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Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 21 Exec Tasks

One of the most powerful features of the Amiga operating system is ←↩
its

ability to run and manage multiple independent program tasks, providing
each task with processor time based on their priority and activity. These
tasks include system device drivers, background utilities, and user
interface environments, as well as normal application programs. This
multitasking capability is provided by the Exec library’s management of
task creation, termination, scheduling, event signals, traps, exceptions,
and mutual exclusion.

This chapter deals with Exec on a lower level than most applications
programmers need and assumes you are already familiar with the Exec basics
discussed in the "Introduction to Exec" chapter of this manual.

Task Structure

Task Exceptions

Task Creation

Task Traps

Task Termination

Processor and Cache Control

Task Exclusion

Function Reference

1.2 21 Exec Tasks / Task Structure
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Exec maintains task context and state information in a task- ←↩
control data

structure. Like most Exec structures, Task structures are dynamically
linked onto various task queues through the use of an embedded Exec list
Node structure (see the "Exec Lists and Queues" chapter). Any task can
find its own task structure by calling

FindTask
(NULL). The C-language

form of this structure is defined in the <exec/tasks.h> include file:

struct Task {
struct Node tc_Node;
UBYTE tc_Flags;
UBYTE tc_State;
BYTE tc_IDNestCnt; /* intr disabled nesting */
BYTE tc_TDNestCnt; /* task disabled nesting */
ULONG tc_SigAlloc; /* sigs allocated */
ULONG tc_SigWait; /* sigs we are waiting for */
ULONG tc_SigRecvd; /* sigs we have received */
ULONG tc_SigExcept; /* sigs we will take excepts for */
UWORD tc_TrapAlloc; /* traps allocated */
UWORD tc_TrapAble; /* traps enabled */
APTR tc_ExceptData; /* points to except data */
APTR tc_ExceptCode; /* points to except code */
APTR tc_TrapData; /* points to trap code */
APTR tc_TrapCode; /* points to trap data */
APTR tc_SPReg; /* stack pointer */
APTR tc_SPLower; /* stack lower bound */
APTR tc_SPUpper; /* stack upper bound + 2*/
VOID (*tc_Switch)(); /* task losing CPU */
VOID (*tc_Launch)(); /* task getting CPU */
struct List tc_MemEntry; /* allocated memory */
APTR tc_UserData; /* per task data */

};

A similar assembly code structure is available in the <exec/tasks.i>
include file.

Most of these fields are not relevant for simple tasks; they are used by
Exec for state and administrative purposes. A few fields, however, are
provided for the advanced programs that support higher level environments
(as in the case of processes) or require precise control (as in devices).
The following sections explain these fields in more detail.

1.3 21 Exec Tasks / Task Creation

To create a new task you must allocate a task structure, ←↩
initialize its

various fields, and then link it into Exec with a call to AddTask(). The
task structure may be allocated by calling the AllocMem() function with
the MEMF_CLEAR and MEMF_PUBLIC allocation attributes. These attributes
indicate that the data structure is to be pre-initialized to zero and that
the structure is shared.



Libraries 3 / 19

The
Task
fields that require initialization depend on how you intend to

use the task. For the simplest of tasks, only a few fields must be
initialized:

tc_Node
The task list node structure. This includes the task’s
priority, its type, and its name (refer to the chapter

"Exec Lists and Queues").

tc_SPLower
The lower memory bound of the task’s stack.

tc_SPUpper
The upper memory bound of the task’s stack.

tc_SPReg
The initial stack pointer. Because task stacks grow downward in
memory, this field is usually set to the same value as
tc_SPUpper.

Zeroing all other unused fields will cause Exec to supply the appropriate
system default values. Allocating the structure with the MEMF_CLEAR
attribute is an easy way to be sure that this happens.

Once the structure has been initialized, it must be linked to Exec. This
is done with a call to AddTask() in which the following parameters are
specified:

AddTask(struct Task *task, APTR initialPC, APTR finalPC )

The task argument is a pointer to your initialized
Task
structure. Set

initialPC to the entry point of your task code. This is the address of
the first instruction the new task will execute.

