / New Methods: OM_UPDATE
	B / rootclass / New Methods: OM_NOTIFY
	B Boopsi Class Reference / icclass
	B / icclass / Changed Methods: OM_SET
	B / icclass / Changed Methods: OM_UPDATE/OM_NOTIFY
	B / icclass / Attributes: ICA_TARGET (IS)
	B / icclass / Attributes: ICA_MAP (IS)
	B / icclass / Attributes: ICSPECIAL_CODE (*)
	B Boopsi Class Reference / modelclass
	B / modelclass / Changed Methods: OM_ADDMEMBER
	B / modelclass / Changed Methods: OM_REMMEMBER
	B / modelclass / Changed Methods: OM_DISPOSE
	B / modelclass / Changed Methods: OM_NOTIFY/OM_UPDATE
	B Boopsi Class Reference / imageclass
	B / imageclass / New Methods: IM_DRAW
	B / imageclass / New Methods: IM_HITTEST
	B / imageclass / New Methods: IM_ERASE
	B / imageclass / New Methods: IM_DRAWFRAME
	B / imageclass / New Methods: IM_HITFRAME
	B / imageclass / New Methods: IM_ERASEFRAME
	B / imageclass / New Methods: IM_FRAMEBOX
	B / imageclass / Changed Methods: OM_NEW
	B / imageclass / Changed Methods: OM_SET
	B / imageclass / Attributes:IA_Left, IA_Top, IA_Width, IA_Height (ISG)
	B / imageclass / Attributes: IA_FGPen, IA_BGPen (ISG)
	B / imageclass / Attributes: IA_Data (ISG)
	B / imageclass / Attributes: IA_Pens ()
	B Boopsi Class Reference / frameiclass
	B / frameiclass / Changed Methods: IM_DRAW
	B / frameiclass / IDS_NORMAL, IDS_INACTIVENORMAL, IDS_DISABLED
	B / frameiclass / Changed Methods: IDS_SELECTED, IDS_INACTIVESELECTED
	B / frameiclass / Changed Methods: IM_DRAWFRAME
	B / frameiclass / Changed Methods: IM_FRAMEBOX
	B / frameiclass / Attributes: IA_Recessed (IS)
	B / frameiclass / Attributes: IA_EdgesOnly (IS)
	B Boopsi Class Reference / sysiclass
	B / sysiclass / Attributes: SYSIA_DrawInfo (I)
	B / sysiclass / Attributes: SYSIA_Which (I)
	B / sysiclass / Attributes: SYSIA_Size (I)
	B Boopsi Class Reference / fillrectclass
	B / fillrectclass / Changed Methods: IM_DRAW
	B / fillrectclass / Changed Methods: IM_DRAWFRAME
	B / fillrectclass / Attributes: IA_APattern, IA_APatSize (IS)
	B / fillrectclass / Attributes: IA_Mode (IS)
	B Boopsi Class Reference / itexticlass
	B / itexticlass / New Methods: IM_DRAW/IM_DRAWFRAME
	B Boopsi Class Reference / gadgetclass
	B / gadgetclass / New Methods: GM_HITTEST
	B / gadgetclass / New Methods: GM_RENDER
	B / gadgetclass / New Methods: GM_GOACTIVE
	B / gadgetclass / New Methods: GM_HANDLEINPUT
	B / gadgetclass / New Methods: GM_GOINACTIVE
	B / gadgetclass / Changed Methods: OM_NEW
	B / gadgetclass / Changed Methods: OM_NOTIFY
	B / gadgetclass / Attributes: GA_Previous (I)
	B / gadgetclass / Attributes: ICA_TARGET (IS)
	B / gadgetclass / Attributes: ICA_MAP (IS)
	B / gadgetclass / Attributes:GA_Left, GA_Top, GA_Width, GA_Height (IS)
	B / / GA_RelRight, GA_RelBottom, GA_RelWidth, GA_RelHeight (IS)
