
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 34 Keymap Library . 1

1.2 34 Keymap Library / Keymap Functions . 2

1.3 34 / Keymap Functions / Asking For the Default Keymap . 3

1.4 34 / Keymap Functions / Setting the Default Keymap . 4

1.5 34 / Keymap Functions / Accessing the Keymap For the Current Console . 4

1.6 34 / Keymap Functions / Mapping Key Codes To ANSI Strings . 5

1.7 34 / Keymap Functions / Mapping ANSI Strings To Key Codes . 6

1.8 34 / Keymap Functions / Details Of the Keymap Structure . 6

1.9 34 / / Details Of the Keymap Structure / LoKeyMap and HighKeyMap . 7

1.10 34 / / Details Of Keymap Structure / LoKeyMapTypes and HiKeyMapTypes . 8

1.11 34 / / Details Of the Keymap Structure / More About Qualifiers . 9

1.12 34 / / Details Of the Keymap Structure / String Output Keys . 10

1.13 34 / / Details Of the Keymap Structure / Capsable Bit Tables . 11

1.14 34 / / Details Of the Keymap Structure / Repeatable Bit Tables . 12

1.15 34 / Keymap Functions / Key Map Standards . 12

1.16 34 / Keymap Functions / Dead-Class Keys . 13

1.17 34 / Keymap Functions / Double-Dead Keys . 16

1.18 34 Keymap Library / Keyboard Layout . 18

1.19 34 Keymap Library / Function Reference . 22

Libraries 1 / 22

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 34 Keymap Library

Amiga computers are sold internationally with a variety of local ←↩
keyboards

which match the standards of particular countries. All Amigas have
keyboards which are physically similar, and keys which output the same
low-level raw key code for any particular physical key. However, in
different countries, the keycaps of the keys may contain different letters
or symbols. Since the physical position of a key determines the raw key
code that it generates, raw key codes are not internationally compatible.
For instance, on the German keyboard, the Y and Z keys are swapped when
compared to the USA keyboard. The second key on the fifth row will
generate the same raw key code on all Amiga keyboards, but should be
decoded as a Z on a US keyboard and as a Y on a German keyboard.

The Amiga uses the ECMA-94 Latin1 International 8-bit character set, and
can map raw key codes to any desired ANSI character value, string, or
escape sequence. This allows national keyboards to be supported by using
keymaps. A keymap is a file which describes what character or string is
tied to what key code. Generally, the user’s startup-sequence will set a
system default keymap that is correct for the user’s keyboard. The
console.device translates the raw key codes into the correct characters
based on the installed keymap. This includes the translation of special

deadkey
sequential key combinations to produce accented international

characters.

Programs which perform keyboard input using the console.device, CON:,
RAW:, or Intuition VANILLAKEY, will receive the correct ASCII values for a
user’s keycaps, based on their keymap. But some applications may require
custom keymaps, or may need to perform their own translation between raw
key codes and ANSI characters. In this chapter, the term ANSI refers to
standard 8-bit character definitions which include printable ASCII
characters, special characters, and escape sequences.

Until V37, keymapping commands were only available in the console.device.
Keymap.library is a new library in Release 2 (V37). It offers the some of
the keymap commands of the console.device, enabling applications to
inquire after the default keymap and map key codes to ANSI characters. It

Libraries 2 / 22

also provides the ability to map ANSI characters back into raw codes.
Unlike the console.device however, it can not be used to select a keymap
for only one application, i.e., one console window.

As a prelude to the following material, note that the Amiga keyboard
transmits raw key information to the computer in the form of a key
position and a transition. Raw key positions range from hexadecimal 00 to
7F. When a key is released, its raw key position, plus hexadecimal 80, is
transmitted.

Keymap Functions

Keyboard Layout

Function Reference

1.2 34 Keymap Library / Keymap Functions

Table 34-1: Keymap Library Functions
__
| | |
|

AskKeyMapDefault()
| Ask for a pointer to current default keymap |

|-----------------------|--|
|

MapANSI()
| Encode an ANSI string into key codes |

|-----------------------|--|
|

MapRawKey()
| Decode a raw key input event to an ANSI string |

|-----------------------|--|
|

SetKeyMapDefault()
| Set the current default keymap for the system |

|_______________________|__|

Table 34-2: Console Device Keymap Commands
__
| | |
CD_ASKKEYMAP	Ask for the current console’s keymap
CD_SETKEYMAP	Set the current console’s keymap
-----------------------	--
CD_ASKDEFAULTKEYMAP*	Set the current default keymap
-----------------------	--
CD_SETDEFAULTKEYMAP**	Ask for a pointer to current default keymap
-----------------------	--
* Obsolete - use	

AskKeyMapDefault()
|

Libraries 3 / 22

| ** Obsolete - use
SetKeyMapDefault()

|
|__|

All of these commands deal with a set of pointers to key translation
arrays, known as a

KeyMap
structure. The KeyMap structure is defined in

<devices/keymap.h> and is shown below.

struct KeyMap
{
UBYTE *km_LoKeyMapTypes;
ULONG *km_LoKeyMap;
UBYTE *km_LoCapsable;
UBYTE *km_LoRepeatable;
UBYTE *km_HiKeyMapTypes;
ULONG *km_HiKeyMap;
UBYTE *km_HiCapsable;
UBYTE *km_HiRepeatable;
};

The
KeyMap
structure contains pointers to arrays which define the ANSI

character or string that should be produced when a key or a combination of
keys are pressed. For example, a keymap might specify that the key with
raw value hex 20 should produce the ANSI character "a", and if the Shift
key is being held it should produce the character "A".