Set finalPC to the address of the finalization code for your task. This
is a code section that will receive control if the initialPC routine ever
performs a return (RTS). This exists to prevent your task from being
launched into random memory upon an accidental return. The finalPC
routine should usually perform various program-related clean-up duties and
should then remove the task. If a zero is supplied for this parameter,
Exec will use its default finalization code (which simply calls the

RemTask()
function).

Under Release 2, AddTask() returns the address of the newly added task or
NULL for failure. Under 1.3 and older versions of the OS, no values are
returned.

Task Creation With Amiga.lib
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Task Stack

Task Priority

1.4 21 / Task Creation / Task Creation With Amiga.lib

A simpler method of creating a task is provided by the amiga.lib ←↩
Exec

support function CreateTask(), which can be accessed if your code is
linked with amiga.lib.

CreateTask(char *name, LONG priority, APTR initialPC, ULONG stacksize)

A task created with CreateTask() may be removed with the amiga.lib
DeleteTask() function, or it may simply return when it is finished.
CreateTask() adds a MemList to the

tc_MemEntry
of the task it creates,

describing all memory it has allocated for the task, including the task
stack and the

Task
structure itself. This memory will be deallocated by

Exec when the task is either explicitly removed (
RemTask()
or

DeleteTask()) or when it exits to Exec’s default task removal code
(RemTask()).

Note that a bug in the CreateTask() code caused a failed memory allocation
to go unnoticed in V33 and early versions of Release 2 amiga.lib.

If your development language is not linkable with amiga.lib, it may
provide an equivalent built-in function, or you can create your own based
on the createtask.c code in the Amiga ROM Kernel Reference Manual:
Includes and Autodocs.

Depending on the priority of a new task and the priorities of other tasks
in the system, the newly added task may begin execution immediately.

Sharing Library Pointers
------------------------
Although in most cases it is possible for a parent task to pass a
library base to a child task so the child can use that library, for
some libraries, this is not possible. For this reason, the only
library base sharable between tasks is Exec’s library base.

Here is an example of simple task creation. In this example there is no
coordination or communication between the main process and the simple task
it has created. A more complex example might use named ports and messages
to coordinate the activities and shutdown of two tasks. Because our task
is very simple and never calls any system functions which could cause it
to be signalled or awakened, we can safely remove the task at any time.

Keep This In Mind.
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------------------
Because the simple task’s code is a function in our program, we must
stop the subtask before exiting.

simpletask.c

1.5 21 / Task Creation / Task Stack

Every task requires a stack. All task stacks are user mode stacks ←↩
(in the

language of the 68000) and are addressed through the A7 CPU register. All
normal code execution occurs on this task stack. Special modes of
execution (processor traps and system interrupts for example) execute on a
single

supervisor mode
stack and do not directly affect task stacks.

Task stacks are normally used to store local variables, subroutine return
addresses, and saved register values. Additionally, when a task loses the
processor, all of its current registers are preserved on this stack (with
the exception of the stack pointer itself, which must be saved in the task
structure).

The amount of stack used by a task can vary widely. The theoretical
minimum stack size is 72 bytes, which is the number required to save 17
CPU registers and a single return address. Of course, a stack of this
size would not give you adequate space to perform any subroutine calls
(because the return address occupies stack space). On the other hand, a
stack size of 1K would suffice to call most system functions but would not
allow much in the way of local variable storage. Processes that call DOS
library functions need an additional 1500 bytes of stack.

Because stack-bounds checking is not provided as a service of Exec, it is
important to provide enough space for your task stack. Stack overflows
are always difficult to debug and may result not only in the erratic
failure of your task but also in the mysterious malfunction of other Amiga
subsystems. Some compilers provide a stack-checking option.

You Can’t Always Check The Stack.
---------------------------------
Such stack-checking options generally cannot be used if part of your
code will be running on the system stack (interrupts, 680x0
exceptions, handlers, servers), or on a different task’s stack
(libraries, devices, created tasks).

When choosing your stack size, do not cut it too close. Remember that any
recursive routines in your code may use varying amounts of stack, and that
future versions of system routines may use additional stack variables. By
dynamically allocating buffers and arrays, most application programs can
be designed to function comfortably within the default process stack size
of 4000 bytes.
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1.6 21 / Task Creation / Task Priority

A task’s priority indicates its importance relative to other tasks ←↩
.

