
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 7 Intuition Requesters and Alerts . 1

1.2 7 Intuition Requesters and Alerts / Types Of Requesters . 1

1.3 7 Intuition Requesters and Alerts / True Requesters . 2

1.4 7 / True Requesters / Creating Application Requesters . 3

1.5 7 / True Requesters / Requester I/O . 4

1.6 7 / True Requesters / Rendering Requesters . 6

1.7 7 / True Requesters / Requester Refresh Type . 7

1.8 7 / True Requesters / Requester Display Position . 7

1.9 7 / True Requesters / Gadgets in Requesters . 8

1.10 7 / True Requesters / Using a Requester to Block Window Input . 9

1.11 7 / True Requesters / Double Menu Requesters . 10

1.12 7 / True Requesters / IDCMP Requester Features . 11

1.13 7 Intuition Requesters and Alerts / Requester Structure . 12

1.14 7 Intuition Requesters and Alerts / Easy Requesters . 16

1.15 7 / Easy Requesters / The EasyStruct Structure . 18

1.16 7 / Easy Requesters / Low Level Access to Easy Requesters . 20

1.17 7 Intuition Requesters and Alerts / System Requesters . 20

1.18 7 / System Requesters / Redirecting System Requesters . 21

1.19 7 Intuition Requesters and Alerts / Alerts . 21

1.20 7 / Alerts / Types of Alerts . 22

1.21 7 / Alerts / Creating Alerts . 23

1.22 7 Intuition Requesters and Alerts / Function Reference . 23

Libraries 1 / 24

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 7 Intuition Requesters and Alerts

This chapter explains how to create requesters, the information ←↩
exchange

boxes that both the system and applications can use for confirming
actions, getting command options and similar operations. These boxes are
called requesters because they generally request information from the user.

Alerts provide a function similar to requesters but are reserved for
emergency messages. Alerts are discussed later in this chapter.

Types Of Requesters

Easy Requesters

Alerts

True Requesters

System Requesters

Function Reference

Requester Structure

1.2 7 Intuition Requesters and Alerts / Types Of Requesters

There are at least three kinds of display objects in Amiga ←↩
terminology

called requesters:
true
requesters,

system
requesters and ASL requesters.

Libraries 2 / 24

True
requesters are general purpose display areas that can be thought ←↩

of
as temporary sub-windows. They display information to the user and allow
the user to make a selection. True requesters always open within an
existing window and are constrained to the boundaries of that window
(often referred to as the parent window). If a requester extends beyond
the edge of its parent window, either its position is adjusted or its
graphics are clipped. True requesters always block input to their parent
window as long as they are present.

System
requesters are typically used for warnings or to confirm an ←↩

action
the user has just initiated. System requesters differ from

true
requesters in that they cannot block input to the parent window. ←↩

In fact,
system requesters do not open in a parent window at all, but instead open
their own separate window in the screen. Since these requesters are so
different from true requesters, they will be discussed separately later in
the chapter. See the sections on "

Easy Requesters
" and "
System Requests
"

for more information.

The third type of requester, the ASL requester, is a special purpose
requester available only in Release 2 and later versions of the OS. ASL
requesters provide an easy, standard way to get a filename from the user
for load and save operations. They can also be used to get a font
selection from the user. Since selecting a file or font name is one of
the most common uses for a requester, it has been incorporated into
Release 2 as a standard feature. For the details about ASL file and font
requesters, see Chapter 16, "ASL Library".

1.3 7 Intuition Requesters and Alerts / True Requesters

The primary function of a requester is to display information to ←↩
the user

from which the user is to make a selection. Conceptually, requesters are
similar to menus since both menus and requesters offer options to the
user. Requesters, however, go beyond menus because they can have
customized imagery, can be placed anywhere in a window, can be activated
by the application and may have any type of gadget attached.

For instance, to select a color for a given operation using a menu could
be awkward, especially in an application that supports a large number of
colors. In that case a requester could be used instead (see figure).

Figure 7-1: Requester Deluxe

Libraries 3 / 24

The ability of a true requester to block input to its parent window is
important in understanding how requesters are used. When input is blocked
by a true requester (also known as a modal requester), the user must take
some action before the program will proceed further, such as making a
selection, correcting an error condition, or acknowledging a warning.
These are situations where a true (modal) requester is appropriate,
however, keep in mind that your application should try to be as
user-responsive as possible. Putting up a requester merely because you
are in a phase of the program where it would be difficult to deal with
user input is bad style. Modal requesters should be used only when the
program requires user interaction before proceeding.

True requesters can be created in a window in two different ways.

* An application can display a requester at any time by calling
the

Request()
function.

* The application can declare a requester as the window’s

double menu
requester, which the user can bring up with a

double-click of the menu button (this method is rarely used).

Creating Application Requesters

Requester I/O

Rendering Requesters

Requester Refresh Type

Requester Display Position

Gadgets in Requesters

Using a Requester to Block Window Input

Double Menu Requesters

IDCMP Requester Features

1.4 7 / True Requesters / Creating Application Requesters

To create a requester, the application first allocates memory for ←↩
or

declares an instance of the
Requester
structure as defined in

<intuition/intuition.h>. Once the Requester structure is set up, it is
initialized with the InitRequester() function.