Asking For the Default Keymap

Setting the Default Keymap

Accessing the Keymap For the Current Console

Mapping Key Codes To ANSI Strings

Mapping ANSI Strings To Key Codes

Details Of the Keymap Structure

Key Map Standards

Dead-Class Keys

Double-Dead Keys

1.3 34 / Keymap Functions / Asking For the Default Keymap

Libraries 4 / 22

The AskKeyMapDefault() returns a pointer to the current default keymap.
To use the mapping functions in keymap.library it is normally not
necessary to call this function. They accept NULL as equivalent to ’use
default keymap’ and will call this function for you. You can use this
pointer for example to cache the system default in order to temporarily
change the keymap your applications uses, or find the keymap in the
keymap.resource list of loaded keymaps. You should never change the
system wide default keymap unless the user asks you to do so; since the
Amiga is a multitasking system, changing the keymap could interfere with
the behaviour of other applications.

1.4 34 / Keymap Functions / Setting the Default Keymap

The system default keymap can be set with the SetKeyMapDefault() ←↩
function.

This function takes a pointer to a loaded keymap. In general, this
function should never be used by an application unless the application is
a system Preferences editor, or an application that takes over the system.
Normal applications should instead attach a console.device unit to their
own Intuition window (see the Devices volume), and use the console.device
command

CD_SETKEYMAP
to set a keymap only for their own console.

When making a keymap the system default, first check whether the keymap
has been loaded previously by checking the keymap list of the
keymap.resource. If it has not been loaded already, it can be loaded from
devs:Keymaps, and added to the keymap list of keymap.resource. This will
ensure that other applications which may want the keymap will not have to
load a second instance. Once made the default, the keymap can never be
safely removed from memory, even after if it is no longer the default,
since other applications may still have and use a pointer to it.

1.5 34 / Keymap Functions / Accessing the Keymap For the Current Console

The function AskKeyMap() shown below does not return a pointer to ←↩
a table

of pointers to currently assigned key mapping. Instead, it copies the
current set of pointers to a user-designated area of memory. AskKeyMap()
returns a TRUE or FALSE value that says whether or not the function
succeeded.

The function SetKeyMap(), also shown below, copies the designated key map
data structure to the console device. Thus this routine is complementary
to AskKeymap() in that it can restore an original key mapping as well as
establish a new one.

Ask/SetKeyMap() functions.

These functions assume that you have already opened the console.device
and that request is a valid IOStdReq structure for the newly opened

Libraries 5 / 22

console. These functions are not part of the keymap.library, nor of
the console.device. These merely demonstrate

CD_ASKKEYMAP
and

CD_SETKEYMAP
which are console.device commands.

/* These functions require that you have created a port and an IO request,

* and have opened the console device as shown in the Console Device

* chapter of the Devices volume of this manual set.

*/
#include <devices/keymap.h>

BOOL AskKeyMap(struct IOStdReq *request, struct KeyMap *keymap)
{

request->io_Command = CD_ASKKEYMAP;
request->io_Length = sizeof(struct KeyMap);
request->io_Data = (APTR)keymap; /* where to put it */
DoIO(request);
if(request->io_Error) return(FALSE);
else return(TRUE); /* if no error, it worked. */

}

BOOL SetKeyMap(struct IOStdReq *request,struct KeyMap *keymap)
{

request->io_Command = CD_SETKEYMAP;
request->io_Length = sizeof(struct KeyMap);
request->io_Data = (APTR)keymap; /* where to get it */
DoIO(request);
if(request->io_Error) return(FALSE);
else return(TRUE); /* if no error, it worked. */

}

1.6 34 / Keymap Functions / Mapping Key Codes To ANSI Strings

MapRawKey() is converts raw key codes to ANSI characters based on ←↩
a

default or supplied keymap.

WORD MapRawKey(struct InputEvent *inputevent, UBYTE *buffer,
WORD bufferlength, struct Keymap *keymap);

MapRawKey() takes an IECLASS_RAWKEY inputevent, which may be chained, and
converts the key codes to ANSI characters which are placed in the
specified buffer. If the buffer would overflow, for example because a
longer string is attached to a key, -1 will be returned. If no error
occurred, MapRawKey() will return the number of bytes written in the
buffer. The keymap argument can be set to NULL if the default keymap is
to be used for translation, or can be a pointer to a specific

KeyMap
structure.

Libraries 6 / 22

The following example shows how to implement the MapRawKey() function.

maprawkey.c

1.7 34 / Keymap Functions / Mapping ANSI Strings To Key Codes

The MapANSI() function translates ANSI strings into raw key codes,
complete with qualifiers and (double) dead keys, based on a default or
supplied keymap.

LONG MapANSI(UBYTE *string, LONG stringlength, UBYTE *buffer,
LONG bufferlength, struct KeyMap *keymap);

The string argument is a pointer to an ANSI string, of length
stringlength. The buffer argument is a pointer to the memory block where
the translated key codes will be placed. The length of this buffer must
be indicated in WORDs since each translation will occupy one byte for the
key code and one for the qualifier. Since one ANSI character can be
translated to two dead keys and one key, the buffer must be at least 3
WORDs per character in the string to be translated. The keymap argument
can be set to NULL if the default keymap is to be used, or can be a
pointer to a

KeyMap
structure. Upon return, the function will indicate

how many key code/qualifier combinations are placed in the buffer or a
negative number in case an error occurred. If zero is returned, the
character could not be translated.