Higher-priority tasks receive the processor before lower-priority tasks
do. Task priority is stored as a signed number ranging from -128 to +127.
Higher priorities are represented by more positive values; zero is
considered the neutral priority. Normally, system tasks execute somewhere
in the range of +20 to -20, and most application tasks execute at
priority 0.

It is not wise to needlessly raise a task’s priority. Sometimes it may be
necessary to carefully select a priority so that the task can properly
interact with various system tasks. The

SetTaskPri()
Exec function is

provided for this purpose.

1.7 21 Exec Tasks / Task Termination

Task termination may occur as the result of a number of situations ←↩
:

* A program returning from its
initialPC
routine and dropping into its

finalPC
routine or the system default finalizer.

* A task trap that is too serious for a recovery action. This includes
traps like processor bus error, odd address access errors, etc.

* A trap that is not handled by the task. For example, the task might
be terminated if your code happened to encounter a processor TRAP
instruction and you did not provide a trap handling routine.

* An explicit call to Exec
RemTask()
or amiga.lib

DeleteTask()
.

Task termination involves the deallocation of system resources and the
removal of the task structure from Exec. The most important part of task
termination is the deallocation of system resources. A task must return
all memory that it allocated for its private use, it must terminate any
outstanding I/O commands, and it must close access to any system libraries
or devices that it has opened.

It is wise to adopt a strategy for task clean-up responsibility. You
should decide whether resource allocation and deallocation is the duty of
the creator task or the newly created task. Often it is easier and safer
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for the creator to handle the resource allocation and deallocation on
behalf of its offspring. In such cases, before removing the child task,
you must make sure it is in a safe state such as Wait(0L) and not still
using a resources or waiting for an event or signal that might still occur.

NOTE:
-----
Certain resources, such as signals and created ports, must be
allocated and deallocated by the same task that will wait on them.
Also note that if your subtask code is part of your loaded program,
you must not allow your program to exit before its subtasks have
cleaned up their allocations, and have been either deleted or placed
in a safe state such as Wait(0L).

1.8 21 Exec Tasks / Task Exclusion

From time to time the advanced system program may find it ←↩
necessary to

access global system data structures. Because these structures are shared
by the system and by other tasks that execute asynchronously to your task,
a task must prevent other tasks from using these structures while it is
reading from or writing to them. This can be accomplished by preventing
the operating system from switching tasks by forbidding or disabling. A
section of code that requires the use of either of these mechanisms to
lock out access by others is termed a critical section. Use of these
methods is discouraged. For arbitrating access to data between your
tasks, semaphores are a superior solution. (See the "Exec Semaphores"
chapter)

Forbidding Task Switching

Disabling Tasks

Task Semaphores

1.9 21 / Task Exclusion / Forbidding Task Switching

Forbidding is used when a task is accessing shared structures that ←↩
might

also be accessed at the same time from another task. It effectively
eliminates the possibility of simultaneous access by imposing
nonpreemptive task scheduling. This has the net effect of disabling
multitasking for as long as your task remains in its running state. While
forbidden, your task will continue running until it performs a call to
Wait() or exits from the forbidden state. Interrupts will occur normally,
but no new tasks will be dispatched, regardless of their priorities.

When a task running in the forbidden state calls the Wait() function,
directly or indirectly, it implies a temporary exit from its forbidden
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state. Since almost all stdio, device I/O, and file I/O functions must
Wait() for I/O completion, performing such calls will cause your task to
Wait(), temporarily breaking the forbid. While the task is waiting, the
system will perform normally. When the task receives one of the signals
it is waiting for, it will again reenter the forbidden state. To become
forbidden, a task calls the Forbid() function. To escape, the Permit()
function is used. The use of these functions may be nested with the
expected affects; you will not exit the forbidden mode until you call the
outermost Permit().

As an example, the Exec task list should only be accessed when in a
Forbid() state. Accessing the list without forbidding could lead to
incorrect results or it could crash the entire system. To access the task
list also requires the program to disable interrupts which is discussed in
the

next section
.

1.10 21 / Task Exclusion / Disabling Tasks

Disabling is similar to forbidding, but it also prevents ←↩
interrupts from

occurring during a critical section. Disabling is required when a task
accesses structures that are shared by interrupt code. It eliminates the
possibility of an interrupt accessing shared structures by preventing
interrupts from occurring. Use of disabling is strongly discouraged.

