
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 8 Intuition Images, Line Drawing and Text . 1

1.2 8 Intuition Images, Line Drawing and Text / Intuition Graphic Objects . 1

1.3 8 / Graphic Objects / Displaying Images, Borders and IntuiText . 2

1.4 8 / Intuition Graphic Objects / Positioning Graphic Objects . 3

1.5 8 Intuition Images, Line Drawing and Text / Creating Images . 4

1.6 8 / Creating Images / Image Structure . 5

1.7 8 / Creating Images / Directly Drawing the Image . 7

1.8 8 / Creating Images / Image Data . 7

1.9 8 / / Image Data / Defining Image Data . 7

1.10 8 / Creating Images / Picking Bitplanes for Image Display . 9

1.11 8 / Creating Images / Image Example . 11

1.12 8 Intuition Images, Line Drawing and Text / Creating Borders . 12

1.13 8 / Creating Borders / Border Structure Definition . 12

1.14 8 / Creating Borders / Directly Drawing the Borders . 13

1.15 8 / Creating Borders / Border Colors and Drawing Modes . 14

1.16 8 / Creating Borders / Border Coordinates . 15

1.17 8 / Creating Borders / Linking Borders . 16

1.18 8 Intuition Images, Line Drawing and Text / Creating Text . 17

1.19 8 / Creating Text / IntuiText Structure . 18

1.20 8 / Creating Text / Directly Drawing the IntuiText . 19

1.21 8 / Creating Text / Determining Text Length . 20

1.22 8 / Creating Text / Text Colors and Drawing Modes . 20

1.23 8 / Creating Text / Fonts . 22

1.24 8 / Creating Text / Linking Text Strings . 22

1.25 8 Intuition Images, Line Drawing and Text / Function Reference . 23

Libraries 1 / 23

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 8 Intuition Images, Line Drawing and Text

Intuition supports two general approaches to creating images, ←↩
lines, and

text in displays: through Intuition library calls and through graphics
library calls.

This chapter explains the use of Intuition structures and functions for
creating display imagery. The Intuition graphical functions provide a
high level interface to the graphics library, giving the application quick
and easy rendering capabilities. As with any high level calls, some power
and flexibility is sacrificed in order to provide a simple interface.

For more flexibility and control over the graphics, the application can
directly call functions in the graphics library as discussed in the
"Graphics Primitives" chapter. Intuition also has additional features for
defining custom graphic objects. See the "BOOPSI" chapter for more
information on these objects.

Intuition Graphic Objects

Creating Borders

Function Reference

Creating Images

Creating Text

1.2 8 Intuition Images, Line Drawing and Text / Intuition Graphic Objects

Intuition graphic objects are easy to create and economical to use ←↩
. There

are just three basic types of graphic objects you can use yet these three
types cover most rendering needs:

Libraries 2 / 23

Image
Images are graphic objects that can contain any imagery. They

consist of a rectangular bitmap that can be any size and describes
each individual pixel to be displayed.

Border
Borders are connected lines of any length and number, drawn ←↩

between
an arbitrary series of points. They consist of a series of two
dimensional coordinates that describe the points between which lines
will be drawn.

IntuiText
IntuiText strings are text strings of any length drawn in any ←↩

font.
They consist of a text string and font specification that describes
the text to be rendered.

Each of these three objects may be chained together with other members of
the same type. For instance, many lines of text may be rendered as a
single object by linking many instances of

IntuiText
objects together.

Only objects of the same type may be linked.

Any of these types can be rendered into any of the Intuition display
elements (window, requester, menu, etc.). In fact, the application can
often display the same structure in more than one position or more than
one of the elements at the same time.

Displaying Images, Borders and IntuiText

Positioning Graphic Objects

1.3 8 / Graphic Objects / Displaying Images, Borders and IntuiText

Images, Borders and IntuiText objects may be directly or ←↩
indirectly

rendered into the display by the application. The application can draw
these objects directly into windows or screens by using one of the
functions

DrawImage()
,
DrawBorder()
or

PrintIText()
. The application

supplies the appropriate pointer to a
Border

Libraries 3 / 23

,
Image
or

IntuiText
structure

as an argument to the function, as well as position information and a
pointer to the correct RastPort. These rendering functions are discussed
in more detail below.