The following example shows the usage of MapANSI() and demonstrates how
returned key codes can be processed.

mapansi.c

1.8 34 / Keymap Functions / Details Of the Keymap Structure

A KeyMap structure contains pointers to arrays which determine the
translation from raw key codes to ANSI characters.

struct KeyMap
{
UBYTE *km_LoKeyMapTypes;
ULONG *km_LoKeyMap;
UBYTE *km_LoCapsable;
UBYTE *km_LoRepeatable;
UBYTE *km_HiKeyMapTypes;
ULONG *km_HiKeyMap;
UBYTE *km_HiCapsable;
UBYTE *km_HiRepeatable;
};

Libraries 7 / 22

LoKeyMap and HighKeyMap

String Output Keys

LoKeyMapTypes and HiKeyMapTypes

Capsable Bit Tables

More About Qualifiers

Repeatable Bit Tables

1.9 34 / / Details Of the Keymap Structure / LoKeyMap and HighKeyMap

The low key map provides translation of the key values from hex 00-3F; the
high key map provides translation of key values from hex 40-7F. Key values
from hex 68-7F are not used by the existing keyboards, but this may change
in the future. A raw key value (hex 00-7F) plus hex 80 is the release of
that key. If you need to check for raw key releases do it like this:

if (keyvalue & 0x80) { /* do key up processing */ }
else { /* do key down processing */ }

Raw output from the keyboard for the low key map does not include the
space bar, Tab, Alt, Ctrl, arrow keys, and several other keys.

Table 34-3: High Key Map Hex Values

Key Keycap Legend Key Keycap Legend
Number or Function Number or Function
------ ------------- ------ -------------

40 Space 50-59 Function keys F1-F10
41 Backspace 5A-5E Numeric Pad characters
42 Tab 5F Help
43 Enter 60 Left Shift
44 Return 61 Right Shift
45 Escape 62 Caps Lock
46 Delete 63 Control
4A Numeric Pad character 64 Left Alt
4C Cursor Up 65 Right Alt
4D Cursor Down 66 Left Amiga
4E Cursor Right 67 Right Amiga
4F Cursor Left

The keymap table for the low and high keymaps consists of 4-byte entries,
one per hex key code. These entries are interpreted in one of three
possible ways:

* As four separate bytes, specifying how the key is to be
interpreted when pressed alone, with one qualifier, with another

Libraries 8 / 22

qualifier, or with both qualifiers (where a qualifier is one of
three possible keys: Ctrl, Alt, or Shift).

* As a longword containing the address of a string descriptor,
where a string of characters is to be output when this key is
pressed. If a string is to be output, any combination of
qualifiers can affect the string that may be transmitted.

* As a longword containing the address of a dead-key descriptor,
where additional data describe the character to be output when
this key is pressed alone or with another dead key.

The keymap tables must be word aligned.

The keymap tables must begin aligned on a word boundary. Each
entry is four bytes long, thereby maintaining word alignment
throughout the table. This is necessary because some of the entries
may be longword addresses and must be aligned properly for the
68000.

1.10 34 / / Details Of Keymap Structure / LoKeyMapTypes and HiKeyMapTypes

The tables named
km_LoKeyMapTypes
and

km_HiKeyMapTypes
each contain one

byte per raw key code. Each byte defines the type of entry that is found
in the keymap table for that raw key code.

Possible key types are:

* Any of the qualifier groupings
noted below

*
KCF_STRING
+ any combination of

KCF_SHIFT
,
KCF_ALT
,
KCF_CONTROL

(or
KC_NOQUAL
) if the result of pressing the key is to be a

stream of bytes (and key-with-one-or-more-qualifiers is to be
one or more alternate streams of bytes).

Any key can be made to output up to eight unique byte streams if

KCF_STRING
is set in its keytype. The only limitation is that

the total length of all of the strings assigned to a key must be
within the "jump range" of a single byte increment. See the
"

Libraries 9 / 22

String Output Keys
" section below for more information.

*
KCF_DEAD
+ any combination of

KCF_SHIFT
,
KCF_ALT
,
KCF_CONTROL

(or
KC_NOQUAL
) if the key is a dead-class key and can thus

modify or be modified by another dead-class key. See the
"

Dead-Class Keys
" section below for more information.

The low keytype table covers the raw key codes from hex 00-3F and contains
one byte per key code. Therefore this table contains 64 (decimal) bytes.
The high keytype table covers the raw key codes from hex 40-7F and
contains 64 (decimal) bytes.

1.11 34 / / Details Of the Keymap Structure / More About Qualifiers

For keys such as the Return key or Esc key, the qualifiers specified in
the keytypes table (up to two) are the qualifiers used to establish the
response to the key. This is done as follows. In the keytypes table, the
values listed for the key types are those listed for the qualifiers in
<devices/keymap.h> and <devices/keymap.i>. Specifically, these qualifier
equates are:

KC_NOQUAL 0x00
KCF_SHIFT 0x01
KCF_ALT 0x02
KCF_CONTROL 0x04
KC_VANILLA 0x07
KCF_DOWNUP 0x08
KCF_STRING 0x40

As shown above, the qualifiers for the various types of keys occupy
specific bit positions in the key types control byte. As you may have
noticed, there are three possible qualifiers, but only a 4-byte space in
the table for each key. This does not allow space to describe what the
computer should output for all possible combinations of qualifiers. A
solution exists, however, for "vanilla" keys, such as the alphabetic keys.
Here is how that works.