To disable interrupts you can call the Disable() function. To enable
interrupts again, use the Enable() function. Although assembler DISABLE
and ENABLE macros are provided, assembler programmers should use the
system functions rather than the macros for upwards compatibility, ease of
debugging, and smaller code size.

Like forbidden sections, disabled sections can be nested. To restore
normal interrupt processing, an Enable() call must be made for every
Disable(). Also like forbidden sections, any direct or indirect call to
the Wait() function will enable interrupts until the task regains the
processor.

WARNING:
--------
It is important to realize that there is a danger in using disabled
sections. Because the software on the Amiga depends heavily on its
interrupts occurring in nearly real time, you cannot disable for more
than a very brief instant. Disabling interrupts for more than 250
microseconds can interfere with the normal operation of vital system
functions, especially serial I/O.

WARNING:
--------
Masking interrupts by changing the 68000 processor interrupt
priority levels with the MOVE SR instruction can also be dangerous
and is very strongly discouraged. The disable- and enable-related
functions control interrupts through the 4703 custom chip and not
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through the 68000 priority level. In addition, the processor
priority level can be altered only from

supervisor mode
(which means

this process is much less efficient).

It is never necessary to both Disable() and
Forbid()
. Because disabling

prevents interrupts, it also prevents preemptive task scheduling. When
disable is used within an interrupt, it will have the effect of locking
out all higher level interrupts (lower level interrupts are automatically
disabled by the CPU). Many Exec lists can only be accessed while
disabled. Suppose you want to print the names of all system tasks. You
would need to access both the TaskReady and TaskWait lists from within a
single disabled section. In addition, you must avoid calling system
functions that would break a disable by an indirect call to Wait()
(printf() for example). In this example, the names are gathered into a
list while task switching is disabled. Then task switching is enabled and
the names are printed.

tasklist.c

1.11 21 / Task Exclusion / Task Semaphores

Semaphores can be used for the purposes of mutual exclusion. With this
method of locking, all tasks agree on a locking convention before
accessing shared data structures. Tasks that do not require access are
not affected and will run normally, so this type of exclusion is
considered preferable to forbidding and disabling. This form of exclusion
is explained in more detail in the "Exec Semaphores" chapter.

1.12 21 Exec Tasks / Task Exceptions

Exec can provide a task with its own task-local "interrupt" called ←↩
an

exception. When some exceptional event occurs, an Exec exception occurs
which stops a particular task from executing its normal code and forces it
to execute a special, task-specific exception handling routine.

If you are familiar with the 680x0, you may be used to using the term
"exceptions" in a different way. The 680x0 has its own form of exception
that has nothing to do with an Exec exception. These are discussed in
more detail in the "

Task Traps
" section of this chapter. Do not confuse

Exec exceptions with 680x0 exceptions.

To set up an exception routine for a task requires setting values in the
task’s control structure (the

Task
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structure). The
tc_ExceptCode
field

should point to the task’s exception handling routine. If this field is
zero, Exec will ignore all exceptions. The

tc_ExceptData
field should

point to any data the exception routine needs.

Exec exceptions work using signals. When a specific signal or signals
occur, Exec will stop a task and execute its exception routine. Use the
Exec function SetExcept() to tell Exec which of the task’s signals should
trigger the exception.

When an exception occurs, Exec stops executing the tasks normal code and
jumps immediately into the exception routine, no matter what the task was
doing. The exception routine operates in the same context the task’s
normal code; it operates in the CPU’s user mode and uses the task’s stack.

Before entering the exception routine, Exec pushes the normal task code’s
context onto the stack. This includes the PC, SR, D0-D7, and A0-A6
registers. Exec then puts certain parameters in the processor registers
for the exception routine to use. D0 contains a signal mask indicating
which signal bit or bits caused the exception. Exec disables these signals
when the task enters its exception routine. If more than one signal bit
is set (i.e. if two signals occurred simultaneously), it is up to the
exception routine to decide in what order to process the two different
signals. A1 points to the related exception data (from

tc_ExceptData
),

and A6 contains the Exec library base. You can think of an exception as a
subtask outside of your normal task. Because task exception code executes
in user mode, however, the task stack must be large enough to supply the
extra space consumed during an exception.

