
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 23 Exec Lists and Queues . 1

1.2 23 Exec Lists and Queues / List Structure . 1

1.3 23 / List Structure / Node Structure Definition . 2

1.4 23 / List Structure / Node Initialization . 3

1.5 23 / List Structure / List Header Structure Definition . 4

1.6 23 / List Structure / Header Initialization . 6

1.7 23 Exec Lists and Queues / List Functions . 7

1.8 23 / List Functions / Insertion and Removal . 8

1.9 23 / List Functions / Special Case Insertion . 9

1.10 23 / List Functions / Special Case Removal . 9

1.11 23 / List Functions / MinList/MinNode Operations . 10

1.12 23 / List Functions / Prioritized Insertion . 10

1.13 23 / List Functions / Searching by Name . 11

1.14 23 / List Functions / More on the Use of Named Lists . 11

1.15 23 / List Functions / List Macros for Assembly Language Programmers . 12

1.16 23 / List Functions / Empty Lists . 12

1.17 23 / List Functions / Scanning a List . 13

1.18 23 / List Functions / Important Note About Shared Lists . 14

1.19 23 Exec Lists and Queues / Function Reference . 14

Libraries 1 / 15

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 23 Exec Lists and Queues

The Amiga system software operates in a dynamic environment of ←↩
data

structures. An early design goal of Exec was to keep the system flexible
and open-ended by eliminating artificial boundaries on the number of
system structures used. Rather than using static system tables, Exec uses
dynamically created structures that are added and removed as needed.
These structures can be put in an unordered list, or in an ordered list
known as a queue. A list can be empty, but never full. This concept is
central to the design of Exec. Understanding lists and queues is
important to understanding not only Exec itself, but also the mechanism
behind the Amiga’s message and port based interprocess communication.

Exec uses lists to maintain its internal database of system structures.
Tasks, interrupts, libraries, devices, messages, I/O requests, and all
other Exec data structures are supported and serviced through the
consistent application of Exec’s list mechanism. Lists have a common data
structure, and a common set of functions is used for manipulating them.
Because all of these structures are treated in a similar manner, only a
small number of list handling functions need be supported by Exec.

List Structure

List Functions

Function Reference

1.2 23 Exec Lists and Queues / List Structure

A list is composed of a header and a doubly-linked chain of ←↩
elements

called nodes. The header contains memory pointers to the first and last
nodes of the linked chain. The address of the header is used as the
handle to the entire list. To manipulate a list, you must provide the

Libraries 2 / 15

address of its header.

_\| |
/ /| First Node |

/ /|_______________|
/ / | /|\

_______________ / / | |
| |/ / ____\|/__|_____
Head Node	/_/	
_______________	\	Second Node
	/_	_______________
Tail Node	\ \	/
_______________	\ \	

\ \ ____\|/__|_____
\ \ | |
\ \| Third Node |
_\|_______________|

/

Figure 23-1: Simplified Overview of an Exec List

Nodes may be scattered anywhere in memory. Each node contains two
pointers; a successor and a predecessor. As illustrated above, a list
header contains two placeholder nodes that contain no data. In an empty
list, the head and tail nodes point to each other.

Node Structure Definition

List Header Structure Definition

Node Initialization

Header Initialization

1.3 23 / List Structure / Node Structure Definition

A Node structure is divided into three parts: linkage, information ←↩
, and

content. The linkage part contains memory pointers to the node’s
successor and predecessor nodes. The information part contains the node
type, the priority, and a name pointer. The content part stores the
actual data structure of interest. For nodes that require linkage only, a
small MinNode structure is used.

struct MinNode
{

struct MinNode *mln_Succ;
struct MinNode *mln_Pred;

};

ln_Succ
points to the next node in the list (successor).

Libraries 3 / 15

ln_Pred
points to the previous node in the list (predecessor).