Keys of type KC_VANILLA use the 4 bytes to represent the data output for
the key alone, Shifted key, Alt’ed key, and Shifted-and-Alt’ed key. Then
for the Ctrl-key-plus-vanilla-key, use the code for the key alone with
bits 6 and 5 set to 0.

Libraries 10 / 22

The Vanilla Qualifier Does Not Mean Plain.
--
The qualifier KC_VANILLA is equivalent to
KCF_SHIFT+KCF_ALT+KCF_CONTROL.

This table shows how to interpret the keymap for various combinations of
the qualifier bits:

Table 34-4: Keymap Qualifier Bits

Then data at this position in the keytable is
If Keytype is: output when the key is pressed along with:
-------------- ---
KC_NOQUAL - - - alone
KCF_SHIFT - - Shift alone
KCF_ALT - - Alt alone
KCF_CONTROL - - Ctrl alone
KCF_ALT+KCF_SHIFT Shift+Alt Alt Shift alone
KCF_CONTROL+KCF_ALT Ctrl+Alt Ctrl Alt alone
KCF_CONTROL+KCF_SHIFT Ctrl+Shift Ctrl Shift alone
KC_VANILLA Shift+Alt Alt Shift alone*

*Special case--Ctrl key, when pressed with one of the alphabet keys
and certain others, is to output key-alone value with the bits 6 and
5 set to zero.

1.12 34 / / Details Of the Keymap Structure / String Output Keys

When a key is to output a string, the keymap table contains the ←↩
address of

a string descriptor in place of a 4-byte mapping of a key. Here is a
partial table for a new high keymap table that contains only three entries
thus far. The first two are for the space bar and the backspace key; the
third is for the tab key, which is to output a string that says "[TAB]".
An alternate string, "[SHIFTED-TAB]", is also to be output when a shifted
TAB key is pressed.

newHiMapTypes:
DC.B KCF_ALT,KC_NOQUAL, ;key 41
DC.B KCF_STRING+KCF_SHIFT, ;key 42

... ;(more)
newHiMap:

DC.B 0,0,$A0,$20 ;key 40: space bar, and Alt-space bar
DC.B 0,0,0,$08 ;key 41: Back Space key only
DC.L newkey42 ;key 42: new string definition to output for Tab

... ;(more)
newkey42:

DC.B new42ue - new42us ;length of the unshifted string
DC.B new42us - newkey42 ;number of bytes from start of

;string descriptor to start of this string
DC.B new42se - new42ss ;length of the shifted string
DC.B new42ss - newkey42 ;number of bytes from start of

;string descriptor to start of this string

Libraries 11 / 22

new42us: DC.B ’[TAB]’
new42ue:
new42ss: DC.B ’[SHIFTED-TAB]’
new42se:

The new high map table points to the string descriptor at address
newkey42. The new high map types table says that there is one qualifier,
which means that there are two strings in the key string descriptor.

Each string in the descriptor takes two bytes in this part of the table:
the first byte is the length of the string, and the second byte is the
distance from the start of the descriptor to the start of the string.
Therefore, a single string (

KCF_STRING
+

KC_NOQUAL
) takes 2 bytes of

string descriptor. If there is one qualifier, 4 bytes of descriptor are
used. If there are two qualifiers, 8 bytes of descriptor are used. If
there are 3 qualifiers, 16 bytes of descriptor are used. All strings start
immediately following the string descriptor in that they are accessed as
single-byte offsets from the start of the descriptor itself. Therefore,
the distance from the start of the descriptor to the last string in the
set (the one that uses the entire set of specified qualifiers) must start
within 255 bytes of the descriptor address.

Because the length of the string is contained in a single byte, the length
of any single string must be 255 bytes or less while also meeting the
"reach" requirement. However, the console input buffer size limits the
string output from any individual key to 32 bytes maximum.

The length of a keymap containing string descriptors and strings is
variable and depends on the number and size of the strings that you
provide.

1.13 34 / / Details Of the Keymap Structure / Capsable Bit Tables

The vectors
km_LoCapsable
and

km_HiCapsable
each point to an array of 8

bytes that contain more information about the keytable entries.
Specifically, if the Caps Lock key has been pressed (the Caps Lock LED is
on) and if there is a bit on in that position in the capsable map, then
this key will be treated as though the Shift key is now currently pressed.
For example, in the default key mapping, the alphabetic keys are
"capsable" but the punctuation keys are not. This allows you to set the
Caps Lock key, just as on a normal typewriter, and get all capital
letters. However, unlike a normal typewriter, you need not go out of Caps
Lock to correctly type the punctuation symbols or numeric keys.

In the byte array, the bits that control this feature are numbered from
the lowest bit in the byte, and from the lowest memory byte address to the

Libraries 12 / 22

highest. For example, the bit representing capsable status for the key
that transmits raw code 00 is bit 0 in byte 0; for the key that transmits
raw code 08 it is bit 0 in byte 1, and so on.

There are 64 bits (8 bytes) in each of the two capsable tables.

1.14 34 / / Details Of the Keymap Structure / Repeatable Bit Tables

The vectors
km_LoRepeatable
and

km_HiRepeatable
each point to an array of

8 bytes that contain additional information about the keytable entries. A
bit for each key indicates whether or not the specified key should repeat
at the rate set by the Input Preferences program.

The bit positions correspond to those specified in the
capsable
bit table.

If there is a 1 in a specific position, the key can repeat. There are 64
bits (8 bytes) in each of the two repeatable tables.

