
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 19 Exec Device I/O . 1

1.2 19 Exec Device I/O / What is a Device? . 1

1.3 19 Exec Device I/O / Accessing a Device . 2

1.4 19 / Accessing a Device / Creating a Message Port . 3

1.5 19 / Accessing a Device / Creating an I/O Request . 3

1.6 19 / Accessing a Device / Opening a Device . 4

1.7 19 Exec Device I/O / Using a Device . 5

1.8 19 / Using A Device / Synchronous Vs. Asynchronous Requests . 6

1.9 19 / Using A Device / I/O Request Completion . 8

1.10 19 / / I/O Request Completion / Closing the Device . 9

1.11 19 / / I/O Request Completion / Ending Device Access . 10

1.12 19 Exec Device I/O / Devices With Functions . 10

1.13 19 Exec Device I/O / Function Reference . 12

Libraries 1 / 12

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 19 Exec Device I/O

The Amiga system devices are software engines that provide access ←↩
to the

Amiga hardware. Through these devices, a programmer can operate a modem,
spin a disk drive motor, time an event, and blast a trumpet sound in
stereo. Yet, for all that variety, the programmer uses each device in the
same manner.

What is a Device?

Using A Device
Using An Exec Device

Accessing a Device

Devices With Functions

Function Reference

1.2 19 Exec Device I/O / What is a Device?

An Amiga device is a software module that accepts commands and ←↩
data and

performs I/O operations based on the commands it receives. In most cases,
it interacts with either internal or external hardware, (the exceptions
are the clipboard device and ramdrive device which simply use memory).
Generally, an Amiga device runs as a separate task which is capable of
processing your commands while your application attends to other things.

Table 19-1: Amiga System Devices

Amiga Device Purpose
------------ -------

Libraries 2 / 12

Audio Controls the use of the audio hardware.
Clipboard Manages the cutting and pasting of common data blocks
Console Provides the line-oriented user interface.
Gameport Controls the two mouse/joystick ports.
Input Processes input from the gameport and keyboard devices.
Keyboard Controls the keyboard.
Narrator Produces the Amiga synthesized speech.
Parallel Controls the parallel port.
Printer Converts a standard set of printer control codes to

printer specific codes.
SCSI Controls the Small Computer Standard Interface hardware.
Serial Controls the serial port.
Timer Provides timing functions to measure time intervals and

send interrupts.
Trackdisk Controls the Amiga floppy disk drives.

The philosophy behind the devices is that I/O operations should be
consistent and uniform. You print a file in the same manner as you play
an audio sample, i.e., you send the device in question a

WRITE
command and

the address of the buffer holding the data you wish to write.

The result is that the interface presented to the programmer is
essentially device independent and accessible from any computer language.
This greatly expands the power the Amiga brings to the programmer and,
ultimately, to the user.

Devices support two types of commands: Exec standard commands like
READ
and
WRITE
, and device specific commands like the trackdisk device
MOTOR
command which controls the floppy drive motor, and the keyboard ←↩

device

READMATRIX
command which returns the state of each key on the keyboard.

You should keep in mind, however, that supporting standard commands does
not mean that all devices execute them in exactly the same manner.

This chapter contains an introduction to the Exec and amiga.lib functions
that are used when accessing Amiga devices. Consult the Amiga ROM Kernel
Manual: Devices volume for chapters on each of the Amiga devices and the
commands they support. In addition, the Amiga ROM Kernel Reference
Manual: Includes and Autodocs contains Autodocs summarizing the commands
of each device, and listings of the device include files. Both are very
useful manuals to have around when you are programming the devices.

1.3 19 Exec Device I/O / Accessing a Device

Libraries 3 / 12

Accessing a device requires obtaining a message port, allocating ←↩
memory

for a specialized message packet called an I/O request, setting a pointer
to the message port in the I/O request, and finally, establishing the link
to the device itself by opening it. An example of how to do this will be
provided later in this chapter.

Creating a Message Port

Creating an I/O Request

Opening a Device

1.4 19 / Accessing a Device / Creating a Message Port

When a device completes the command in a message, it will return the
message to the message port specifed as the reply port in the message. A
message port is obtained by calling the CreateMsgPort() or CreatePort()
function. You must delete the message port when you are finished by
calling the DeleteMsgPort() or DeletePort() function.