Libraries 4 / 24

void InitRequester(struct Requester *requester)

This function simply clears the
Requester
structure. The application

should do further initialization depending on its needs. See the section
on the "

Requester Structure
" below for an explanation of all the Requester

fields and how to set them.

A
true
(modal) requester is attached to its parent window and displayed

with the Request() function.

BOOL Request(struct Requester *requester, struct Window *window)

This function returns TRUE if the requester opens successfully or FALSE if
the requester cannot be opened. If the requester opens successfully, menu
and gadget input in the parent window is blocked as long as the requester
is displayed. The application should process input events from the
requester, which are sent to the parent window’s Window.UserPort, until
the requester is satisfied.

To remove a requester from its parent window and update the display, use
EndRequest().

void EndRequest(struct Requester *requester, struct Window *window);

This removes only the one requester specified. It is possible to set up a
requester with a special gadget that, if selected, will automatically
close the requester. In that case, EndRequest() need not be called. If
the program needs to cancel the request early, or cancel it only after
some specific manipulation of the gadgets, EndRequest() should be used.

The application should always provide a safe way for the user to back out
of a requester without taking any action that affects the user’s work.
Providing an escape hatch is important, for instance, a requester with the
message "Overwrite File?" should allow the user to cancel the operation
without losing the old data.

1.5 7 / True Requesters / Requester I/O

So long as a requester is active in a window, the only gadgets ←↩
that can be

used are those that are in the requester, plus all of the window’s system
gadgets except for the close gadget (i.e., the drag bar, size gadget,
depth gadget, and zoom gadget). A requester also makes the menus of the
parent window inaccessible. Additionally, mouse button and keyboard
events will be blocked (unless the requester’s

NOISYREQ
flag is set; see

Libraries 5 / 24

"
Requester Structure
" below). Mouse movement events, if enabled in the

parent window (with WFLG_REPORTMOUSE), are not blocked.

Requesters do not have their own IDCMP message ports. Instead, events for
a requester are sent to the IDCMP port of the requester’s parent window
(Window.UserPort). Since the window’s menus and application gadgets are
inaccessible, no IDCMP events will be sent for them.

Even though the window containing the requester is blocked for input, the
user can work in another application or even in a different window of the
same application without satisfying the requester. Only input to the
parent window is blocked by a requester.

Output is not blocked by a requester so nothing prevents the application
from writing to the window. Be aware, however, that the requester
obscures part of the display and cannot be moved within the window so this
may limit the usefulness of any output you send to the parent window.
There are several ways to monitor the comings and goings of requesters
that allow the program to know if requesters are currently displayed in a
given window. See "

IDCMP Requester Features
" below.

The information displayed in a requester is placed in its own layer, so it
does not overwrite the information in the window. Output to the window
while the requester is displayed will not change the requester’s display,
it will go into the window’s layer. The requester’s layer is clipped to
the window’s boundaries, so the data in the requester is only visible if
the window is large enough to allow for the complete display of that data.

The requester will remain in the window and input will remain blocked
until the user satisfies the request or the application removes the
requester. Applications can set up some or all of the gadgets in the
requester to automatically terminate the requester when the gadget is
selected. This allows the requester to be removed from the window by user
action. The application may also remove requesters from the window based
on some event internal to the program.

Multiple requesters may be nested in a single window. Such requesters
must be satisfied in the reverse order in which they were posted; the last
requester to be displayed must be satisfied first. Input will not be
restored to a previous requester until all later requesters are satisfied.

Note that the application may not bring up a limitless number of
requesters in a window. Each requester creates a new layer for rendering
in its window and the system currently has a limit of ten layers per
window. Normal windows use one layer for the window rendering,
GimmeZeroZero windows use a second layer for the border rendering. This
leaves a maximum of eight or nine simultaneous requesters open in a window
at any given time.

If the requester is being brought up only to display an error message, the
application may want to use a less intrusive method of bringing the error
to the user’s attention than a requester. Requesters interrupt the flow
of the user’s work, and force them to respond before continuing.

Libraries 6 / 24

As an alternative to bringing up an error requester, the application could
flash the screen instead with Intuition’s DisplayBeep() function. This
allows the application to notify the user of an error that is not serious
enough to warrant a requester and to which the user does not really need
to respond. For more information, see the description of DisplayBeep() in
the "Intuition Screens" chapter.

1.6 7 / True Requesters / Rendering Requesters

The application may choose to use Intuition’s rendering facilities ←↩
to

display the requester, or it may define its own custom bitmap. The

Requester
structure is initialized differently according to the rendering

method chosen.

To use Intuition’s rendering facilities, you supply a list of one or more
display objects with the

Requester
structure and submit the Requester to

Intuition, allowing it to draw the objects. These objects can include
independent lists of Borders, IntuiText, Images and Gadgets. Note that
the abilty to provide a list of Image structures is new in V36, and the

USEREQIMAGE
flag must be set for them to be rendered. For more about

Intuition rendering see the chapter on
"Intuition Images, Line Drawing and Text".

The gadgets in a requester also have their own borders, images and text to
add to the display imagery. Intuition will allocate the buffers,
construct a bitmap that lasts for the duration of the display, and render
the requester into the window. This rendering is all done over a solid
color, filled background specified by the

BackFill
pen in the

Requester
structure. The backfill may be disabled by setting the
NOREQBACKFILL
flag

(this also a new feature of V36).