When a type, priority, or name is required, a full-featured Node structure
is used.

struct Node
{

struct Node *ln_Succ;
struct Node *ln_Pred;
UBYTE ln_Type;
BYTE ln_Pri;
char *ln_Name;

};

ln_Type
defines the type of the node (see <exec/nodes.h> for a list).

ln_Pri
specifies the priority of the node (+127 (highest) to -128
(lowest)).

ln_Name
points to a printable name for the node (a NULL-terminated
string).

The Node and MinNode structures are often incorporated into larger
structures, so groups of the larger structures can easily be linked
together. For example, the Exec Interrupt structure is defined as
follows:

struct Interrupt
{

struct Node is_Node;
APTR is_Data;
VOID (*is_Code)();

};

Here the is_Data and is_Code fields represent the useful content of the
node. Because the Interrupt structure begins with a Node structure, it
may be passed to any of the Exec

List
manipulation functions.

1.4 23 / List Structure / Node Initialization

Before linking a node into a list, certain fields may need ←↩
initialization.

Initialization consists of setting the
ln_Type
,
ln_Pri
, and

Libraries 4 / 15

ln_Name
fields

to their appropriate values (A MinNode structure does not have these
fields). The successor and predecessor fields do not require
initialization.

The
ln_Type
field contains the data type of the node. This indicates to

Exec (and other subsystems) the type, and hence the structure, of the
content portion of the node (the extra data after the

Node
structure).

The standard system types are defined in the <exec/nodes.h> include file.
Some examples of standard system types are NT_TASK, NT_INTERRUPT,
NT_DEVICE, and NT_MSGPORT.

The
ln_Pri
field uses a signed numerical value ranging from +127 to -128

to indicate the priority of the node. Higher-priority nodes have greater
values; for example, 127 is the highest priority, zero is nominal
priority, and -128 is the lowest priority. Some Exec lists are kept
sorted by priority order. In such lists, the highest-priority node is at
the head of the list, and the lowest-priority node is at the tail of the
list. Most Exec node types do not use a priority. In such cases,
initialize the priority field to zero.

The
ln_Name
field is a pointer to a NULL-terminated string of characters.

Node names are used to find and identify list-bound objects (like public
message ports and libraries), and to bind symbolic names to actual nodes.
Names are also useful for debugging purposes, so it is a good idea to
provide every node with a name. Take care to provide a valid name
pointer; Exec does not copy name strings.

This fragment initializes a
Node
called myInt, an instance of the

Interrupt
data structure introduced above.

struct Interrupt interrupt;

interrupt.is_Node.ln_Type = NT_INTERRUPT;
interrupt.is_Node.ln_Pri = -10;
interrupt.is_Node.ln_Name = "sample.interrupt";

1.5 23 / List Structure / List Header Structure Definition

As mentioned earlier, a list header maintains memory pointers to ←↩
the first

Libraries 5 / 15

and last nodes of the linked chain of nodes. It also serves as a handle
for referencing the entire list. The minimum list header ("mlh_") and the
full-featured list header ("lh_") are generally interchangeable.

The structure MinList defines a minimum list header.

struct MinList
{

struct MinNode *mlh_Head;
struct MinNode *mlh_Tail;
struct MinNode *mlh_TailPred;

};

mlh_Head
points to the first node in the list.

mlh_Tail
is always NULL.

mlh_TailPred
points to the last node in the list.

In a few limited cases a full-featured List structure will be required:

struct List
{

struct Node *lh_Head;
struct Node *lh_Tail;
struct Node *lh_TailPred;
UBYTE lh_Type;
UBYTE lh_Pad;

};

lh_Type
defines the type of nodes within the list (see <exec/nodes.h>).

lh_pad
is a structure alignment byte.

One subtlety here must be explained further. The list header is
constructed in an efficient, but confusing manner. Think of the header as
a structure containing the head and tail nodes for the list. The head and
tail nodes are placeholders, and never carry data. The head and tail
portions of the header actually overlap in memory. lh_Head and lh_Tail
form the head node; lh_Tail and lh_TailPred form the tail node. This
makes it easy to find the start or end of the list, and eliminates any
special cases for insertion or removal.