While processing a given exception, Exec prevents that exception from
occurring recursively. At exit from your exception-processing code, you
should make sure D0 contains the signal mask the exception routine
received in D0 because Exec looks here to see which signals it should
reactivate. When the task executes the RTS instruction at the end of the
exception routine, the system restores the previous contents of all of the
task registers and resumes the task at the point where it was interrupted
by the exception signal.

Exceptions Are Tricky.
----------------------
Exceptions are difficult to use safely. An exception can interrupt
a task that is executing a critical section of code within a system
function, or one that has locked a system resource such as the disk
or blitter (note that even simple text output uses the blitter.)
This possibility makes it dangerous to use most system functions
within an exception unless you are sure that your interrupted task
was performing only local, non-critical operations.
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1.13 21 Exec Tasks / Task Traps

Task traps are synchronous exceptions to the normal flow of ←↩
program

control. They are always generated as a direct result of an operation
performed by your program’s code. Whether they are accidental or
purposely generated, they will result in your program being forced into a
special condition in which it must immediately handle the trap. Address
error, privilege violation, zero divide, and trap instructions all result
in task traps. They may be generated directly by the 68000 processor
(Motorola calls them "exceptions") or simulated by software.

A task that incurs a trap has no choice but to respond immediately. The
task must have a module of code to handle the trap. Your task may be
aborted if a trap occurs and no means of handling it has been provided.
Default trap handling code (

tc_TrapCode
) is provided by the OS. You may

instead choose to do your own processing of traps. The tc_TrapCode field
is the address of the handler that you have designed to process the trap.
The tc_TrapData field is the address of the data area for use by the trap
handler.

The system’s default trap handling code generally displays a Software
Error Requester or Alert containing an exception number and the program
counter or task address. Processor exceptions generally have numbers in
the range hex 00 to 2F. The 68000 processor exceptions of particular
interest are as follows.

Table 21-1: Traps (68000 Exception Vector Numbers)

2 Bus error access of nonexistent memory
3 Address error long/word access of odd address (68000)
4 Illegal instruction illegal opcode (other than Axxx or Fxxx)
5 Zero divide processor division by zero
6 CHK instruction register bounds error trap by CHK
7 TRAPV instruction overflow error trap by TRAPV
8 Privilege violation user execution of supervisor opcode
9 Trace

status register
TRACE bit trap

10 Line 1010 emulator execution of opcode beginning with $A
11 Line 1111 emulator execution of opcode beginning with $F
32-47 Trap instructions TRAP N instruction where N = 0 to 15

A system alert for a processor exception may set the high bit of the
longword exception number to indicate an unrecoverable error (for example
$80000005 for an unrecoverable processor exception #5). System alerts
with more complex numbers are generally Amiga-specific software failures.
These are built from the definitions in the <exec/alerts.h> include file.

The actual stack frames generated for these traps are processor-dependent.
The 68010, 68020, and 68030 processors will generate a different type of
stack frame than the 68000. If you plan on having your program handle its
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own traps, you should not make assumptions about the format of the
supervisor stack frame. Check the flags in the AttnFlags field of the
ExecBase structure for the type of processor in use and process the stack
frame accordingly.

Trap Handlers

Trap Instructions

1.14 21 / Task Traps / Trap Handlers

For compatibility with the 68000, Exec performs trap handling in

supervisor mode
. This means that all task switching is disabled during

trap handling. At entry to the task’s trap handler, the system stack
contains a processor-dependent trap frame as defined in the 68000/10/20/30
manuals. A longword exception number is added to this frame. That is,
when a handler gains control, the top of stack contains the exception
number and the trap frame immediately follows.

To return from trap processing, remove the exception number from the stack
(note that this is the supervisor stack, not the user stack) and then
perform a return from exception (RTE).

Because trap processing takes place in
supervisor mode
, with task

dispatching disabled, it is strongly urged that you keep trap processing
as short as possible or switch back to user mode from within your trap
handler. If a trap handler already exists when you add your own trap
handler, it is smart to propagate any traps that you do not handle down to
the previous handler. This can be done by saving the previous address
from

tc_TrapCode
and having your handler pass control to that address if

the trap which occurred is not one you wish to handle.