The application can also draw these objects indirectly by attaching them
to a menu, gadget or requester. As Intuition places these elements on the
display, it also renders the associated graphics. The Requester, Gadget,
and MenuItem structures contain one or more fields reserved for rendering
information. See the specific chapters on these items for information on
attaching graphical objects to them.

1.4 8 / Intuition Graphic Objects / Positioning Graphic Objects

The position of these objects is specified as the sum of two ←↩
independent

components: an external component which gives the position of a base
reference point for the list of objects, and an internal component which
gives the relative offset of a specific object to the base reference point.

The external component is used to position the object list within the
display element. For objects drawn indirectly by attaching them to a
menu, gadget or requester, this is always a point within the menu, gadget
or requester (the top left corner).

For objects drawn directly with the
DrawImage()
,
DrawBorder()
or

PrintIText()
functions, specific x and y coordinates are provided as

arguments that specify an offset within the screen’s or window’s RastPort
at which to display the list of objects.

Each object also has an internal, relative component that is added to the
external component described above to determine the final position of the
object. This allows the application to reuse a graphical object and have
it appear relative to each object to which it is attached. For example,
if the application has numerous gadgets of the same size, it can use a
single

Border
structure to draw lines around all the gadgets. When the

gadgets are drawn, the base position of the lines will be taken from each
specific gadget in turn.

Libraries 4 / 23

1.5 8 Intuition Images, Line Drawing and Text / Creating Images

With an
Image
structure an application can create graphic objects quickly

and easily and display them almost anywhere. Images have an additional
attribute that makes them even more economical--by changing two simple
data elements in the Image structure, the color of the image may be
changed.

Images are rectangular bitmaps which individually define the color of each
pixel represented. Images may not be masked to allow part of the
background to show through. The entire rectangular image is drawn into
the target element, overwriting any data it may overlap. All bitplanes
defined in the target RastPort within the image’s rectangle are
overwritten either with image data, ones or zeros.

Image
s may be directly drawn by the application by using the
DrawImage()
function, described below. The image may be rendered into any ←↩

screen or
window RastPort with this function. (DrawImageState() can also be used to
draw the image.

The visual imagery for an
Image
can be removed from the display by calling

EraseImage(). For a normal Image structure, this will call the graphics
function EraseRect(), which clears the Image rectangle by using the
layer’s backfill pen to overwrite it.

Alternately, images can be used indirectly by attaching them to menus,
gadgets or requesters when they are initialized. For instance, in menus
the MenuItem structure has the ItemFill and SelectFill fields. If the
ITEMTEXT flag is cleared and the HIGHIMAGE flag is set, the application
may place a pointer to a list of

Image
structures in each of these fields.

The system will display the ItemFill images when the menu item is not
selected and the SelectFill images when the menu item is selected. The
application does not have to take any specific action to display these
images. Once the menus have been added to a window, their management and
display is under Intuition control.

The number of bitplanes in an image does not have to match the number of
bitplanes in the display element in which the image is rendered. This
provides great flexibility in using

Image
structures, as the same image

may be reused in many places.

If the application’s window is on the Workbench or some other public
screen, it must use caution with hard-coded or constant image data, as the
color palette of that screen is subject to change. If the application has

Libraries 5 / 23

its own custom screen, and it is appropriate for the colors of that screen
to change, the same situation arises. Starting with V36, Intuition allows
the screen opener to provide a mapping of pen number and rendering
functions. For example, pens are specified for the bright and dark edges
of three dimensional objects. Applications can obtain this mapping from
the DrawInfo structure. See the "Intuition Screens" chapter for more
information on DrawInfo and the new 3D look of Intuition in Release 2.

A suitably designed image may be drawn into a screen or window of any
depth. To accomplish this, the application must ensure that detail is not
lost when the image is displayed in a single bitplane RastPort, where only
the first bitplane of image data will be displayed. This is important if
the image will ever be displayed on the Workbench screen or any other
public screen.

Image Structure

Picking Bitplanes for Image Display

Directly Drawing the Image

Image Example

Image Data

1.6 8 / Creating Images / Image Structure

For images, the application must create one or more instances of ←↩
the Image

structure.

struct Image
{
WORD LeftEdge;
WORD TopEdge;
WORD Width;
WORD Height;
WORD Depth;
UWORD *ImageData;
UBYTE PlanePick, PlaneOnOff;
struct Image *NextImage;
};

The meanings of the fields in the Image structure are:

LeftEdge, TopEdge
The location of the image relative to its base position when it is
drawn. These offsets are added to the base position to determine the
final location of the image data.