___________ ___________
ln_Succ		lh_Head	
___________	___________	___________	
ln_Pred=0	ln_Succ=0		lh_Tail=0
___________	___________	____\	___________

| | / | |
| ln_Pred | |lh_TailPred|

Libraries 6 / 15

|___________| |___________|

Figure 23-2: List Header Overlap

The lh_Head and lh_Tail fields of the list header act like the
ln_Succ
and

lh_Pred fields of a node. The lh_Tail field is set permanently to NULL,
indicating that the head node is indeed the first on the list -- that is,
it has no predecessors. See the figure above.

Likewise, the lh_Tail and lh_TailPred fields of the list header act like
the

ln_Succ
and lh_Pred fields of a node. Here the NULL lh_Tail indicates

that the tail node is indeed the last on the list -- that is, it has no
successors. See the figure above.

1.6 23 / List Structure / Header Initialization

List headers must be properly initialized before use. It is not ←↩
adequate

to initialize the entire header to zero. The head and tail entries must
have specific values. The header must be initialized as follows:

1. Set the
lh_Head
field to the address of

lh_Tail
.

2. Clear the
lh_Tail
field.

3. Set the
lh_TailPred
field to the address of

lh_Head
.

4. Set
lh_Type
to the same data type as the nodes to be kept the list.

(Unless you are using a
MinList
).

Figure 23-3: Initializing a List Header Structure

Libraries 7 / 15

| ___________ |
| | |__|
| | lh_Head |/_
| |___________|\ |
|_\| | |

/| lh_Tail=0 | |

lh_TailPred	__
_ _ _ _ _ _	

/* C example - equivalent to NewList() */ | | |
struct List list; |_ _ _|_ _ _|

list.lh_Head = (struct Node *) &list.lh_Tail;
list.lh_Tail = 0;
list.lh_TailPred = (struct Node*) &list.lh_Head;
/* Now set lh_Type, if needed */

;Assembly example - equivalent to NEWLIST
MOVE.L A0,LH_HEAD(A0) ;A0 points to the list header
ADDQ.L #4,LH_HEAD(A0) ;Bump LH_HEAD(A0) to address of LH_TAIL
CLR.L LH_TAIL(A0)
MOVE.L A0,LH_TAILPRED(A0)

;Now set LH_TYPE, if needed.

The sequence of assembly instructions in the figure above is equivalent to
the macro NEWLIST, contained in the include file <exec/lists.i>. Since
the

MinList
structure is the same as the

List
structure except for the

type and pad fields, this sequence of assembly language code will work for
both structures. The sequence performs its function without destroying
the pointer to the list header in A0 (which is why ADDQ.L is used). This
function may also be accessed from C as a call to NewList(header), where
header is the address of a list header.

1.7 23 Exec Lists and Queues / List Functions

Exec provides a number of symmetric functions for handling lists. ←↩
There

are functions for inserting and removing nodes, for adding and removing
head and tail nodes, for inserting nodes in a priority order, and for
searching for nodes by name. The prototypes for Exec list handling
functions are as follows.

Exec Functions

VOID AddHead(struct List *list, struct Node *node);
VOID AddTail(struct List *list, struct Node *node);
VOID Enqueue(struct List *list, struct Node *node);

Libraries 8 / 15

struct Node *FindName(struct List *list, UBYTE *name);
VOID Insert(struct List *list, struct Node *node, struct Node *pred);
VOID Remove(struct Node *node);
struct Node *RemHead(struct List *list);
struct Node *RemTail(struct List *list);

Exec Support Functions in amiga.lib

VOID NewList(struct List *list);

In this discussion of the Exec list handling functions, header represents
a pointer to

List
header, and node represents pointer to a

Node
.

Insertion and Removal

Special Case Insertion

Special Case Removal

MinList/MinNode Operations

Prioritized Insertion

Searching by Name

More on the Use of Named Lists

List Macros for Assembly Language Programmers

Empty Lists

Scanning a List

Important Note About Shared Lists

1.8 23 / List Functions / Insertion and Removal

The Insert() function is used for inserting a new node into any ←↩
position

in a list. It always inserts the node following a specified node that is
already part of the list. For example, Insert(

header
,
node
,pred) inserts

the node node after the node pred in the specified list. If the pred node
points to the list header or is NULL, the new node will be inserted at the
head of the list. Similarly, if the pred node points to the

lh_Tail

Libraries 9 / 15

of
the list, the new node will be inserted at the tail of the list. However,
both of these actions can be better accomplished with the functions
mentioned in the "

Special Case Insertion
" section below.