On the other hand, a custom requester may be designed with pre-defined,
bitmap imagery for the entire object. The image bitmap is submitted to
Intuition through the

ImageBMap
field of the

Requester
structure. The

bitmap should be designed to reduce user confusion; gadgets should line up
with their images, and the designer should attempt to use glyphs (symbols)
familiar to the user.

Libraries 7 / 24

To provide imagery for the requester, applications should always try to
use data structures attached to the

Requester
structure as described

above. Although, rendering directly into the requester layer’s RastPort
is tolerated, it must be done with great care.

First, a requester is allowed to have gadgets that automatically close the
requester when they are selected (GACT_ENDGADGET). If such a gadget is
selected, the requester, its layer, and its layer’s RastPort will be
deleted asynchronously to your application. If your application is trying
to render directly into the requester at that time, the results are
unpredictable. Therefore, do not put GACT_ENDGADGET gadgets into a
requester if you plan on rendering directly into its RastPort.

Second, recall that requesters are clipped to the inside of the window
(not including the borders). If the window can be sized smaller such that
the requester would be entirely clipped, the requester’s layer may be
deleted by Intuition. If your window’s minimum size and the requester
size and position are such that the requester can be completely clipped,
then reading

Requester.ReqLayer
is unsafe without additional protection.

It would be correct to LockLayerInfo() the screen’s Layer_Info, then check
for the existence of the requester’s ReqLayer, then render, then unlock.

For reasons such as these, direct rendering is discouraged.

1.7 7 / True Requesters / Requester Refresh Type

A requester appears in a Layer. By default, the requester layer is of
type LAYERSMART, or, in window terminology, WFLG_SMART_REFRESH; so
rendering is preserved in the requester when the window is moved or
revealed.

Requesters may also be simple refresh. This is the recommended type. If
possible, make the requester a simple refresh layer requester by
specifying the SIMPLEREQ flag.

For all refresh types, Intuition will keep the gadget, border, image and
bitmap imagery properly refreshed.

1.8 7 / True Requesters / Requester Display Position

The location of
true
requesters may be specified in one of three ways.

The requester may either be a constant location, which is an offset from
the top left corner of the window; a location relative to the current
location of the pointer; or a location relative to the center of the

Libraries 8 / 24

window.

To display the requester as an offset from the upper left corner of the
window, initialize the

TopEdge
and

LeftEdge
variables and clear the

POINTREL
flag. This will create a requester with a fixed position

relative to the upper left corner for both normal requesters and

double menu
requesters.

Displaying the requester relative to the pointer can get the user’s
attention immediately and closely associates the requester with whatever
the user was doing just before the requester was displayed in the window.
However, only

double menu
requesters may be positioned relative to the

pointer position. See below for more information on double menu
requesters.

Requesters that are not
double menu
requesters may be positioned relative

to the center of the window on systems running Release 2 or a later
version of the OS. This is done by setting the

POINTREL
flag and filling

in the relative top and left of the gadget. Setting
RelTop
and

RelLeft
to

zero will center the requester in the window. Positive values of RelTop
and RelLeft will move the requester down and to the right, negative values
will move it up and to the left.

1.9 7 / True Requesters / Gadgets in Requesters

Each requester gadget must have the GTYP_REQGADGET flag set in the
GadgetType field of its Gadget structure. This informs Intuition that
this gadget is to be rendered in a requester rather than a window.

Requesters can have gadgets in them that automatically satisfy the request
and end the requester. When one of these gadgets is selected, Intuition
will remove the requester from the window. This is equivalent to the
application calling

EndRequest()
, and, if the request is terminated by

selection of such a gadget, the application should not call EndRequest()

Libraries 9 / 24

for that requester.

Set the GACT_ENDGADGET flag in the Activation field of the Gadget
structure to create a gadget that automatically terminates the requester.
Every time one of the requester’s gadgets is selected, Intuition examines
the GACT_ENDGADGET flag. If GACT_ENDGADGET is set, the requester is
removed from the display and unlinked from the window’s active requester
list.

Requesters rendered via Intuition and those that use a custom bitmap
differ in how their gadgets are rendered. For requesters rendered via
Intuition, the application supplies a regular gadget list just as it would
for application gadgets in a window.

In custom bitmap requesters, however, any gadget imagery is part of the
bitmap supplied for the requester. Therefore the list of gadgets supplied
for custom bitmap requesters should not provide gadget imagery but rather
it should define only the select boxes, highlighting, and gadget types for
the gadgets.

The Gadget structures used with a custom bitmap requester should have
their GadgetRender, SelectRender and GadgetText fields set to NULL as
these will be ignored. Other gadget information--select box dimensions,
highlighting, and gadget type--is still relevant. The select box
information is especially important since the select box must have a well
defined correspondence with the custom bitmap imagery supplied. The basic
idea is to make sure that the user understands the requester imagery and
gadgets.

1.10 7 / True Requesters / Using a Requester to Block Window Input

There may be times when an application needs to block user input ←↩
without a

visible requester. In some cases, the application needs to be busy for a
while. Other times, an application wants the blocking properties of a
requester, but prefers to use a window instead of a

true
requester. In

this case, the application can create a requester with no imagery,
attaching it to the parent window to block input. A new window may then
be opened to act as the requester.

Some of the advantages of using a window as a requester instead of a real
requester include:

* A window can be resized, and moves independently of the parent window.