If your application needs to be compatible with pre-V36 versions of the
operating system, use the amiga.lib functions CreatePort() and
DeletePort(); if you require V36 or higher, you may use the Exec ROM
functions CreateMsgPort() and DeleteMsgPort().

1.5 19 / Accessing a Device / Creating an I/O Request

The I/O request is used to send commands and data from your application to
the device. The I/O request consists of fields used to hold the command
you wish to execute and any parameters it requires. You set up the fields
with the appropriate information and send it to the device by using Exec
I/O functions. Different Amiga devices often require different I/O
request structures. These structures all start with a simple IORequest or
IoStdReq structure (see <exec/io.h>) which may be followed by various
device-specific fields. Consult the Autodoc and include file for each
device to determine the type and size I/O request required to access the
device.

I/O request structures are commonly created and deleted with the amiga.lib
functions CreateExtIO() with DeleteExtIO(). These amiga.lib functions are
compatible with Release 2 and previous versions of the operating system.
Applications that already require V37 for other reasons may instead use
the new V37 ROM Exec functions CreateIORequest() and DeleteIORequest().
Any size and type of I/O request may be created with these functions.

Alternately, I/O requests can be created by declaring them as structures
initialized to zero, or by dynamically allocating cleared public memory
for them, but in these cases you will be responsible for the IORequest
structure initializations which are normally handled by the above

Libraries 4 / 12

functions. The message port pointer in the I/O request tells the device
where to respond with messages for your application. You must set a
pointer to the message port in the I/O request if you declare it as a
structure or allocate memory for it using AllocMem().

1.6 19 / Accessing a Device / Opening a Device

The device is opened by calling the OpenDevice() function. In ←↩
addition to

establishing the link to the device, OpenDevice() also initializes fields
in the I/O request. OpenDevice() has this format:

return = OpenDevice(device_name,
unit_number,

(struct IORequest *)IORequest,
flags)

* device_name is one of the following NULL-terminated strings for
system devices:

Audio.device Parallel.device Clipboard.device
Printer.device Console.device scsi.device
Gameport.device Serial.device Input.device
Timer.device Keyboard.device Trackdisk.device

Narrator.device

* unit_number is refers to one of the logical units of the device.
Devices with one unit always use unit 0. Multiple unit devices like
the trackdisk device and the timer device use the different units for
specific purposes.

* IORequest is the structure
discussed above
. Some of the devices have

their own I/O requests defined in their include files and others use
standard I/O requests, (IOStdReq). Refer to the Amiga ROM Kernel
Reference Manual: Devices for more information.

* flags are bits set to indicate options for some of the devices. This
field is set to zero for devices which don’t accept options when they
are opened. The flags for each device are explained in the Amiga ROM
Kernel Reference Manual: Devices.

* return is an indication of whether the OpenDevice() was successful
with zero indicating success. Never assume that a device will
successfully open. Check the return value and act accordingly.

Zero Equals Success for OpenDevice().

Unlike most Amiga system functions, OpenDevice() returns zero for
success and a device-specific error value for failure.

Libraries 5 / 12

1.7 19 Exec Device I/O / Using a Device

Once a device has been opened, you use it by passing the I/O ←↩
request to

it. When the device processes the I/O request, it acts on the information
the I/O request contains and returns a reply message, i.e., the I/O
request, to the message port when it is finished. The I/O request is
passed to a device using one of three functions, DoIO(), SendIO() and
BeginIO(). They take only one argument: the I/O request you wish to pass
to the device.

* DoIO() is a synchronous function. It will not return until the
device has finished with the I/O request. DoIO() will wait, if
necessary, for the request to complete, and will remove (GetMsg())
any reply message from the message port.

* SendIO() is an asynchronous function. It can return immediately, but
the I/O operation it initiates may take a short or long time. SendIO
is normally used when your application has other work to do while the
I/O request is being acted upon, or if your application wishes to
allow the user to cancel the I/O. Using SendIO() requires that you
wait on or check for completion of the request, and remove the
completed request from the message port with GetMsg().

* BeginIO() is commonly used to control the QuickIO bit when sending an
I/O request to a device. When the QuickIO flag (IOF_QUICK) is set in
the I/O request, a device is allowed to take certain shortcuts in
performing and completing a request. If the request can complete
immediately, the device will not return a reply message and the
QuickIO flag will remain set. If the request cannot be completed
immediately, the QUICK_IO flag will be clear. DoIO() normally
requests QuickIO; SendIO() does not.