The following example installs a simple trap handler which intercepts
processor divide-by-zero traps, and passes on all other traps to the
previous default trap code. The example has two code modules which are
linked together. The trap handler code is in assembler. The C module
installs the handler, demonstrates its effectiveness, then restores the
previous

tc_TrapCode
.

trap_c.c example
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1.15 21 / Task Traps / Trap Instructions

The TRAP instructions in the 68000 generate traps 32-47. Because many
independent pieces of system code may desire to use these traps, the
AllocTrap() and FreeTrap() functions are provided. These work in a
fashion similar to that used by AllocSignal() and FreeSignal(), mentioned
in the "Exec Signals" chapter.

Allocating a trap is simply a bookkeeping job within a task. It does not
affect how the system calls the trap handler; it helps coordinate who owns
what traps. Exec does nothing to determine whether or not a task is
prepared to handle a particular trap. It simply calls your code. It is up
to your program to handle the trap.

To allocate any trap, you can use the following code:

if (-1 == (trap = AllocTrap(-1)))
printf("all trap instructions are in use\n");

Or you can select a specific trap using this code:

if (-1 == (trap = AllocTrap(3)))
printf("trap #3 is in use\n");

To free a trap, you use the FreeTrap() function passing it the trap number
to be freed.

1.16 21 Exec Tasks / Processor and Cache Control

Exec provides a number of to control the processor mode and, if ←↩
available,

the caches. All these functions work independently of the specific M68000
family processor type. This enables you to write code which correctly
controls the state of both the MC68000 and the MC68040. Along with
processor mode and cache control, functions are provided to obtain
information about the condition code register (CCR) and status register
(SR). No functions are provided to control a paged memory management unit
(PMMU) or floating point unit (FPU).

Table 21-2: Processor and Cache Control Functions
__________________________________________________________________

| |
| Function Description |
|==================================================================|
|

GetCC()
Get processor condition codes. |

|
SetSR()

Get/set processor status register. |
|

SuperState()
Set supervisor mode with user stack. |
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|
Supervisor()

Execute a short supervisor mode function. |
|

UserState()
Return to user mode with user stack. |

|------------------------------------------------------------------|
| CacheClearE() Flush CPU instruction and/or data caches (V37). |
|

CacheClearU()
Flush CPU instruction and data caches (V37). |

| CacheControl() Global cache control (V37). |
|

CachePostDMA()
Perform actions prior to hardware DMA (V37). |

|
CachePreDMA()

Perform actions after hardware DMA (V37). |
|__________________________________________________________________|

Supervisor Mode

Condition Code Register

DMA Cache Functions

Status Register

Cache Functions

The 68040 and CPU Caches

1.17 21 / Processor and Cache Control / Supervisor Mode

While in supervisor mode, you have complete access to all data and
registers, including those used for task scheduling and exceptions, and
can execute privileged instructions. In application programs, normally
only task trap code is directly executed in supervisor mode, to be
compatible with the MC68000. For normal applications, it should never be
necessary to switch to supervisor mode itself, only indirectly through
Exec function calls. Remember that task switching is disabled while in
supervisor mode. If it is absolutely needed to execute code in supervisor
mode, keep it as brief as possible.

Supervisor mode can only be entered when a 680x0 exception occurs (an
interrupt or trap). The Supervisor() function allows you to trap an
exception to a specified assembly function. In this function your have
full access to all registers. No registers are saved when your function
is invoked. You are responsible for restoring the system to a sane state
when you are done. You must return to user mode with an RTE instruction.
You must not return to user mode by executing a privileged instruction
which clears the supervisor bit in the
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status register
. Refer to a manual

on the M68000 family of CPUs for information about supervisor mode and
available privileged instructions per processor type.

The MC68000 has two stacks, the user stack (USP) and supervisor stack
(SSP). As of the MC68020 there are two supervisor stacks, the interrupt
stack pointer (ISP) and the master stack pointer (MSP). The SuperState()
function allows you to enter supervisor mode with the USP used as SSP. The
function returns the SSP, which will be the MSP, if an MC68020 or greater
is used. Returning to user mode is done with the UserState() function.
This function takes the SSP as argument, which must be saved when
SuperState() is called. Because of possible problems with stack size,
Supervisor() is to be preferred over SuperState().