* It is legal to render directly into a window.

* The window can have its own menus since only the parent window’s
menus are disabled (this is only occasionally useful).

* Certain code or a library you are using may not work in requesters
(GadTools library is an example of this).

Libraries 10 / 24

Of course, using a
true
requester instead of a window has the advantage

that the requester automatically moves and depth-arranges along with the
parent window.

A Requester Example

1.11 7 / True Requesters / Double Menu Requesters

A double menu requester is exactly like other requesters with one
exception: it is displayed only when the user double clicks the mouse menu
button. Double menu requesters block input in exactly the same manner as
other

true
requesters. A double menu requester is attached to a window by

calling SetDMRequest().

BOOL SetDMRequest(struct Window *window,
struct Requester *requester);

This call does not display the requester, it simply prepares it for
display. The requester will be brought up when the user double clicks the
mouse menu button. The parent window will receive

IDCMP_REQSET
and

IDCMP_REQCLEAR
messages when the requester is added and removed.

To prevent the user from bringing up a double menu requester, unlink it
from the window by calling ClearDMRequest(). If a double menu request is
set for a window, ClearDMRequest() should be called to remove the
requester before that window is closed.

BOOL ClearDMRequest(struct Window *window);

This function unlinks the requester from the window and disables the
ability of the user to bring it up. ClearDMRequest() will fail if the
double menu request is currently being displayed.

Double menu requesters can be positioned relative to the current mouse
pointer position. For a mouse relative requester, specify

POINTREL
in the

Flags
field and initialize the

RelLeft
and

RelTop
variables. RelLeft and

RelTop describe the offset of the upper, left corner of the requester from

Libraries 11 / 24

the pointer position at the time the requester is displayed. These values
can be either negative or positive.

The values of
RelLeft
and

RelTop
are only advisory; the actual position

will be restricted such that the requester is entirely contained within
the borders of its parent window, if possible. The actual top and left
positions are stored in the

TopEdge
and

LeftEdge
variables.

Positioning relative to the mouse pointer is possible only with double
menu requesters. Setting

POINTREL
in a requester which is not a double

menu requester will position the requester relative to the center of the
window.

1.12 7 / True Requesters / IDCMP Requester Features

Intuition can notify your application about user activity in the ←↩
requester

by sending a message to the parent window’s IDCMP port (Window.UserPort).
When using the IDCMP for input, the following IDCMP flags control how
requester input events will be handled.

IDCMP_REQSET
With this flag set, the program will receive a message whenever a
requester opens in its window. The application will receive one
IDCMP_REQSET event for each requester opened in the window.

IDCMP_REQCLEAR
With this flag set, the program will receive a message whenever a
requester is cleared from its window. The application will receive
one IDCMP_REQCLEAR event for each requester closed in the window. By
counting the number of IDCMP_REQSET and IDCMP_REQCLEAR events, the
application may determine how many requesters are currently open in a
window.

IDCMP_REQVERIFY
With this flag set, the application can ensure that it is ready to
allow a requester to appear in the window before the requester is
displayed.

When the program receives an IDCMP_REQVERIFY message, it must reply
to that message before the requester is added to the window. If
multiple requesters are opened in the window at the same time, only
the first one will cause an IDCMP_REQVERIFY event. It is assumed
that once a requester is in a window others may be added without the

Libraries 12 / 24

program’s consent. After the requester count drops to zero and there
are no open requesters in the window, the next requester to open will
cause another IDCMP_REQVERIFY event.

IDCMP_REQVERIFY is ignored by the
Request()
function. Since

Request() is controlled by the application, it is assumed that the
program is prepared to handle the request when calling this function.
Since the system does not render

true
requesters into an

application’s window (
EasyRequest()
and

AutoRequest()
come up in

their own window, not in the application’s window), IDCMP_REQVERIFY
will only control the timing of

double menu
requesters.

These flags are set when the parent window is first opened by using either
the WA_IDCMP tag or NewWindow.IDCMPFlags. They can also be set after the
parent window is open by using the ModifyIDCMP() call. See the chapter
entitled "Intuition Input and Output Methods," for further information
about these IDCMP flags. See the "Intuition Windows" chapter for details
on setting IDCMP flags when a window is opened.

1.13 7 Intuition Requesters and Alerts / Requester Structure

Unused fields in the Requester structure should be initialized to ←↩
NULL or

zero before using the structure. For global data that is pre-initialized,
be sure to set all unused fields to zero. For dynamically allocated
structures, allocate the storage with the MEMF_CLEAR flag, or call the

InitRequester()
function to clear the structure.

Requesters are Initialized According to Their Type.

See "

Rendering Requesters
" and "
Gadgets in Requesters
" above for

information about how the initialization of the structure differs
according to how the requester is rendered.

The specification for a Requester structure, defined in
<intuition/intuition.h>, is as follows.

struct Requester

Libraries 13 / 24

{
struct Requester *OlderRequest;
WORD LeftEdge, TopEdge;
WORD Width, Height;
WORD RelLeft, RelTop;
struct Gadget *ReqGadget;
struct Border *ReqBorder;
struct IntuiText *ReqText;
UWORD Flags;
UBYTE BackFill;
struct Layer *ReqLayer;
UBYTE ReqPad1[32];
struct BitMap *ImageBMap;
struct Window *RWindow;
struct Image *ReqImage;
UBYTE ReqPad2[32];
};

Here are the meanings of the fields in the Requester structure:

OlderRequest
For system use, initialize to NULL.