An I/O request typically has three fields set for every command sent to a
device. You set the command itself in the io_Command field, a pointer to
the data for the command in the io_Data field, and the length of the data
in the io_Length field.

SerialIO->IOSer.io_Length = sizeof(ReadBuffer);
SerialIO->IOSer.io_Data = ReadBuffer;
SerialIO->IOSer.io_Command = CMD_READ;
SendIO((struct IORequest *)SerialIO);

Commands consist of two parts (separated by an underscore, all in upper
case): a prefix and the command word. The prefix indicates whether the
command is an Exec or device specific command. All Exec standard commands
have "CMD" as the prefix. They are defined in the include file
<exec/io.h>.

Table 19-2: Standard Exec Device Commands

CMD_READ CMD_START CMD_UPDATE CMD_CLEAR
CMD_WRITE CMD_STOP CMD_FLUSH CMD_RESET

You should not assume that a device supports all standard Exec device

Libraries 6 / 12

commands. Always check the documentation before attempting to use one of
them. Device-specific command prefixes vary with the device.

Table 19-3: System Device Command Prefixes

Device Prefix Example
------ ------ -------
Audio ADCMD ADCMD_ALLOCATE
Clipboard CBD CBD_POST
Console CD CD_ASKKEYMAP
Gameport GPD GPD_SETCTYPE
Input IND IND_SETMPORT
Keyboard KBD KBD_READMATRIX
Narrator no device specific commands -
Parallel PDCMD PDCMD_QUERY
Printer PRD PRD_PRTCOMMAND
SCSI HD HD_SCSICMD
Serial SDCMD SDCMD_BREAK
Timer TR TR_ADDREQUEST
Trackdisk TD and ETD TD_MOTOR/ETD_MOTOR

Each device maintains its own I/O request queue. When a device receives
an I/O request, it either processes the request immediately or puts it in
the queue because one is already being processed. After an I/O request is
completely processed, the device checks its queue and if it finds another
I/O request, begins to process that request.

Synchronous Vs. Asynchronous Requests

I/O Request Completion

1.8 19 / Using A Device / Synchronous Vs. Asynchronous Requests

As stated above, you can send I/O requests to a device ←↩
synchronously or

asynchronously. The choice of which to use is largely a function of your
application.

Synchronous requests use the
DoIO()
function. DoIO() will not return

control to your application until the I/O request has been satisfied by
the device. The advantage of this is that you don’t have to monitor the
message port for the device reply because DoIO() takes care of all the
message handling. The disadvantage is that your application will be tied
up while the I/O request is being processed, and should the request not
complete for some reason, DoIO() will not return and your application will
hang.

Asynchronous requests use the
SendIO()

Libraries 7 / 12

and
BeginIO()
functions. Both

return to your application almost immediately after you call them. This
allows you to do other operations, including sending more I/O requests to
the device. Note that any additional I/O requests you send must use
separate I/O request structures. Outstanding I/O requests are not
available for re-use until the device is finished with them.

Do Not Touch!

When you use

SendIO()
or

BeginIO()
, the I/O request you pass to

the device and any associated data buffers should be considered
read-only. Once you send it to the device, you must not modify it
in any way until you receive the reply message from the device or
abort the request.

Sending multiple asynchronous I/O requests to a device can be tricky
because devices require them to be unique and initialized. This means you
can’t use an I/O request that’s still in the queue, but you need the
fields which were initialized in it when you opened the device. The
solution is to copy the initialized I/O request to another I/O request(s)
before sending anything to the device.

Regardless of what you do while you are waiting for an asynchronous I/O
request to return, you need to have some mechanism for knowing when the
request has been done. There are two basic methods for doing this.

The first involves putting your application into a wait state until the
device returns the I/O request to the message port of your application.
You can use the WaitIO(), Wait() or WaitPort() function to wait for the
return of the I/O request. It is important to note that all of the above
functions and also

DoIO()
may Wait() on the message reply port’s

mp_SigBit. For this reason, the task that created the port must be the
same task the waits for completion of the I/O. There are three ways to
wait:

* WaitIO() not only waits for the return of the I/O request, it
also takes care of all the message handling functions. This is
very convenient, but you can pay for this convenience: your
application will hang if the I/O request does not return.

* Wait() waits for a signal to be sent to the message port. It
will awaken your task when the signal arrives, but you are
responsible for all of the message handling.