The base position for images rendered with
DrawImage()
is taken from

Libraries 6 / 23

arguments passed in the function call. For gadgets and menus, the
base position is always the upper, left corner of the select box.
For requesters the base position is always the upper, left corner of
the requester.

Negative values of LeftEdge and TopEdge move the position up and to
the left of the base position. Positive values move down and to the
right.

Width, Height
The width and height of the image. Width contains the actual width
of the image in pixels. Height specifies the height of the image in
pixels.

The Width field of the Image structure contains the actual width in
pixels of the widest part of the image, not how many pixels are
contained in the words that define the image.

Depth
The depth of the image, or the number of bitplanes used to define it.
This is not the depth of the screen or window in which the image will
be displayed, it is the actual number of bitplanes that are defined
in the ImageData.

ImageData
This is a pointer to the bits that define the image and determine the
colors of each pixel. Image data must be placed in Chip memory. The
data is organized as an array of 16 bit words whose size can be
computed as follows:

WordWidth = ((Width + 16) / 16);
NumImageWords = WordWidth * Height * Depth;

The width of the image is rounded up to the nearest word (16 bits)
and extra trailing bits are ignored. Each line of each bitplane must
have enough words to contain the image width, with extra bits at the
end of each line set to zero. For example, an image 7 bits wide
requires one word for each line in the bitplane, whereas an image 17
bits wide requires two words for each line in the bitplane.

PlanePick
PlanePick tells which planes of the target BitMap are to receive
planes of image data. This field is a bit-wise representation of
bitplane numbers. For each bit set in PlanePick, there should be a
corresponding bitplane in the image data.

PlaneOnOff
PlaneOnOff tells whether to set or clear bits in the planes in the
target BitMap that receive no image data. This field is a bit-wise
representation of bitplane numbers.

NextImage
This field is a pointer to another instance of an Image structure.
Set this field to NULL if this is the last Image structure in the
linked list.

Libraries 7 / 23

1.7 8 / Creating Images / Directly Drawing the Image

As noted above, you use the DrawImage() call to directly draw an ←↩
image

into a screen or window RastPort.

void DrawImage(struct RastPort *rp, struct Image *image,
long leftOffset, long topOffset);

The rp argument is a pointer to the RastPort into which the image should
be drawn. This RastPort may come from a Window or Screen structure.

The image argument is a pointer to the list of
Image
structures that are

to be rendered. The list may contain a single Image structure.

The leftOffset and topOffset arguments are the external component, or the
base position, for this list of images. The

LeftEdge
and

TopEdge
values

of each
Image
structure are added to these values to determine the final

position of each image.

Images may also be indirectly drawn by attaching them to gadgets, menus or
requesters when they are initialized.

1.8 8 / Creating Images / Image Data

Image data must be in Chip memory. The
Image
structure itself may be in

any memory, but the actual data referenced by
ImageData
field must be in

Chip memory. This may be done by using compiler specific options, such as
the __chip keyword of SAS/C, or by allocating memory with the MEMF_CHIP
attribute and copying the image data to that memory.

Defining Image Data

1.9 8 / / Image Data / Defining Image Data

Image data consists of binary data organized into a series of 16- ←↩
bit

Libraries 8 / 23

words. The words must be sequential, where each successive word
represents bits that are displayed later in the image. The image is
defined as follows:

* The image is broken down into bitplanes. Each bitplane is considered
separately.

* Within a single bitplane, each row of pixels is taken separately.
First, round the number of pixels up to the next even multiple of 16.
This determines the number of words used to represent a single row of
data. For instance, an image that is 17 bits wide will require two
16-bit words to represent each row.

The leftmost 16 pixel values are placed in the first word, followed
by the next 16 pixel values, and so on. Any extra pixels at the end
of the last word of the

ImageData
should be set to zero.

* The first row of data is the topmost row of the low order bitplane.
This is immediately followed by the second row, then the third, until
all rows in the bitplane have been represented.

* The data for the low order bitplane is followed immediately by the
next to lowest, then the next, etc.

The color of each pixel in the image is directly related to the value in
one or more memory bits, depending upon how many bitplanes there are in
the image data and in which bitplanes of the screen or window the display
is displayed.