1.18 21 / Processor and Cache Control / Status Register

The processor status register bits can be set or read with the ←↩
SetSR()

function. This function operates in
supervisor mode
, thus both the upper

and lower byte of the SR can be read or set. Be very sure you know what
you are doing when you use this function to set bits in the SR and above
all never try to use this function to enter supervisor mode. Refer to the
M68000 Programmers Reference Manual by Motorola Inc. for information about
the definition of individual SR bits per processor type.

1.19 21 / Processor and Cache Control / Condition Code Register

On the MC68000 a copy of the processor condition codes can be obtained
with the MOVE SR,<ea> instruction. On MC68010 processors and up however,
the instruction MOVE CCR,<ea> must be used. Using the specific MC68000
instruction on later processors will cause a 680x0 exception since it is a
privileged instruction on those processors. The GetCC() function provides
a processor independent way of obtaining a copy of the condition codes.
For all processors there are 5 bits which can indicate the result of an
integer or a system control instruction:

X - extend N - negative Z - zero V - overflow C - carry

The X bit is used for multiprecision calculations. If used, it is copy of
the carry bit. The other bits state the result of a processor operation.

1.20 21 / Processor and Cache Control / Cache Functions
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As of the MC68020 all processors have an instruction cache, 256 ←↩
bytes on

the MC68020 and MC68030 and 4 KBytes on a
MC68040
. The MC68030 and

MC68040 have data caches as well, 256 bytes and 4 KBytes respectively. All
the processors load instructions ahead of the program counter (PC), albeit
it that the MC68000 and MC68010 only prefetch one and two words
respectively. This means the CPU loads instructions ahead of the current
program counter. For this reason self-modifying code is strongly
discouraged. If your code modifies or decrypts itself just ahead of the
program counter, the pre-fetched instructions may not match the modified
instructions. If self-modifying code must be used, flushing the cache is
the safest way to prevent this.

1.21 21 / Processor and Cache Control / DMA Cache Functions

The CachePreDMA() and CachePostDMA() functions allow you to flush ←↩
the data

cache before and after Direct Memory Access. Typically only DMA device
drivers benefit from this. These functions take the processor type,
possible MMU and cache mode into account. When no cache is available they
end up doing nothing. These functions can be replaced with ones suitable
for different cache hardware. Refer to the ROM Kernel Reference Manual:
Includes and Autodocs for implementation specifics.

Since DMA device drivers read and write directly to memory, they are
effected by the

CopyBack
feature of the

MC68040
(explained below). Using

DMA with CopyBack mode requires a cache flush. If a DMA device needs to
read RAM via DMA, it must make sure that the data in the caches has been
written to memory first, by calling CachePreDMA(). In case of a write to
memory, the DMA device should first clear the caches with CachePreDMA(),
write the data and flush the caches again with CachePostDMA().

1.22 21 / Processor and Cache Control / The 68040 and CPU Caches

The 68040 is a much more powerful CPU than its predecessors. It ←↩
has 4K of

cache memory for instructions and another 4K cache for data. The reason
for these two separate caches is so that the CPU core can access data and
CPU instructions at the same time.

Although the 68040 provides greater performance it also brings with it
greater compatibility problems. Just the fact that the caches are so much
larger than Motorola’s 68030 CPU can cause problems. However, this is not
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its biggest obstacle.

The 68040 data cache has a mode that can make the system run much faster
in most cases. It is called CopyBack mode. When a program writes data to
memory in this mode, the data goes into the cache but not into the
physical RAM. That means that if a program or a piece of hardware were to
read that RAM without going through the data cache on the 68040, it will
read old data. CopyBack mode effects two areas of the Amiga: DMA devices
and the CPU’s instruction reading.

CopyBack mode effects DMA devices because they read and write data
directly to memory. Using DMA with CopyBack mode requires a cache flush.
If a DMA device needs to read RAM via DMA, it must first make sure that
data in the caches has been written to memory. It can do this by calling
the Exec function

CachePreDMA()
. If a DMA device is about to write to

memory, it should call CachePreDMA() before the write, do the DMA write,
and then call

CachePostDMA()
, which makes sure that the CPU uses the data

just written to memory.