The Remove() function is used to remove a specified node from a list. For
example, Remove(

node
) will remove the specified node from whatever list it

is in. To be removed, a node must actually be in a list. If you attempt
to remove a node that is not in a list, you will cause serious system
problems.

1.9 23 / List Functions / Special Case Insertion

Although the
Insert()
function allows new nodes to be inserted at the head

and the tail of a list, the AddHead() and AddTail() functions will do so
with higher efficiency. Adding to the head or tail of a list is common
practice in first-in-first-out (

FIFO
) or last-in-first-out (
LIFO
or stack)

operations. For example, AddHead(
header
,
node
) would insert the node at

the head of the specified list.

1.10 23 / List Functions / Special Case Removal

The two functions RemHead() and RemTail() are used in combination ←↩
with

AddHead()
and

AddTail()
to create special list ordering. When you combine

AddTail() and RemHead(), you produce a first-in-first-out (FIFO) list.
When you combine AddHead() and RemHead() a last-in-first-out (LIFO or
stack) list is produced. RemTail() exists for symmetry. Other
combinations of these functions can also be used productively.

Both RemHead() and RemTail() remove a
node

Libraries 10 / 15

from the list, and return a
pointer to the removed node. If the list is empty, the function return a
NULL result.

1.11 23 / List Functions / MinList/MinNode Operations

All of the above functions and macros will work with long or short ←↩
format

node structures. A
MinNode
structure contains only linkage information.

A full
Node
structure contains linkage information, as well as type,

priority and name fields. The smaller MinNode is used where space and
memory alignment issues are important. The larger Node is used for queues
or lists that require a name tag for each node.

1.12 23 / List Functions / Prioritized Insertion

The list functions discussed so far do not make use of the ←↩
priority field

in a
Node
. The Enqueue() function is equivalent to
Insert()
, except it

inserts nodes into a list sorting them according to their priority. It
keeps the higher-priority nodes towards the head of the list. All nodes
passed to this function must have their priority and name assigned prior
to the call. Enqueue(

header
,mynode) inserts mynode behind the lowest

priority node with a priority greater than or equal to mynode’s. For
Enqueue() to work properly, the list must already be sort according to
priority. Because the highest priority node is at the head of the list,
the

RemHead()
function will remove the highest-priority node. Likewise,

RemTail()
will remove the lowest-priority node.

FIFO Is Used For The Same Priority.

If you add a node that has the same priority as another node in the
queue, Enqueue() will use

FIFO
ordering. The new node is inserted

following the last node of equal priority.

Libraries 11 / 15

1.13 23 / List Functions / Searching by Name

Because many lists contain nodes with symbolic names attached (via ←↩
the

ln_Name
field), it is possible to find a node by its name. This naming

technique is used throughout Exec for such nodes as tasks, libraries,
devices, and resources.

The FindName() function searches a list for the first node with a given
name. For example, FindName(

header
, "Furrbol") returns a pointer to the

first node named "Furrbol." If no such node exists, a NULL is returned.
The case of the name characters is significant; "foo" is different from
"Foo."

| ___________ ___________ ___________ ___________ |
| | |____\| |____\| |____\| |__|
| | lh_Head |/_ /| ln_Succ |/_ /| ln_Succ |/_ /| ln_Succ |/_
| |___________|\ \ |___________|\ \ |___________|\ \ |___________|\ |
|_\| | \ | | \ | | \ | | |
/| lh_Tail=0 | \| ln_Pred | \| ln_Pred | \| ln_Pred | |
___________		___________		___________		___________			
lh_TailPred	__	ln_Type		ln_Type		ln_Type			
_ _ _ _ _ _			___________		___________		___________		
				ln_Pri		ln_Pri		ln_Pri	
_ _ _	_ _ _			___________		___________		___________	

	ln_Name		ln_Name		ln_Name	
	_ _ _ _ _ _		_ _ _ _ _ _		_ _ _ _ _ _	
	Node		Node		Node	
	Content		Content		Content	
	_ _ _ _ _ _		_ _ _ _ _ _		_ _ _ _ _ _	