LeftEdge, TopEdge
The location of the requester relative to the upper left corner of
the window. These values must be set if the POINTREL flag is not
set. Use RelLeft and RelTop for POINTREL requesters.

Width, Height
These fields describe the size of the entire requester rectangle,
containing all the text and gadgets.

RelLeft, RelTop
These values are only used if the POINTREL flag in the requester’s
Flags field is set.

If the requester is a
double menu
requester and POINTREL is set then

these values contain the relative offset of the requester’s upper
left corner from the current pointer position.

If the requester is not a
double menu
requester and POINTREL is set,

then these values contain the relative offset of the requester’s
center from the center of the window that the requester is to be
displayed in. For example, using POINTREL with a requester which is
not a double menu requester with RelLeft and RelTop of zero will
center the requester in the window. The requester is centered within
the inner part of the window, that is, within the inside edge of the
window’s borders.

If the requester is POINTREL and part of the containing box will
appear out of the window, Intuition will adjust the requester so that
the upper left corner is visible and as much of the remaining box as
possible is visible. The adjustment attempts to maintain the

Libraries 14 / 24

requester within the window’s borders, not within the window’s
bounding box.

ReqGadget
This field is a pointer to the first in a linked list of Gadget
structures. GTYP_REQGADGET must be specified in the GadgetTypes
field of all Gadget structures that are used in a requester. Take
care not to specify gadgets that extend beyond the Requester
rectangle specified by the Width and Height fields, as Intuition does
no boundary checking.

For requesters with custom imagery, where PREDRAWN is set, ReqGadget
points to a valid list of gadgets, which are real gadgets in every
way except that the gadget text and imagery information are ignored
(and can be NULL). The select box, highlighting, and gadget type
data are still used. Try to maintain a close correspondence between
the gadgets’ select boxes and the supplied imagery.

String Gadgets and Pre-drawn Requesters.
--
Intuition will not render string gadget text in a predrawn requester.
The application must use other rendering means than the predrawn
bitmap if it wishes to use string gadgets with a requester.

ReqBorder
This field is a pointer to an optional linked list of Border
structures for drawing lines around and within the requester. The
lines specified in the border may go anywhere in the requester; they
are not confined to the perimeter of the requester.

For requesters with custom imagery, where PREDRAWN is set, this
variable is ignored and may be set to NULL.

ReqText
This field is a pointer to an optional linked list of IntuiText
structures containing text for the requester. This is for general
text in the requester.

For requesters with custom imagery, where PREDRAWN is set, this
variable is ignored and can be set to NULL.

Flags
The following flags may be specified for the Requester:

POINTREL
Specify POINTREL to indicate that the requester is to appear in
a relative rather than a fixed position.

For
double menu
requesters, the position is relative to the

pointer. Otherwise, the position of POINTREL requesters is
relative to the center of the window.

See the discussion of RelLeft and RelTop, above.

PREDRAWN

Libraries 15 / 24

Specify PREDRAWN if a custom BitMap structure is supplied for
the requester and ImageBMap points to the structure.

NOISYREQ
Normally, when a requester is active, any gadget, menu, mouse
and keyboard events within the parent window are blocked.
Specify the NOISYREQ requester flag to allow keyboard and mouse
button IDCMP events to be posted, even though the requester is
active in the parent window.

If the NOISYREQ requester flag is set, the application will
receive IDCMP_RAWKEY, IDCMP_VANILLAKEY and IDCMP_MOUSEBUTTONS
events. Note that with NOISYREQ set, IDCMP_MOUSEBUTTON events
will also be sent when the user clicks on any of the blocked
gadgets in the parent window.

Although the reporting of mouse button events depends on
NOISYREQ, mouse movement events do not. IDCMP_MOUSEMOVE events
are reported if the window flag WFLG_REPORTMOUSE is set in the
parent window, or if one of the requester gadgets is down and
has the GACT_FOLLOWMOUSE flag set. This is true even if the
requester is a

double menu
requester.

USEREQIMAGE
Render the linked list of images pointed to by ReqImage after
rendering the BackFill color but before gadgets and text.

NOREQBACKFILL
Do not backfill the requester with the BackFill pen.

In addition, Intuition uses these flags in the Requester:

REQOFFWINDOW
Set by Intuition if the requester is currently active but is
positioned off window.

REQACTIVE
This flag is set or cleared by Intuition as the requester is
posted and removed. The active requester is indicated by the
value of Window.FirstRequest.

SYSREQUEST
This flag is set by Intuition if this is a

system
generated

requester. Since the system will never create a
true
requester

in an application window, the application should not be
concerned with this flag.

BackFill
BackFill is the pen number to be used to fill the rectangle of the
requester before any drawing takes place. For requesters with custom
imagery, where PREDRAWN is set, or for requesters with NOREQBACKFILL

Libraries 16 / 24

set, this variable is ignored.

ReqLayer
While the requester is active, this contains the address of the Layer
structure used in rendering the requester.

ImageBMap
A pointer to the custom bitmap for this requester. If this requester
is not PREDRAWN, Intuition ignores this variable.