The color for a single pixel may be determined by combining the bits taken
from the same relative position within each of the bitplanes used to
define the image. For each pixel, the system combines all the bits in the
same position to create a binary value that corresponds to one of the
system color registers. This method of determining pixel color is called
color indirection, because the actual color value is not in the display
memory. Instead, it is in color registers that are located somewhere else
in memory.

In many situations, the image and display will have different number of
bitplanes, which complicates the determination of the color value for a
given pixel. For now, assume that the image and display have the same
number of bitplanes. The more complex example will be covered below, in
the section "

Image Example
".

If an image consists of only one bitplane and is displayed in a one
bitplane display, then wherever there is a 0 bit in the image data, the
color in color register zero is displayed and wherever there is a 1 bit,
the color in color register one is displayed.

In an image composed of two bitplanes, the color of each pixel is obtained
from a binary number formed by the values in two bits, one from the first
bitplane and one from the second bitplane. If the bit in the first
bitplane is a 1 and the bit in the second bitplane is a 0, then the color

Libraries 9 / 23

of that pixel will be taken from color register two (since 10 in binary is
two in decimal). Again, the first bitplane describes all of the low order
bits for each pixel. The second bitplane describes the next higher bit,
and so on. This can be extended to any number of bitplanes.

Image Data Hexadecimal Representation

************************········ F F F F F F 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

···························· C 0 0 0 0 3 0 0

************************········ F F F F F F 0 0

Figure 8-1: Rendering of the Following Example Image

simpleimage.c

1.10 8 / Creating Images / Picking Bitplanes for Image Display

A single image may be displayed in different colors without ←↩
changing the

underlying image data. This is done by selecting which of the target
bitplanes are to receive the image data, and what to do with the target
bitplanes that do not receive any image data.

PlanePick
and

PlaneOnOff
are used to control the bitplane rendering of the

image. The bits in each of these variables have a direct correspondence
to the bitplanes of the target bitmap. The lowest bit position
corresponds to the lowest numbered bitplane, the next highest bit position
corresponds to the next bitplane, etc.

For example, for a window or screen with three bitplanes (consisting of
planes 0, 1, and 2), all the possible values for

PlanePick
or

PlaneOnOff
and the planes picked are as follows:

| |
| PlanePick or |
| PlaneOnOff Planes Picked |

Libraries 10 / 23

| ------------ ------------- |
| 000 No planes |
| 001 Plane 0 |
| 010 Plane 1 |
| 011 Planes 0 and 1 |
| 100 Plane 2 |
| 101 Planes 0 and 2 |
| 110 Planes 1 and 2 |
| 111 Planes 0, 1, and 2 |
|__________________________________|

PlanePick
picks the bitplanes of the containing RastPort that will receive

the bitplanes of the image. For each plane that is picked to receive
data, the next successive plane of image data is drawn there. For
example, if an image with two bitplanes is drawn into a window with four
bitplanes with a PlanePick of binary 1010, the first bitplane of the image
will be drawn into the second bitplane of the window and the second
bitplane of the image will be drawn into the fourth bitplane of the
window. Do not set more bits in PlanePick than there are bitplanes in the
image data.

PlaneOnOff
specifies what to do with the bitplanes that are not picked to

receive image data. If the PlaneOnOff bit is zero, then the associated
bitplane will be filled with zeros. If the PlaneOnOff bit is one, then
the associated bitplane will be filled with ones. Of course, only bits
that fall within the rectangle defined by the image are affected by this
manipulation.

Only the bits not set in
PlanePick
are used in

PlaneOnOff
, that is,

PlaneOnOff only applies to those bitplanes not picked to receive image
data. For example, if PlanePick is 1010 and PlaneOnOff is 1100, then
PlaneOnOff may be viewed as x1x0 (where the x positions are not taken into
consideration). In this case, planes two and four would receive image
data and planes one and three would be set by PlaneOnOff. Each bit in
plane one would be set to zero and each bit in plane three would be set to
one.

PlaneOnOff
is only useful where an entire bitplane of an image may be set

to the same value. If the bitplane is not all set to the same value, even
for just a few bits, then image data must be specified for that plane.

A simple trick to create a filled rectangle of any color may be used by
supplying no image data, where the color is controlled by

PlaneOnOff
. The

Libraries 11 / 23

Depth
of such an image is set to zero, the size of the rectangle is

specified in the
Width
and

Height
fields and the

ImageData
pointer may be

NULL. PlanePick should be set to zero, as there are no planes of image
data to pick. PlaneOnOff is then set to the color register which contains
the desired color for the rectangle.