Figure 23-4: Complete Sample List Showing all Interconnections

1.14 23 / List Functions / More on the Use of Named Lists

To find multiple occurrences of nodes with identical names, the
FindName()
function is called multiple times. For example, if you want to ←↩

find all

Libraries 12 / 15

the nodes with the name pointed to by name:

VOID DisplayName(struct List *list,UBYTE *name)
{
struct Node *node;

if (node = FindName(list,name))
while (node)
{

printf("Found %s at location %lx\n",node->ln_Name,node);
node = FindName((struct List *)node,name);

}
else printf("No node with name %s found.\n",name);

}

Notice that the second search uses the node found by the first search. The

FindName()
function never compares the specified name with that of the

starting node. It always begins the search with the successor of the
starting point.

1.15 23 / List Functions / List Macros for Assembly Language Programmers

Assembly language programmers may want to optimize their code by using
assembly code list macros. Because these macros actually embed the
specified list operation into the code, they result in slightly faster
operations. The file <exec/lists.i> contains the recommended set of
macros. For example, the following instructions implement the REMOVE macro:

MOVE.L LN_SUCC(A1),A0 ; get successor
MOVE.L LN_PRED(A1),A1 ; get predecessor
MOVE.L A0,LN_SUCC(A1) ; fix up predecessor’s succ pointer
MOVE.L A1,LN_PRED(A0) ; fix up successor’s pred pointer

1.16 23 / List Functions / Empty Lists

It is often important to determine if a list is empty. This can ←↩
be done

in many ways, but only two are worth mentioning. If either the

lh_TailPred
field is pointing to the list header or the

ln_Succ
field of

the
lh_Head
is NULL, then the list is empty.

In C, for example, these methods would be written as follows:

Libraries 13 / 15

/* You can use this method... */
if (list->lh_TailPred == (struct Node *)list)

printf("list is empty\n");

/* Or you can use this method */
if (NULL == list->lh_Head->ln_Succ)

printf("list is empty\n");

In assembly code, if A0 points to the list header, these methods would be
written as follows:

; Use this method...
CMP.L LH_TAILPRED(A0),A0
BEQ list_is_empty

; Or use this method
MOVE.L LH_HEAD(A0),A1
TST.L LN_SUCC(A1)
BEQ list_is_empty

Because LH_HEAD and LN_SUCC are both zero offsets, the second case may be
simplified or optimized by your assembler.

1.17 23 / List Functions / Scanning a List

Occasionally a program may need to scan a list to locate a ←↩
particular

node, find a node that has a field with a particular value, or just print
the list. Because lists are linked in both the forward and backward
directions, the list can be scanned from either the head or tail.

Here is a code fragment that uses a for loop to print the names of all
nodes in a list:

struct List *list;
struct Node *node;

for (node = list->lh_Head ; node->ln_Succ ; node = node->ln_Succ)
printf("%lx -> %s\n",node,node->ln_Name);

A common mistake is to process the head or tail nodes. Valid data nodes
have non-NULL successor and predecessor pointers. The above loop exits
when

node->ln_Succ
is NULL. Another common mistake is to free a node from

within a loop, then reference the free memory to obtain the next node
pointer. An extra temporary pointer solves this second problem.

In assembly code, it is more efficient to use a look-ahead cache pointer
when scanning a list. In this example the list is scanned until the first
zero-priority node is reached:

MOVE.L (A1),D1 ; first node
scan: MOVE.L D1,A1

Libraries 14 / 15

MOVE.L (A1),D1 ; lookahead to next
BEQ.S not_found ; end of list...
TST.B LN_PRI(A1)
BNE.S scan
... ; found one

not_found:

Exec List Example

1.18 23 / List Functions / Important Note About Shared Lists

It is possible to run into contention problems with other tasks when
manipulating a list that is shared by more than one task. None of the
standard Exec list functions arbitrates for access to the list. For
example, if some other task happens to be modifying a list while your task
scans it, an inconsistent view of the list may be formed. This can result
in a corrupted system.