When a custom bitmap is supplied, the PREDRAWN flag in the
requester’s Flags field must be set.

RWindow
Reserved for system use.

ReqImage
A pointer to a list of Image structures used to create imagery within
the requester. Intuition ignores this field if the flag USEREQIMAGE
is not set. This imagery is automatically redrawn by Intuition each
time the requester needs refreshing. The images are drawn after
filling with the BackFill pen, but before the gadgets and text.

ReqPad1, ReqPad2
Reserved for system use.

1.14 7 Intuition Requesters and Alerts / Easy Requesters

EasyRequest() provides a simple way to make a requester that ←↩
allows the

user to select one of a limited number of choices. (A similar function,

AutoRequest()
, is also available but is not as flexible or as powerful.

See the Amiga ROM Kernel Reference Manual: Includes and Autodocs for more
information.)

Figure 7-2: A Simple Requester Made with EasyRequest()

The program supplies the text for the body of the requester, text for each
of the possible options, an optional title for the window, and other
arguments. The body text can consist of one or more lines with lines
separated by the linefeed character.

Each option for an easy requester is displayed as a simple button gadget
positioned beneath the body text you specify. The layout of the
requester, its text and buttons, is done automatically and is font
sensitive. The screen font (Screen.Font) is used for all text in the
requester.

Typically, easy requesters have one selection indicating a positive action
and one selection indicating a negative action. The text used for the
positive action might be "OK", "Yes," "True," "Retry," or similar
responses. Likewise, the text used for the negative action might be "No,"

Libraries 17 / 24

"False," "Cancel," and so on. The negative choice should always be the
rightmost or final choice and will return a zero if selected.

When EasyRequest() is called, Intuition will build the requester, display
it, and wait for user response.

LONG EasyRequest(struct Window *window,
struct EasyStruct *easyStruct,
ULONG *idcmpPtr, APTR arg1, ...);

LONG EasyRequestArgs(struct Window *window,
struct EasyStruct *easyStruct,
ULONG *idcmpPtr, APTR args);

The window argument is a pointer to the reference window. The requester
will be displayed on the same screen that the reference window is on and
also takes its title from the reference window, if not otherwise
specified. This argument can be NULL, which means the requester is to
appear on the Workbench screen, or the default public screen, if defined.

The easyStruct argument is a pointer to an
EasyStruct
structure which

defines the setup and the text of this easy requester (described below).

The idcmpPtr argument is a pointer to a ULONG containing the IDCMP flags
for the event that you want to terminate this requester. If such an event
occurs the requester is terminated (with a result of -1) and the ULONG
that idcmpPtr points to will contain the actual class of the event
message. This feature allows external events to satisfy the request, such
as the user inserting a disk in the disk drive. This argument can be set
to NULL for no automatic termination.

The gadget and body text for an easy requester is specified in an

EasyStruct
structure (see below). Body text can be specified using a

printf()-style format string that also accepts variables as part of the
text. If variables are specified in the requester text, their value is
taken from the args (or arg1,...) parameters shown in the prototypes
above. EasyRequestArgs() takes a pointer to an array of pointers to
arguments, while EasyRequest() has a varargs interface and takes
individual arguments as part of the function call. The types of these
arguments are specified in the format strings of the EasyStruct structure.
Arguments for

es_GadgetFormat
follow arguments for

es_TextFormat
.

The EasyRequest() functions return an integer from 0 to n - 1, where n is
the number of choices specified for the requester. The numbering from
left-to-right is: 1, 2, ..., n - 1, 0. This is for compatibility with

AutoRequest()
which returns FALSE for the rightmost gadget.

Libraries 18 / 24

The function will return -1 if it receives an IDCMP event that matches one
of the termination events specified in the idcmpPtr argument.

Turn Off the Verify Messages.

Use ModifyIDCMP() to turn off all verify messages (such as
MENUVERIFY) before calling EasyRequest() or

AutoRequest()
. Neglecting

to do so can cause situations where Intuition is waiting for the
return of a message that the application program cannot receive
because its input is shut off while the requester is up. If
Intuition finds itself in a deadlock state, the verify function will
timeout and will be automatically replied.

The Easystruct Structure

Low Level Access to Easy Requesters

1.15 7 / Easy Requesters / The EasyStruct Structure

The text and setup of an easy requester is specified in an ←↩
EasyStruct

structure, defined in <intuition/intuition.h>.

struct EasyStruct
{
ULONG es_StructSize;
ULONG es_Flags;
UBYTE *es_Title;
UBYTE *es_TextFormat;
UBYTE *es_GadgetFormat;
};

es_StructSize
Contains the size of the EasyStruct structure, sizeof(struct
EasyStruct).

es_Flags
Set to zero.

es_Title
Title of easy requester window. If this is NULL, the title will be
taken to be the same as the title of the reference window, if one is
specified in the

EasyRequest()
call, else the title will be "System

Request".

es_TextFormat
Format string for the text in the requester body, with printf()-style
variable substitution as described in the Exec library function
RawDoFmt(). Multiple lines are separated by the linefeed character

Libraries 19 / 24

(hex 0x0a or ‘\n’ in C). Formatting ‘%’ functions are supported
exactly as in RawDoFmt(). The variables that get substituted in the
format string come from the last argument passed to

EasyRequest()
(see

prototype
above).

es_GadgetFormat
Format string for gadgets, where the text for separate gadgets is
separated by ‘|’ (vertical bar). As with the body text,
printf()-style formatting with variable substitution is supported,
but multi-line text in the gadgets is not supported. At least one
gadget must be specified.