1.11 8 / Creating Images / Image Example

A more complex example of the use of an
Image
is presented below.

Plane 0, Open Rectangle

************************········

····························

····························

····························

····························

····························

····························

····························

····························

************************········

Plane 1, Filled Rectangle

································
································
································
········oooooooo················
········oooooooo················
········oooooooo················
········oooooooo················
································
································
································

3-Color Combined Image

************************········

····························

····························

······oooooooo··············

······oooooooo··············

······oooooooo··············

Libraries 12 / 23

······oooooooo··············

····························

····························

************************········

Figure 8-2: Picture of the More Complex Example Image

compleximage.c

1.12 8 Intuition Images, Line Drawing and Text / Creating Borders

This data type is called a
Border
since it was originally used to create

border lines around display objects. It is actually a general purpose
structure for drawing connected lines between any series of points.

A
Border
is easier to use than an

Image
structure. Only the following

need be specified to define a border:

* An internal position component which is used in determining the final
position of the border.

* A set of coordinate pairs for each vertex.

* A color for the lines.

* One of several drawing modes.

Border Structure Definition

Border Colors and Drawing Modes

Directly Drawing the Borders

Border Coordinates
Border Example
Linking Borders

1.13 8 / Creating Borders / Border Structure Definition

To use a border, the application must create one or more instances ←↩
of the

Libraries 13 / 23

Border structure. Here is the specification:

struct Border
{
WORD LeftEdge, TopEdge;
UBYTE FrontPen, BackPen;
UBYTE DrawMode;
BYTE Count;
WORD *XY;
struct Border *NextBorder;
};

Here is a brief description of the fields of the Border structure.

LeftEdge, TopEdge
These fields are used to determine the position of the Border
relative to its base position (the base position is the upper left
corner for requesters, menus, or gadgets and is specified in the call
to

DrawBorder()
for windows and screens).

FrontPen, BackPen
These fields contain color registers numbers. FrontPen is the color
used to draw the lines. BackPen is currently unused.

DrawMode
Set the DrawMode field to one of the following:

JAM1
Use FrontPen to draw the line.

COMPLEMENT
Change the pixels within the lines to their complement color.

Count
Specify the number of data points used in this border. Each data
point is described by two words of data in the XY array.

XY A pointer to an array of coordinate pairs, one pair for each point.
These coordinates are measured relative to the position of the border.

NextBorder
This field is a pointer to another instance of a Border structure.
Set this field to NULL if this is the last Border structure in the
linked list.

1.14 8 / Creating Borders / Directly Drawing the Borders

Borders may be directly drawn by the application by calling the ←↩
function

DrawBorder().

void DrawBorder(struct RastPort *rp, struct Border *border,

Libraries 14 / 23

long leftOffset, long topOffset);

The rp argument is a pointer to the RastPort into which the border should
be drawn. This rastport may come from a Window or Screen structure.

The border argument is a pointer to a list of
Border
structures which are

to be rendered. The list may contain a single Border structure.

The leftOffset and topOffset arguments are the external component, or base
position, for this list of

Border
s. The
LeftEdge
and

TopEdge
values of

each Border structure are added to these to determine the Border position.

Borders may also be indirectly drawn by attaching them to gadgets, menus
or requesters.

1.15 8 / Creating Borders / Border Colors and Drawing Modes

Borders can select their colors from the values set in the color ←↩
registers

for the screen in which they are rendered. The available number of colors
and palette settings are screen attributes and may not be changed through
border rendering.

Two drawing modes pertain to border lines:
JAM1
and

COMPLEMENT
. To draw

the line in a specific color, use the JAM1 draw mode. This mode converts
each pixel in the line to the color set in the

FrontPen
field.

Selecting the
COMPLEMENT
draw mode causes the line to be drawn in an

exclusive-or mode that inverts the color of each pixel within the line.
The data bits of the pixel are changed to their binary complement. This
complement is formed by reversing all bits in the binary representation of
the color register number. In a three bitplane display, for example,
color 6 is 110 in binary. In COMPLEMENT draw mode, if a pixel is color 6,
it will be changed to the 001 (binary), which is color 1. Note that a
border drawn in COMPLEMENT mode can be removed from a static display by
drawing the border again in the same position.