An added advantage of using the
CachePreDMA()
and

CachePostDMA()
functions

is that they give the OS the chance to tell the DMA device that the
physical addresses and memory sizes are not the same. This will make it
possible in the future to add features such as virtual memory. See the
Autodocs for more information on these calls.

The other major compatibility problem with the 68040’s CopyBack mode is
with fetching CPU instructions. CPU instructions have to be loaded into
memory so the CPU can copy them into its instruction cache. Normally,
instructions that will be executed are written to memory by the CPU (i.e.,
loading a program from disk). In CopyBack mode, anything the CPU writes
to memory, including CPU instructions, doesn’t actually go into memory, it
goes into the data cache. If instructions are not flushed out of the data
cache to RAM, the 68040 will not be able to find them when it tries to
copy them into the instruction cache for execution. It will instead find
and attempt to execute whatever garbage data happened to be left at that
location in RAM.

To remedy this, any program that writes instructions to memory must flush
the data cache after writing. The V37 Exec function CacheClearU() takes
care of this. Release 2 of the Amiga OS correctly flushes the caches as
needed after it does the LoadSeg() of a program (LoadSeg() loads Amiga
executable programs into memory from disk). Applications need to do the
same if they write code to memory. It can do that by calling
CacheClearU() before the call to CreateProc(). In C that would be:

extern struct ExecBase *SysBase;
. . .

/* If we are in 2.0, call CacheClearU() before CreateProc() */
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if (SysBase->LibNode.lib_Version >= 37) CacheClearU();

/* Now do the CreateProc() call... */
proc=CreateProc(... /* whatever your call is like */ ...);
. . .

For those of you programming in assembly language:

***********************************************************************
* Check to see if we are running in V37 ROM or better. If so, we want

* to call CacheClearU() to make sure we are safe on future hardware

* such as the 68040. This section of code assumes that a6 points at

* ExecBase. a0/a1/d0/d1 are trashed in CacheClearU()

*
cmpi.w #37,LIB_VERSION(a6) ; Check if exec is >= V37
bcs.s TooOld ; If less than V37, too old...
jsr _LVOCacheClearU(a6) ; Clear the cache...

TooOld: ; Exit gracefully.

***********************************************************************

Note that CreateProc() is not the only routine where CopyBack mode could
be a problem. Any program code copied into memory for execution that is
not done via LoadSeg() will need to call CacheClearU(). Many input device
handlers have been known to allocate and copy the handler code into memory
and then exit back to the system. These programs also need to have this
call in them. The above code will work under older versions of the OS,
and will do the correct operations in Release 2 (and beyond).

1.23 21 Exec Tasks / Function Reference

The following chart gives a brief description of the Exec ←↩
functions that

control tasks. See the Amiga ROM Kernel Reference Manual: Includes and
Autodocs for details about each call.

Table 21-3: Exec Task, Processor and Cache Control Functions
___________________________________________________________________
| |
| Exec Task |
| Function Description |
|===================================================================|
| AddTask() Add a task to the system. |
| AllocTrap() Allocate a processor trap vector. |
| Disable() Disable interrupt processing. |
| Enable() Enable interrupt processing. |
| FindTask() Find a specific task. |
| Forbid() Forbid task rescheduling. |
| FreeTrap() Release a process trap. |
| Permit() Permit task rescheduling. |
| SetTaskPri() Set the priority of a task. |
| RemTask() Remove a task from the system. |
|-------------------------------------------------------------------|
| CacheClearE() Flush CPU instruction and/or data caches (V37). |



Libraries 19 / 19

| CacheClearU() Flush CPU instruction and data caches (V37). |
| CacheControl() Global cache control (V37). |
| CachePostDMA() Perform actions prior to hardware DMA (V37). |
| CachePreDMA() Perform actions after hardware DMA (V37). |
| GetCC() Get processor

condition codes
. |

| SetSR() Get/set processor
status register
. |

| SuperState() Set
supervisor mode
with user stack. |

| Supervisor() Execute a short supervisor mode function. |
| UserState() Return to user mode with user stack. |
|-------------------------------------------------------------------|
| CreateTask() Amiga.lib function to setup and add a new task. |
| DeleteTask() Amiga.lib function to delete a task created with |
| CreateTask(). |
|___________________________________________________________________|
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