1.15 34 / Keymap Functions / Key Map Standards

Users and programs depend on certain predictable behaviors from ←↩
all

keyboards and keymaps. With the exception of dead-class keys (see
"

Dead-Class
Keys" section), mapping of keys in the low key map should

follow these general rules:

* When pressed alone, keys should transmit the ASCII equivalent of
the unshifted letter or lower symbol on the keycap.

* When Shifted, keys should transmit the ASCII equivalent of the
shifted letter or upper symbol printed on the keycap.

* When Alt’ed, keys should generally transmit the same character
(or act as the same

deadkey
) as the Alt’ed key in the usa1

keymap.

* When pressed with CTRL alone, alphabetic keys should generally
transmit their unshifted value but with bits 5 and 6 cleared.
This allows keyboard typing of "control characters." For
example, the C key (normally value $63) should transmit value
$03 (Ctrl-C) when Ctrl and C are pressed together.

Libraries 13 / 22

The keys in the high key map (keys with raw key values $40 and higher) are
generally non-alphanumeric keys such as those used for editing (backspace,
delete, cursor keys, etc.), and special Amiga keys such as the function
and help keys. Keymaps should translate these keys to the same values or
strings as those shown in

table 34-6
, ROM Default Key Mapping.

In addition to their normal unshifted and shifted values, the following
translations are standard for particular qualified high keymap keys:

Generates If Used with Qualifier,
Key This Value Generates This Value
--- ---------- -----------------------
Space $20 $A0 with qualifier

KCF_ALT
Return $0D $0A with qualifier

KCF_CONTROL
Esc $1B $9B with qualifier

KCF_ALT

1.16 34 / Keymap Functions / Dead-Class Keys

All of the national keymaps, including USA, contain dead-class ←↩
keys. This

term refers to keys that either modify or can themselves be modified by
other dead-class keys. There are two types of dead-class keys: dead and
deadable. A dead key is one which can modify certain keys pressed
immediately following. For example, on the German keyboard there is a
dead key marked with the grave accent (‘). The dead key produces no
console output, but when followed by (for instance) the A key, the
combination will produce the a-grave (à) character (National Character
Code $E0). On the U.S. keyboard, Alt-G is the deadkey used to add the
grave accent (‘) to the next appropriate character typed. A deadable key
is one that can be prefixed by a dead key. The A key in the previous
example is a deadable key. Thus, a dead key can only affect the output of
a deadable key.

For any key that is to have a dead-class function, whether dead or
deadable, the qualifier KCF_DEAD flag must be included in the entry for
the key in the KeyMapTypes table. The KCF_DEAD type may also be used in
conjunction with the other qualifiers. Furthermore, the key’s keymap
table entry must contain the longword address of the key’s dead-key
descriptor data area in place of the usual 4 ASCII character mapping.

Below is an excerpt from the Amiga 1000 German key map which is referred
to in the following discussion.

KMLowMapType:
DC.B KCF_DEAD+KC_VANILLA ; aA (Key 20)

... ; (more...)
DC.B KCF_DEAD+KC_VANILLA ; hH (Key 25)

... ; (more...)

Libraries 14 / 22

KMLowMap:
DC.L key20 ; a, A, ae, AE

... ; (more...)
DC.L key25 ; h, H, dead ^

... ; (more...)
;------ possible dead keys
key25:

DC.B 0,’h’,0,’H’ ; h, H
DC.B DPF_DEAD,3,DPF_DEAD,3 ; dead ^, dead ^
DC.B 0,$08,0,$08,0,$88,0,$88 ; control translation

... ; (more...)
;------ deadable keys (modified by dead keys)
key20: ; a, A, ae, AE

DC.B DPF_MOD,key20u-key20 ; deadable flag, number of
; bytes from start of key20
; descriptor to start of un-
; shifted data

DC.B DPF_MOD,key20s-key20 ; deadable flag, number of
; bytes from start of key20
; descriptor to start of shift-
; ed data

DC.B 0,$E6,0,$C6 ; null flags followed by rest
DC.B 0,$01,0,$01,0,$81,0,$81 ; of values (ALT, CTRL...)

key20u:
DC.B ’a’,$E1,$E0,$E2,$E3,$E4 ; ’a’ alone and characters to

; output when key alone is
; prefixed by a dead key

DC.B $E1,$E1,$E2,$E1,$E1,$E1 ; most recent is ’
DC.B $E0,$E2,$E0,$E0,$E0,$E0 ; most recent is ‘

key20s:
DC.B ’A’,$C1,$C0,$C2,$C3,$C4 ; SHIFTed ’a’ and characters to

; output when SHIFTed key is
; prefixed by a dead key

DC.B $C1,$C1,$C2,$C1,$C1,$C1 ; most recent is ’
DC.B $C0,$C2,$C0,$C0,$C0,$C0 ; most recent is ‘

In the example, key 25 (the H key) is a dead key and key 20 (the A key) is
a deadable key. Both keys use the addresses of their descriptor data
areas as entries in the

LoKeyMap
table. The

LoKeyMapTypes
table says that

there are four qualifiers for both: the requisite KCF_DEAD, as well as

KCF_SHIFT
,
KCF_ALT
, and
KCF_CONTROL
. The number of qualifiers determine

length and arrangement of the descriptor data areas for each key. The
next table shows how to interpret the KeyMapTypes for various combinations
of the qualifier bits. For each possible position a pair of bytes is
needed. The first byte in each pair tells how to interpret the second
byte (more about this below).