Libraries 15 / 23

1.16 8 / Creating Borders / Border Coordinates

Intuition draws lines between points that are specified as sets of ←↩
X, Y

coordinates.
Border
data does not have to be in Chip memory.

The
XY
field contains a pointer to an array of coordinate pairs. All of

these coordinates are offsets relative to the
Border
position, which is

determined by the sum of the external and internal position components as
described above. The coordinate pairs are ordered sequentially. The
first two numbers make up the first coordinate pair, the next two numbers
make up the second pair, and so on. Within a coordinate pair, the first
number is the X offset and the second number is the Y offset.

The first coordinate pair describes the starting point of the first line.
When the

Border
is rendered, a line is drawn between each pair of points.

The first line is drawn from point one to point two, the second line is
drawn from point two to point three, and so on, until the final point is
reached.

The numbers specified in the
XY
array may be positive or negative.

Negative values move up and to the left relative to the
Border
position,

positive values move down and to the right. Again, the Border position is
determined by adding the external position component and the internal
position component. For example, a Border attached to a Gadget has an
external component equal to the upper left corner of the gadget’s select
box. The internal component is set within the Border structure itself.
These two components are added together and offsets from the resulting
position, specified within the XY array, determine where the lines of the
Border will appear.

Suppose the top left corner of the select box of the gadget is at window
position (10,5). If the

Border
has

LeftEdge
set to 10 and

TopEdge
set to

10, then the Border is positioned at (10+10,5+10), that is (20,15). All

XY
coordinates will be relative to this Border position. If the XY ←↩

array

Libraries 16 / 23

contains ‘0,5, 15,5, 15,0’, then the relative coordinates will be (0,5),
(15,5) and (15,0). Adding each coordinate to the Border position gives
the absolute position of the lines within the window. This Border will
draw two lines in the window, one from (20,20) to (35,20) and the second
from (35,20) to (35,15).

0 5 10 15 20 25 30 35 40 45 50
| | | | | |

0__|____|____|____|____|____|____|____|____|____|____|
| Top left corner of the
| gadget’s select box (10,5)

5 _| * _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|
| |

10__| Border Third
| | Position Coordinate
| (20,15) (20+15,15+0)

15 _| | * *
| |
| | |

20__| *______________*
| | First Second
| Coordinate Coordinate

25 _| | (20+0,15+5) (20+15,15+5)
|
| |

30__|

Figure 8-3: Example of Border Relative Position

To create a border that is outside the select box of a gadget, specify
negative values in the internal component or use negative values for the
initial

XY
values. For example, setting

LeftEdge
to -1 and

TopEdge
to -1

moves the position of the
Border
one pixel above and one pixel to the left

of the gadget’s select box.

1.17 8 / Creating Borders / Linking Borders

The
NextBorder
field can point to another instance of a

Border
structure.

Libraries 17 / 23

This allows complex graphic objects to be created by linking together
Border structures, each with its own data points, color and draw mode.
This might be used, for instance, to draw a double border around a
requester or gadget where the outer border is a second Border structure,
linked to the first inner border.

Note that the borders can share data. For instance, to create a border
with a shadow, link two borders together each of which points to the same

XY
data. Set the first border to draw in a dark pen (such as the

SHADOWPEN from the screen’s DrawInfo structure) and position the border
down and to the right a few pixels by changing

LeftEdge
and

TopEdge
in the

Border
structure.

The second border should be set to a bright pen (such as the SHINEPEN in
the screen’s DrawInfo structure). When the border is drawn, the first
border will draw in a dark color and then the second border will be drawn
over it in a light color. Since they use the same data set, and the dark
border is shifted down and to the right, the border will have a three
dimensional appearance. This technique is demonstrated in the example
listed earlier in this section.

1.18 8 Intuition Images, Line Drawing and Text / Creating Text

The
IntuiText
structure provides a simple way of writing text strings

within an Intuition display element. These strings may be used in
windows, screens, menus, gadgets and requesters. To set up an IntuiText,
you specify the following:

* Pen colors for the text.

* A draw mode.

* The starting offset for the text.

* The font used to render the text.

* The text string to output.

IntuiText Structure

Text Colors and Drawing Modes

Directly Drawing the IntuiText

Libraries 18 / 23

Fonts

Determining Text Length

Linking Text Strings
IntuiText Example

1.19 8 / Creating Text / IntuiText Structure

To render text using Intuition, the application must create one or ←↩
more

instances of the IntuiText structure:

struct IntuiText
{
UBYTE FrontPen, BackPen;
UBYTE DrawMode;
WORD LeftEdge;
WORD TopEdge;
struct TextAttr *ITextFont;
UBYTE *IText;
struct IntuiText *NextText;
};

Here is a brief description of each member of the IntuiText structure:

FrontPen
The pen number specifying the color used to draw the text.