Generally it is not permissible to read or write a shared list without
first locking out access from other tasks. All users of a list must use
the same arbitration method. Several arbitration techniques are used on
the Amiga. Some lists are protected by a semaphore. The ObtainSemaphore()
call grants ownership of the list (see the "Exec Semaphores" chapter for
more information). Some lists require special arbitration. For example,
you must use the Intuition LockIBase(0) call before accessing any
Intuition lists. Other lists may be accessed only during Forbid() or
Disable() (see the "Exec Tasks" chapter for more information).

The preferred method for arbitrating use of a shared list is through
semaphores because a semaphores only holds off other tasks that are trying
to access the shared list. Rather than suspending all multitasking.
Failure to lock a shared list before use will result in unreliable
operation.

Note that I/O functions including printf() generally call Wait() to wait
for I/O completion, and this allows other tasks to run. Therefore, it is
not safe to print or Wait() while traversing a list unless the list is
fully controlled by your application, or if the list is otherwise
guaranteed not to change during multitasking.

1.19 23 Exec Lists and Queues / Function Reference

The following charts give a brief description of the Exec list and queue
functions and assembler macros. See the Amiga ROM Kernel Reference
Manual: Includes and Autodocs for details about each call.

Table 23-1: Exec List and Queue Functions

| |

Libraries 15 / 15

| Exec Function Description |
|===|
| AddHead() Insert a node at the head of a list. |
| AddTail() Append a node to the tail of a list. |
| Enqueue() Insert or append a node to a system queue. |
| FindName() Find a node with a given name in a system list. |
| Insert() Insert a node into a list. |
| IsListEmpty Test if list is empty |
| NewList() Initialize a list structure for use. |
| RemHead() Remove the head node from a list. |
| Remove() Remove a node from a list. |
| RemTail() Remove the tail node from a list. |
|___|

Table 23-2: Exec List and Queue Assembler Macros

| |
| Exec Function Description |
|===|
| NEWLIST Initialize a list header for use. |
| TSTLIST Test if list is empty (list address in register). |
| No arbitration needed. |
| TSTLST2 Test is list is empty (from effective address of |
| list). Arbitration needed. |
| SUCC Get next node in a list. |
| PRED Get previous node in a list. |
| IFEMPTY Branch if list is empty. |
| IFNOTEMPTY Branch if list is not empty. |
| TSTNODE Get next node, test if at end of list. |
| NEXTNODE Get next node, go to exit label if at end. |
| ADDHEAD Add node to head of list. |
| ADDTAIL Add node to tail of list. |
| REMOVE Remove node from a list. |
| REMHEAD Remove node from head of list. |
| REMHEADQ Remove node from head of list quickly. |
| REMTAIL Remove node from tail of list. |
|___|

	Libraries
	Amiga® RKM Libraries: 23 Exec Lists and Queues
	23 Exec Lists and Queues / List Structure
	23 / List Structure / Node Structure Definition
	23 / List Structure / Node Initialization
	23 / List Structure / List Header Structure Definition
	23 / List Structure / Header Initialization
	23 Exec Lists and Queues / List Functions
	23 / List Functions / Insertion and Removal
	23 / List Functions / Special Case Insertion
	23 / List Functions / Special Case Removal
	23 / List Functions / MinList/MinNode Operations
	23 / List Functions / Prioritized Insertion
	23 / List Functions / Searching by Name
	23 / List Functions / More on the Use of Named Lists
	23 / List Functions / List Macros for Assembly Language Programmers
	23 / List Functions / Empty Lists
	23 / List Functions / Scanning a List
	23 / List Functions / Important Note About Shared Lists
	23 Exec Lists and Queues / Function Reference