Libraries 15 / 22

Table 34-5: Dead Key Qualifier Bits

	Then the pair of bytes in this position							
	in the dead-class key descriptor data is							
If type is:	output when the key is pressed along with:							
_________________	___							
NOQUAL	alone	-	-	-	-	-	-	-
A	alone	A	-	-	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
C	alone	C	-	-	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
S	alone	S	-	-	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
A+C	alone	A	C	A+C	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
A+S	alone	S	A	A+S	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
C+S	alone	S	C	C+S	-	-	-	-
-----------------	-------	---	---	-----	---	-----	-----	-------
S+A+C (VANILLA)	alone	S	A	S+A	C	C+S	C+A	C+S+A
_________________	_______	___	___	_____	___	_____	_____	_______
The abbreviations A, C, S stand for								

KCF_ALT
,
KCF_CONTROL
, and |

|
KCF_SHIFT
, respectively. Also note that the ordering is |

| reversed from that in the normal
KeyMap
table. |

|___|

Because keys 20 and 25 each use three qualifier bits (not including
KCF_DEAD), according to the table there must be 8 pairs of data, arranged
as shown. Had only

KCF_ALT
been set, for instance, (not including

KCF_DEAD), just two pairs would have been needed.

As mentioned earlier, the first byte of each data pair in the descriptor
data area specifies how to interpret the second byte. There are three
possible values: 0, DPF_DEAD and DPF_MOD. In the Amiga 1000 German keymap
listed above, DPF_DEAD appears in the data for key 25, while DPF_MOD is
used for key 20. It is the use of these flags that determines whether a
dead-class key has dead or deadable function. A value of zero causes the
unrestricted output of the following byte.

If the flag byte is DPF_DEAD, then that particular key combination
(determined by the placement of the pair of bytes in the data table) is

Libraries 16 / 22

dead and will modify the output of the next key pressed (if deadable). How
it modifies is controlled by the second byte of the pair which is used as
an index into part(s) of the data area for ALL the deadable (DPF_MOD set)
keys.

Before going further, an understanding of the structure of a descriptor
data area wherein DPF_MOD is set for one (or more) of its members is
necessary. Referring to the example, we see that DPF_MOD is set for the
first and second pairs of bytes. According to its

LoKeyMapTypes
entry,

and using table 34-5 (Dead Key Qualifier Bits) as a guide, these pairs
represent the alone and SHIFTed values for the key. When DPF_MOD is set,
the byte immediately following the flag must be the offset from the start
of the key’s descriptor data area to the start of a table of bytes
describing the characters to output when this key combination is preceded
by any dead keys. This is where the index mentioned above comes in. The
value of the index from a prefixing dead key is used to determine which of
the bytes from the deadable keys special table to output. The byte in the
index+1 position is sent out. (The very first byte is the value to output
if the key was not prefixed by a dead key.) Thus, if Alt-H is pressed
(dead) and then Shift-A, an ‘a’ with a circumflex (^) accent will be
output. This is because:

* The byte pair for the ALT position of the H key (key 25) is
DPF_DEAD,3 so the index is 3.

* The byte pair for the SHIFT position of the A key (key 20) is
DPF_MOD, key20s-key20, so we refer to the table-of-bytes at
key20s.

* The third+1 byte of the table-of-bytes is $C2, an ‘a’ character.

A Note About Table Size.

The number of bytes in the table-of-bytes for all deadable keys
must be equal to the highest index value of all dead keys plus 1.

1.17 34 / Keymap Functions / Double-Dead Keys

Double-dead keys are an extension of the
dead-class keys
explained above.

Unlike normal dead keys wherein one dead key of type DPF_DEAD can modify a
second of type DPF_MOD, double-dead keys employ two consecutive keys of
type DPF_DEAD to together modify a third of type DPF_MOD.

For example, the key on the German keyboard labeled with single quotes (
‘’) is a double-dead key. When this key is pressed alone and then
pressed again shifted, there is no output. But when followed by an
appropriate third key, for example the A key, the three keypresses combine
to produce an ‘a’ with a circumflex (^) accent (character code $E2). Thus
the double-dead pair qualify the output of the A key.

Libraries 17 / 22

The system always keeps the last two down key codes for possible further
translation. If they are both of type DPF_DEAD and the key immediately
following is DPF_MOD then the two are used to form an index into the
(third) key’s translation table as follows:

In addition to the index found after the DPF_DEAD qualifier in a normal
dead key, a second factor is included in the high nibble of double-dead
keys (it is shifted into place with DP_2DFACSHIFT). Its value equals the
total number of dead key types + 1 in the keymap. This second index also
serves as an identifying flag to the system that two dead keys can be
significant.

When a key of type DPF_MOD is pressed, the system checks the two key codes
which preceded the current one. If they were both DPF_DEAD then the most
recent of the two is checked for the double-dead index/flag. If it is
found then a new index is formed by multiplying the value in lower nibble
with that in the upper. Then, the lower nibble of the least recent
DPF_DEAD key is added in to form the final offset.

Finally, this last value is used as an index into the translation table of
the current, DPF_MOD, key.

The translation table of all deadable (DPF_MOD) keys has [number of dead
key types + 1] * [number of double dead key types + 1] entries, arranged
in [number of double dead key types + 1] rows of [number of dead key types
+ 1] entries. This is because as indices are assigned for dead keys in the
keymap, those that are double dead keys are assigned the lower numbers.