BackPen
The pen number specifying the color used to draw the background for
the text, if JAM2 drawing mode is specified.

DrawMode
This field specifies one of four drawing modes:

JAM1
FrontPen is used to draw the text; background color is unchanged.

JAM2
FrontPen is used to draw the text; background color is changed
to the color in BackPen.

COMPLEMENT
The characters are drawn in the complement of the colors that
were in the background.

INVERSVID
Inverses the draw modes describe above. For instance INVERVID
used with JAM1 means the character is untouched while the
background is filled with the color of the FrontPen.

LeftEdge and TopEdge

Libraries 19 / 23

The location of the text relative to its base position when it is
drawn. These offsets are added to the base position to determine the
final location of the text data.

The base position for text rendered with
PrintIText()
is taken from

arguments passed in the function call. For gadgets and menus, the
base position is always the upper, left corner of the select box.
For requesters the base position is always the upper, left corner of
the requester.

LeftEdge gives the offset of the left edge of the character cell and
TopEdge gives the offset of the top edge of the character cell for
the first character in the text string. Negative values of LeftEdge
and TopEdge move the position up and to the left of the base
position. Positive values move down and to the right.

ITextFont
A pointer to a TextAttr structure defining the font to be used. Set
this to NULL to use the default font.

IText
A pointer to the NULL terminated text string to be displayed.

NextText
A pointer to another instance of IntuiText. Set this field to NULL
for the last IntuiText in a list.

1.20 8 / Creating Text / Directly Drawing the IntuiText

Use the PrintIText() call to directly draw the text into the ←↩
target

RastPort of a window or screen.

void PrintIText(struct RastPort *rp, struct IntuiText *iText,
long left, long top);

The rp argument is a pointer to the RastPort into which the text should be
drawn. This RastPort can come from a Window or Screen structure.

The iText argument is a pointer to a list of
IntuiText
structures which

are to be rendered. The list may contain a single IntuiText structure.
If the font is not specified in the IntuiText structure, Intuition will
render the text using the RastPort’s font.

The left and top arguments give the external component, or base position
for this list of

IntuiText
structures. The

LeftEdge
and

Libraries 20 / 23

TopEdge
values in

each IntuiText structure are added to these to determine the final
position of the text.

IntuiText
objects may also be drawn indirectly by attaching them to

gadgets, menus or requesters.

1.21 8 / Creating Text / Determining Text Length

To determine the pixel length of a given
IntuiText
string, call the

IntuiTextLength() function.

LONG IntuiTextLength(struct IntuiText *iText);

Set the iText argument to point to the
IntuiText
structure whose length is

to be found. This function will return the length of the iText text
string in pixels. Note that if the

ITextFont
field of the given IntuiText

is set to NULL, or Intuition cannot access the specified font, then
GfxBase->DefaultFont will be used in determining the length of the text.
This may not be the same as the RastPort font with which the text would be
printed.

1.22 8 / Creating Text / Text Colors and Drawing Modes

IntuiText
gets its colors from the values set in the color registers for

the screen in which they are rendered. The available number of colors and
palette settings are screen attributes and cannot be changed through
IntuiText rendering.

Text characters in general are made up of two areas: the character image
itself and the background area surrounding the character image. The color
used in each area is determined by the draw mode which can be set to

JAM1
,

JAM2
or

COMPLEMENT
. The flag

Libraries 21 / 23

INVERSVID
may also be specified.

JAM1
draw mode renders each character with

FrontPen
and leaves the

background area unaffected. Because the background of a character is not
drawn, the pixels of the destination memory around the character image
are not disturbed. Graphics beneath the text will be visible in the
background area of each character cell.

JAM2
draw mode renders each character with

FrontPen
and renders each

character background with
BackPen
. Using this mode, any graphics that

previously appeared beneath the character cells will be totally
overwritten.