	B / gadgetclass / Attributes:GA_IntuiText, GA_Text, GA_LabelImage (IS)
	B / gadgetclass / Attributes: GA_Image (IS)
	B / gadgetclass / Attributes: GA_Border - GA_SpecialInfo (IS)
	B / gadgetclass / Attributes: GA_GZZGadget, GA_SysGadget (IS)
	B / gadgetclass / Attributes: GA_Disabled, GA_Selected (IS)
	B / gadgetclass / Attributes: GA_EndGadget - GA_TabCycle (IS)
	B / gadgetclass / Attributes: GA_Highlight (IS)
	B / gadgetclass / Attributes: GA_SysGType (IS)
	B Boopsi Class Reference / propgclass
	B / propgclass / Changed Methods: GM_HANDLEINPUT
	B / propgclass / Attributes: GA_Image (I)
	B / propgclass / Attributes: GA_Border (I)
	B / propgclass / Attributes: GA_Highlight (I)
	B / propgclass / Attributes: PGA_Freedom (IG)
	B / propgclass / Attributes: PGA_NewLook (I)
	B / propgclass / Attributes: PGA_Borderless (I)
	B / propgclass / PGA_Top (ISGNU), PGA_Visible, PGA_Total (ISU)
	B Boopsi Class Reference / strgclass
	B / strgclass / Changed Methods: OM_NEW
	B / strgclass / Attributes: STRINGA_LongVal (ISGNU)
	B / strgclass / Attributes: STRINGA_TextVal (ISGNU)
	B / strgclass / Attributes: STRINGA_MaxChars - STRINGA_WorkBuffer (I)
	B / strgclass / Attributes: STRINGA_BufferPos, STRINGA_DispPos (ISU)
	B / strgclass / Attributes: STRINGA_AltKeyMap (IS)
	B / strgclass / Attributes: STRINGA_Font (IS)
	B / strgclass / Attributes: STRINGA_Pens (IS)
	B / strgclass / Attributes: STRINGA_ActivePens (IS)
	B / strgclass / Attributes: STRINGA_EditHook (I)
	B / strgclass / Attributes: STRINGA_EditModes (IS)
	B / strgclass / STRINGA_ReplaceMode - STRINGA_NoFilterMode (IS)
	B / strgclass / Attributes: STRINGA_Justification (IS)
	B / strgclass / Attributes: STRINGA_ExitHelp (IS)
	B Boopsi Class Reference / buttongclass
	B / buttongclass / Changed Methods: GM_HITTEST
	B / buttongclass / Changed Methods: GM_HANDLEINPUT
	B / buttongclass / Changed Methods: GM_RENDER
	B / buttongclass / Attributes: GA_Image (IS)
	B Boopsi Class Reference / frbuttonclass
	B / frbuttonclass / Changed Methods: OM_NEW
	B / frbuttonclass / Changed Methods: GM_HITTEST
	B / frbuttonclass / Changed Methods: GM_RENDER
	B / frbuttonclass / Attributes: GA_Width, GA_Height (S)
	B / frbuttonclass / Attributes: GA_DrawInfo (I)
	B / frbuttonclass / Attributes:GA_Text,GA_IntuiText,GA_LabelImage (IS)
	B Boopsi Class Reference / groupgclass
	B / groupgclass / Changed Methods: OM_SET
	B / groupgclass / Changed Methods: OM_ADDMEMBER
	B / groupgclass / Changed Methods: OM_REMMEMBER
	B / groupgclass / Changed Methods: OM_DISPOSE
	B / groupgclass / Changed Methods: GM_HITTEST
	B / groupgclass / Changed Methods: GM_RENDER
	B / groupgclass / Changed: GM_GOACTIVE/GM_GOINACTIVE/GM_HANDLEINPUT
	B / groupgclass / Attributes: GA_Left, GA_Top (IS)