Following is a code fragment from the German (d) keymap source:

key0C:
DC.B DPF_DEAD,1+(6<<DP_2DFACSHIFT) ; dead ’
DC.B DPF_DEAD,2+(6<<DP_2DFACSHIFT) ; dead ‘
DC.B 0,’=’,0,’+’ ; =, +

key20: ; a, A, ae, AE
DC.B DPF_MOD,key20u-key20,DPF_MOD,key20s-key20
DC.B 0,$E6,0,$C6
DC.B 0,$01,0,$01,0,$81,0,$81 ; control translation

key20u:
DC.B ’a’,$E1,$E0,$E2,$E3,$E4
DC.B $E1,$E1,$E2,$E1,$E1,$E1 ; most recent is ’
DC.B $E0,$E2,$E0,$E0,$E0,$E0 ; most recent is ‘

key20s:
DC.B ’A’,$C1,$C0,$C2,$C3,$C4
DC.B $C1,$C1,$C2,$C1,$C1,$C1 ; most recent is ’
DC.B $C0,$C2,$C0,$C0,$C0,$C0 ; most recent is ‘

Raw key0C, the German single quotes (‘’) key, is a double dead key.
Pressing this key alone, then again while the shift key is down will
produce no output but will form a double-dead qualifier. The output of
key20 (A), a deadable key, will consequently be modified, producing an "a"
with a circumflex (^) accent. The mechanics are as follows:

* When key0C is pressed alone the DPF_DEAD of the first byte pair in
the key’s table indicates that the key as dead. The second byte is
then held by the system.

Libraries 18 / 22

* Next, when key0C is pressed again, this time with the Shift key down,
the DPF_DEAD of the second byte pair (recall that the second pair is
used because of the SHIFT qualifier) again indicates the key is a
dead key. The second byte of this pair is also held by the system.

* Finally, when the A key is pressed the system recalls the latter of
the two bytes it has saved. The upper nibble, $6, is multiplied by
the lower nibble, $2. The result, $0C, is then added to the lower
nibble of the earlier of the two saved bytes, $1. This new value,
$0D, is used as an index into the (unshifted) translation table of
key20. The character at position $0D is character $E2, an ‘a’ with a
circumflex (^) accent.

Note About Double Dead Keys.

If only one double-dead key is pressed before a deadable key then the
output is the same as if the double-dead were a normal dead key. If
shifted key0C is pressed on the German keyboard and then immediately
followed by key20, the output produced is character $E0, ‘ à ’. As
before, the upper nibble is multiplied with the lower, resulting in
$0C. But because there was no second dead-key, this product is used
as the final index.

1.18 34 Keymap Library / Keyboard Layout

The keys with key codes $2B and $30 in the following keyboard ←↩
diagrams are

keys which are present on some national Amiga keyboards.

Figure 34-1: Amiga 1000 Keyboard Showing Key Codes in Hex

Figure 34-2: Amiga 500/2000/3000 Keyboard Showing Key Codes in Hex

The default values given above correspond to the values the console device
will return when these keys are pressed with the keycaps as shipped with
the standard American keyboard.

Table 34-6: ROM Default (USA0) and USA1 Console Key Mapping

Raw Unshifted Shifted
Key Keycap Default Default

Number Legend Value Value
------ ------ ----- -----

00 ‘ ~ ‘ (Accent grave) ~ (tilde)
01 1 ! 1 !
02 2 @ 2 @
03 3 # 3 #
04 4 $ 4 $
05 5 % 5 %
06 6 ^ 6 ^
07 7 & 7 &
08 8 * 8 *

Libraries 19 / 22

09 9 (9 (
0A 0) 0)
0B - _ - (Hyphen) _ (Underscore)
0C = + = +
0D | |
0E (undefined)
0F 0 0 0 (Numeric pad)
10 Q q Q
11 W w W
12 E e E
13 R r R
14 T t T
15 Y y Y
16 U u U
17 I i I
18 O o O
19 P p P
1A [{ [{
1B] }] }
1C (undefined)
1D 1 1 1 (Numeric pad)
1E 2 2 2 (Numeric pad)
1F 3 3 3 (Numeric pad)
20 A a A
21 S s S
22 D d D
23 F f F
24 G g G
25 H h H
26 J j J
27 K k K
28 L l L
29 ; : ; :
2A ’ " ’ (single quote) "
2B (not on most

US keyboards)
2C (undefined)
2D 4 4 4 (Numeric pad)
2E 5 5 5 (Numeric pad)
2F 6 6 6 (Numeric pad)
30 (not on most

US keyboards)
31 Z z Z
32 X x X
33 C c C
34 V v V
35 B b B
36 N n N
37 M m M
38 , < , (comma) <
39 . > . (period) >
3A / ? / ?
3B (undefined)
3C . . . (Numeric pad)
3D 7 7 7 (Numeric pad)
3E 8 8 8 (Numeric pad)
3F 9 9 9 (Numeric pad)