COMPLEMENT
draw mode renders the pixels of each character as the binary

complement of the color that is currently at the destination pixel. The
destination is the display memory where the text is drawn. As with

JAM1
,

nothing is drawn into the background.
FrontPen
and

BackPen
are not used

in COMPLEMENT mode. To determine the complement color, invert all the
bits in the binary representation of the color register number. The
resulting number specifies the color register to use for that pixel. In a
three bitplane display, for example, color 6 (110 in binary) is the
complement of color 1 (001 in binary).

The
INVERSVID
flag inverses the video for each of the drawing modes. For

JAM1
, nothing is drawn into the character area and the background is ←↩

drawn
in

FrontPen
. For
JAM2
, the character area is drawn in
BackPen
and the

background is drawn in FrontPen. For

Libraries 22 / 23

COMPLEMENT
mode, nothing is drawn

into the character area and the background is complemented.

1.23 8 / Creating Text / Fonts

The application may choose to specify the font used in rendering ←↩
the

IntuiText
, or it may choose to use the default font for the system.

To use the default font, set the
ITextFont
field to NULL. Some care must

be taken when using the default font. When an
IntuiText
object is

rendered and no font is specified, the text will be rendered in the font
set in the RastPort.

If the RastPort font is NULL, the text will be rendered using
GfxBase->DefaultFont. Also,

IntuiTextLength()
always uses

GfxBase->DefaultFont when
ITextFont
is NULL. The application must have

open the graphics library in order to check the default font in GfxBase.
(See the graphics library chapter for more information.)

To use a specific font for this text, place a pointer to an initialized
TextAttr structure in the

ITextFont
field. Intuition will only use the

specified font if it is available through a call to the OpenFont()
routine. To use a font from disk, the application must first open the
font using the OpenDiskFont() function. For more information about using
fonts, see the "Graphics Library and Text" chapter in this manual.

1.24 8 / Creating Text / Linking Text Strings

The
NextText
field can point to another instance of an

IntuiText
structure. This allows the application to create a complex object ←↩

which
has several distinct groups of characters, each with its own color, font,
location, and drawing mode. This can be used to create multiple lines of

Libraries 23 / 23

text, to position characters in the text very accurately and to change the
color or font of the text. Each list of IntuiText objects may be drawn
with one call to

PrintIText()
, or attached to a gadget, menu or requester

as a single object.

1.25 8 Intuition Images, Line Drawing and Text / Function Reference

The following are brief descriptions of the Intuition functions that
relate to the use of graphics under Intuition. See the Amiga ROM Kernel
Reference Manual: Includes and Autodocs for details on each function call.

Table 8-1: Functions for Intuition Drawing Capabilities

| |
| Function Description |
|===|
| DrawBorder() Draw a border into a rast port. |
| DrawImage() Draw a image into a rast port. |
| PrintIText() Draw Intuition text into a rast port. |
IntuiTextLength() Find the length of an IntuiText string.
BeginRefresh() Begin optimized rendering after a refresh
event.
EndRefresh() End optimized rendering after a refresh event.

GetScreenDrawInfo() Get screen drawing information (V36).
FreeScreenDrawInfo() Free screen drawing information (V36).

	Libraries
	Amiga® RKM Libraries: 8 Intuition Images, Line Drawing and Text
	8 Intuition Images, Line Drawing and Text / Intuition Graphic Objects
	8 / Graphic Objects / Displaying Images, Borders and IntuiText
	8 / Intuition Graphic Objects / Positioning Graphic Objects
	8 Intuition Images, Line Drawing and Text / Creating Images
	8 / Creating Images / Image Structure
	8 / Creating Images / Directly Drawing the Image
	8 / Creating Images / Image Data
	8 / / Image Data / Defining Image Data
	8 / Creating Images / Picking Bitplanes for Image Display
	8 / Creating Images / Image Example
	8 Intuition Images, Line Drawing and Text / Creating Borders
	8 / Creating Borders / Border Structure Definition
	8 / Creating Borders / Directly Drawing the Borders
	8 / Creating Borders / Border Colors and Drawing Modes
	8 / Creating Borders / Border Coordinates
	8 / Creating Borders / Linking Borders
	8 Intuition Images, Line Drawing and Text / Creating Text
	8 / Creating Text / IntuiText Structure
	8 / Creating Text / Directly Drawing the IntuiText
	8 / Creating Text / Determining Text Length
	8 / Creating Text / Text Colors and Drawing Modes
	8 / Creating Text / Fonts
	8 / Creating Text / Linking Text Strings
	8 Intuition Images, Line Drawing and Text / Function Reference