Requesters generated with
EasyRequest()
and

BuildEasyRequest()
(including

system
requesters, which use

SysReqHandler()
to handle input) can be

satisfied by the user via the keyboard. The key strokes left Amiga V and
left Amiga B correspond to selecting the requester’s leftmost or rightmost
gadgets with the mouse, respectively.

An easy request must have at least one choice. Multiple choices are
specified through the "|" (vertical bar) separator character in the
es_GadgetFormat string. The buttons are displayed evenly spaced, from
left-to-right in the order in which they appear in the string.

The requesters generated by
EasyRequest()
appear in the visible portion of

the specified screen. They do not cause the screen to scroll. Under the
current implementation, the window for an easy requester will appear in
the upper left corner of the display clip for the specified screen.

When a request is posted using
EasyRequest()
or

BuildEasyRequest()
, it

will move the screen it appears on to the front, if that screen is not
already the frontmost. This brings the request to the attention of the
user. The request also comes up as the active window and could
potentially steal the input focus from the current window.

When the request is satisfied the screen will be moved to back if the
request caused the screen to move to the front when it was displayed.
Note that the final screen position may not be the same as the original
screen position.

Example Using EasyRequest()

Libraries 20 / 24

1.16 7 / Easy Requesters / Low Level Access to Easy Requesters

The
EasyRequest()
function calls a lower level Intuition function named

BuildEasyRequest() to construct the requester. An application can call
BuildEasyRequest() directly if it needs to use an easy requester but
requires custom handling of the events sent to the requester. Handling of
the events should be done using the SysReqHandler() function as described
below.

The BuildEasyRequest() functions take the same arguments as
EasyRequest()
:

struct Window *BuildEasyRequestArgs(struct Window *window,
struct EasyStruct *easyStruct,
unsigned long idcmp, APTR args);

struct Window *BuildEasyRequest(struct Window *window,
struct EasyStruct *easyStruct,
unsigned long idcmp, APTR arg1, ...);

To process input event information directly while an easy requester is
displayed, first call BuildEasyRequest() then call SysReqHandler()
periodically to process user input.

LONG SysReqHandler(struct Window *window, ULONG *idcmpPtr,
long waitInput);

This will provide standard handling of events but allow the application to
control the timing of checking the events. This handling includes checks
for left Amiga keys.

The FreeSysRequest() function must be called after an application has
finished with a requester (if it was created with BuildEasyRequest() call).

void FreeSysRequest(struct Window *window);

This function ends the requester and frees any resources allocated with
the BuildEasyRequest() call.

1.17 7 Intuition Requesters and Alerts / System Requesters

System requesters, such as DOS requests to "Insert volume foo in ←↩
any

drive," are created by the system using
EasyRequest()
. Unless otherwise

Libraries 21 / 24

specified, these requests appear on the default public screen.

System requests may appear at any time the system requires a resource that
is not available. The user may be in the middle of an action, the program
may be in any state.

Use the function ModifyIDCMP() to turn off all verify messages before
calling any function that might generate a system requester. Neglecting
to do so can cause situations where Intuition is waiting for the return of
a message which the application program is unable to receive because its
input is shut off while the requester is up. If Intuition finds itself in
a deadlock state, the verify function will timeout and be automatically
replied.

Redirecting System Requesters

1.18 7 / System Requesters / Redirecting System Requesters

A process can force the
system
requests which are caused by its actions to

appear on a custom screen by changing the pr_WindowPtr field of its
Process structure. This field may be set to three values: zero, negative
one or a valid pointer to the Window structure of an open window. If
pr_WindowPtr is set to zero, the request will appear on the default public
screen. If pr_WindowPtr is set to negative one, the system request will
never appear and the return code will be as if the user had selected the
rightmost button (negative response). If pr_WindowPtr is set to a valid
window pointer, then the request will appear on the same screen as the
window.

The original value of pr_WindowPtr should be cached and restored before
the window is closed.

1.19 7 Intuition Requesters and Alerts / Alerts

Alerts are for emergency messages. They can be displayed even ←↩
when the

system is in a very fragile state, such as when the system is low on
memory or when some of the system lists are corrupt.

Alerts can be displayed by either the system or an application. They are
reserved for urgent messages and dire warnings in situations that require
the user to take some immediate action. Alerts should only be used where
no other display type is possible. For instance, when the system has
crashed or is about to crash, an alert could be used to inform the user of
the cause.

The sudden display of an alert is a jarring experience for the user. The

Libraries 22 / 24

system stops dead while the alert is displayed and waits for the user
input. For this reason, alerts should only be used when there is no
recourse. If possible, use requesters or windows to display warning
messages in place of alerts.

System alerts are managed entirely by Intuition. The program does not
have to take any action to invoke or process these alerts. Alerts do not
have access to the display database or other information required to open
in specialized display modes. For this reason, alerts must appear in a
display mode available on all machines, namely high resolution,
non-interlaced. Alerts do not use overscan, so the display is limited to
640 by 200 on an NTSC machine, and 640 by 256 on a PAL machine.