Libraries 20 / 22

40 (Space bar) 20 20
41 Back Space 08 08
42 Tab 09 09
43 Enter 0D 0D (Numeric pad)
44 Return 0D 0D
45 Esc 1B 1B
46 Del 7F 7F
47 (undefined)
48 (undefined)
49 (undefined)
4A - - - (Numeric Pad)
4B (undefined)
4C Up arrow <CSI>A <CSI>T
4D Down arrow <CSI>B <CSI>S
4E Forward arrow <CSI>C <CSI> A (note blank space

after <CSI>)
4F Backward arrow <CSI>D <CSI> @ (note blank space

after <CSI>)
50 F1 <CSI>0~ <CSI>10~
51 F2 <CSI>1~ <CSI>11~
52 F3 <CSI>2~ <CSI>12~
53 F4 <CSI>3~ <CSI>13~
54 F5 <CSI>4~ <CSI>14~
55 F6 <CSI>5~ <CSI>15~
56 F7 <CSI>6~ <CSI>16~
57 F8 <CSI>7~ <CSI>17~
58 F9 <CSI>8~ <CSI>18~
59 F10 <CSI>9~ <CSI>19~
5A ((((usa1 Numeric pad)
5B))) (usa1 Numeric pad)
5C / / / (usa1 Numeric pad)
5D * * * (usa1 Numeric pad)
5E + + + (usa1 Numeric pad)
5F HELP <CSI>?~ <CSI>?~

Raw Function
Key or Keycap

Number Legend
------ ---------

60 Shift (left of space bar)
61 Shift (right of space bar)
62 Caps Lock
63 Ctrl
64 (Left) Alt
65 (Right) Alt
66 Amiga (left of space bar) Left Amiga
67 Amiga (right of space bar) Right Amiga
68 Left mouse button (not converted) Inputs are only for the
69 Right mouse button (not converted) mouse connected to
6A Middle mouse button (not converted) Intuition, (currently
6B (undefined) gameport one).
6C (undefined)
6D (undefined)
6E (undefined)
6F (undefined)
70-7F (undefined)

Libraries 21 / 22

80-F8 Up transition (release or unpress key of one
of the above keys) (80 for 00, F8 for 7F)

F9 Last key code was bad
(was sent in order to resynchronize)

FA Keyboard buffer overflow
FB (undefined, reserved for

keyboard processor catastrophe)
FC Keyboard selftest failed
FD Power-up key stream start.

Keys pressed or stuck at power-up
will be sent between FD and FE.

FE Power-up key stream end
FF (undefined, reserved)
FF Mouse event, movement only,

no button change (not converted)

Notes about the preceding table:

1) "<CSI>" is the Control Sequence Introducer, value hex 9B.

2) "(undefined)" indicates that the current keyboard design should not
generate this number. If you are using

SetKeyMap()
to change the

key map, the entries for these numbers must still be included.

3) "(not converted)" refers to mouse button events. You must use the
sequence "<CSI>2{" to inform the console driver that you wish to
receive mouse events; otherwise these will not be transmitted.

4) "(RESERVED)" indicates that these key codes have been reserved for
national keyboards. The $2B code key will be between the
double-quote (") and Return keys. The $30 code key will be between
the Shift and Z keys.

+---+
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f

+---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0000 00																	
0001 10																	
0010 20	SP	!	"	#	$	%	&	’	()	*	+	,	-	.	/	
0011 30	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?	
0100 40	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	
0101 50	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	_	
0110 60	‘	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	
0111 70	p	q	r	s	t	u	v	w	x	y	z	{			}	~	
1000 80																	
1001 90																	
1010 a0	NBSP ¡	¢	£	¤	\yen	¦	§	¨	©	ª	«	\ensuremath{\lnot ←↩					

} |SHY| ® | ¯ |

Libraries 22 / 22

| 1011 b0 | \textdegree{} | \ensuremath{\pm} | 2 | 3 | ´ | $\mathrm{\mu}$ | ←↩
¶ | · | ¸ | 1 | º | » | ¼ | ½ | ¾ | ¿ |

1100 c0	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
1101 d0	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	\times	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
1110 e0	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
1111 f0	ð	ñ	ò	ó	ô	õ	ö	\div	ø	ù	ú	û	ü	ý	þ	ÿ
+---+

Figure 34-3: ECMA-94 Latin1 International 8-Bit Character Set

1.19 34 Keymap Library / Function Reference

The following chart gives a brief desription of the functions covered in
this chapter. All of these functions require Release 2 or a later version
of the Amiga operating system. See the Amiga ROM Kernel Reference Manual:
Includes and Autodocs for details on each function call.

Table 34-7: Keymap Library Functions
__
| |
| Function Description |
|==|
| AskKeyMapDefault() Get a pointer to the current system default |
| keymap |
| MapANSI() Convert ANSII string to raw key events |
| MapRawKey() Convert raw key events to ANSII |
| SetKeyMapDefault() Set the system default keymap |
|__|

	Libraries
	Amiga® RKM Libraries: 34 Keymap Library
	34 Keymap Library / Keymap Functions
	34 / Keymap Functions / Asking For the Default Keymap
	34 / Keymap Functions / Setting the Default Keymap
	34 / Keymap Functions / Accessing the Keymap For the Current Console
	34 / Keymap Functions / Mapping Key Codes To ANSI Strings
	34 / Keymap Functions / Mapping ANSI Strings To Key Codes
	34 / Keymap Functions / Details Of the Keymap Structure
	34 / / Details Of the Keymap Structure / LoKeyMap and HighKeyMap
	34 / / Details Of Keymap Structure / LoKeyMapTypes and HiKeyMapTypes
	34 / / Details Of the Keymap Structure / More About Qualifiers
	34 / / Details Of the Keymap Structure / String Output Keys
	34 / / Details Of the Keymap Structure / Capsable Bit Tables
	34 / / Details Of the Keymap Structure / Repeatable Bit Tables
	34 / Keymap Functions / Key Map Standards
	34 / Keymap Functions / Dead-Class Keys
	34 / Keymap Functions / Double-Dead Keys
	34 Keymap Library / Keyboard Layout
	34 Keymap Library / Function Reference