The alert appears at the top of the video display. They are displayed the
full 640 pixels wide and as tall as needed, up to the limits described
above. Alerts are always displayed on a black background. The text of
the alert is displayed within a rectangular border. Both the text and the
border are displayed in a single color which is determined by the type of
the alert.

The user responds to an alert by pressing one of the mouse buttons. The
left mouse button signifies a positive response such as "Retry" or "OK".
The right mouse button signifies a negative response such as "Cancel" or
"Abort".

Alerts Save Up User Input.

The events produced by the user during an alert are not consumed by
the alert. These events are passed through to the program when the
alert returns. There could be a great deal of input queued and
waiting for processing by the application.

Types of Alerts

Creating Alerts
Display Alert Example

1.20 7 / Alerts / Types of Alerts

There are two levels of severity for alerts:

RECOVERY_ALERT
Recovery alerts are used in situations where the caller believes that
the system can resume operations after handling the error. The alert
is used as a warning, and is displayed in amber.

A recoverable alert displays the text of the alert and flashes the
border while waiting for the user to respond. It returns TRUE if the
user presses the left mouse button in response to the alert,
otherwise FALSE is returned.

DEADEND_ALERT
Deadend alerts are used in situations where the caller believes that

Libraries 23 / 24

no recovery from the error is possible, and further operation of the
system is impossible. This alert is used to inform the user of a
fatal problem and is displayed in red. Deadend alerts are the same
as recoverable alerts in every way except color.

1.21 7 / Alerts / Creating Alerts

The function DisplayAlert() creates and displays an alert message. ←↩
The

message will almost always be displayed regardless of the state of the
machine (with the exception of catastrophic hardware failures). If the
user presses one of the mouse buttons, the display is restored to its
original state, if possible. If a recoverable alert cannot be displayed
(because memory is low), DisplayAlert() will return FALSE, as if the user
had selected cancel. DisplayAlert() is also used by the system to display
the Amiga system alert messages.

BOOL DisplayAlert(unsigned long alertNumber, UBYTE *string,
unsigned long height);

The alertNumber argument is a LONG value, specifying whether this is a

RECOVERY_ALERT
or a

DEADEND_ALERT
(see the <intuition/intuition.h> include

file).

The string argument points to a string that is made up of one or more
substrings. Each substring contains the following:

* The first component is a 16 bit x-coordinate and an 8 bit
y-coordinate describing where to position the substring within the
alert display. The units are in pixels. The y-coordinate describes
the location of the text baseline.

* The second component is the text itself. The substring must be NULL
terminated (it ends with a zero byte).

* The last component is the continuation byte. If this byte is zero,
this is the last substring in the message. If this byte is non-zero,
there is another substring in this alert message.

The complete string must be terminated by two NULL characters; one as the
end of the last substring, and one as a NULL continuation byte, indicating
that this was the last substring. The height argument is the number of
display lines required for the alert.

1.22 7 Intuition Requesters and Alerts / Function Reference

Libraries 24 / 24

The following are brief descriptions of the Intuition functions ←↩
that

relate to the use of Intuition requesters and alerts. See the Amiga ROM
Kernel Reference Manual: Includes and Autodocs for details on each
function call.

Table 7-1: Functions for Intuition Requesters and Alerts
__
| |
| Function Description |
|==|
| Request() Open a requester in an open window. |
| EndRequest() Close an open requester in a window. |
InitRequester() Clear a requester structure before use.
EasyRequestArgs() Open a

system
requester. |

| EasyRequest() Alternate calling sequence for |
| EasyRequestArgs(). |
| BuildEasyRequestArgs() Low level function to open an EasyRequester. |
| BuildEasyRequest() Alternate calling sequence for |
| BuildEasyRequestArgs(). |
SysReqHandler() Event handler function for EasyRequestArgs().
AutoRequest() Open a pre-V36 system requester.
BuildSysRequest() Low level function to open an AutoRequest().
FreeSysRequest() Low level function to close an AutoRequest().
--
SetDMRequest() Set a

double menu
requester for an open |

| window. |
| ClearDMRequest() Clear a double menu requester from an open |
window.
DisplayAlert() Open an alert on the screen.
__

	Libraries
	Amiga® RKM Libraries: 7 Intuition Requesters and Alerts
	7 Intuition Requesters and Alerts / Types Of Requesters
	7 Intuition Requesters and Alerts / True Requesters
	7 / True Requesters / Creating Application Requesters
	7 / True Requesters / Requester I/O
	7 / True Requesters / Rendering Requesters
	7 / True Requesters / Requester Refresh Type
	7 / True Requesters / Requester Display Position
	7 / True Requesters / Gadgets in Requesters
	7 / True Requesters / Using a Requester to Block Window Input
	7 / True Requesters / Double Menu Requesters
	7 / True Requesters / IDCMP Requester Features
	7 Intuition Requesters and Alerts / Requester Structure
	7 Intuition Requesters and Alerts / Easy Requesters
	7 / Easy Requesters / The EasyStruct Structure
	7 / Easy Requesters / Low Level Access to Easy Requesters
	7 Intuition Requesters and Alerts / System Requesters
	7 / System Requesters / Redirecting System Requesters
	7 Intuition Requesters and Alerts / Alerts
	7 / Alerts / Types of Alerts
	7 / Alerts / Creating Alerts
	7 Intuition Requesters and Alerts / Function Reference