* WaitPort() waits for the message port to be non-empty. It
returns a pointer to the message in the port, but you are
responsible for all of the message handling.

The second method to detect when the request is complete involves using

Libraries 8 / 12

the CheckIO() function. CheckIO() takes an I/O request as its argument
and returns an indication of whether or not it has been completed. When
CheckIO() returns the completed indication, you will still have to remove
the I/O request from the message port.

1.9 19 / Using A Device / I/O Request Completion

A device will set the io_Error field of the I/O request to ←↩
indicate the

success or failure of an operation. The indication will be either zero
for success or a non-zero error code for failure. There are two types of
error codes: Exec I/O and device specific. Exec I/O errors are defined in
the include file <exec/errors.h>; device specific errors are defined in
the include file for each device. You should always check that the
operation you requested was successful.

The exact method for checking io_Error can depend on whether you use

DoIO()
or

SendIO()
. In both cases, io_Error will be set when the I/O

request is returned, but in the case of DoIO(), the DoIO() function itself
returns the same value as io_Error. This gives you the option of checking
the function return value:

SerialIO->IOSer.io_Length = sizeof(ReadBuffer);
SerialIO->IOSer.io_Data = ReadBuffer;
SerialIO->IOSer.io_Command = CMD_READ;
if (DoIO((struct IORequest *)SerialIO)

printf("Read failed. Error: %ld\n",SerialIO->IOSer.io_Error);

Or you can check io_Error directly:

SerialIO->IOSer.io_Length = sizeof(ReadBuffer);
SerialIO->IOSer.io_Data = ReadBuffer;
SerialIO->IOSer.io_Command = CMD_READ;
DoIO((struct IORequest *)SerialIO);
if (SerialIO->IOSer.io_Error)

printf("Read failed. Error: %ld\n",SerialIO->IOSer.io_Error);

Keep in mind that checking io_Error is the only way that I/O requests sent
by

SendIO()
can be checked. Testing for a failed I/O request is a minimum

step, what you do beyond that depends on your application. In some
instances, you may decide to resend the I/O request and in others, you may
decide to stop your application. One thing you’ll almost always want to do
is to inform the user that an error has occurred.

Exiting The Correct Way.

If you decide that you must prematurely end your application, you
should deallocate, release, give back and let go of everything you

Libraries 9 / 12

took to run the application. In other words, you should exit
gracefully.

Closing the Device

Ending Device Access

1.10 19 / / I/O Request Completion / Closing the Device

You end device access by reversing the steps you did to access it. ←↩
This

means you close the device, deallocate the I/O request memory and delete
the message port. In that order!

Closing a device is how you tell Exec that you are finished using a device
and any associated resources. This can result in housecleaning being
performed by the device. However, before you close a device, you might
have to do some housecleaning of your own.

A device is closed by calling the CloseDevice() function. The
CloseDevice() function does not return a value. It has this format:

CloseDevice(IORequest);

where
IORequest
is the I/O request used to open the device.

You should not close a device while there are outstanding I/O requests,
otherwise you can cause major and minor problems. Let’s begin with the
minor problem: memory. If an I/O request is outstanding at the time you
close a device, you won’t be able to reclaim the memory you allocated for
it.

The major problem: the device will try to respond to the I/O request. If
the device tries to respond to an I/O request, and you’ve deleted the
message port (which is covered below), you will probably crash the system.

One solution would be to wait until all I/O requests you sent to the
device return. This is not always practical if you’ve sent a few requests
and the user wants to exit the application immediately.

In that case, the only solution is to abort and remove any outstanding I/O
requests. You do this with the functions AbortIO() and

WaitIO()
. They

must be used together for cleaning up. AbortIO() will abort an I/O
request, but will not prevent a reply message from being sent to the
application requesting the abort. WaitIO() will wait for an I/O request
to complete and remove it from the message port. This is why they must be
used together.

Be Careful With AbortIO()!

Libraries 10 / 12

Do not AbortIO() an I/O request which has not been sent to a
device. If you do, you may crash the system.

1.11 19 / / I/O Request Completion / Ending Device Access

After the device is closed, you must deallocate the I/O request ←↩
memory.

The exact method you use depends on how you allocated the memory in the
first place. For AllocMem() you call FreeMem(), for CreateExtIO() you
call DeleteExtIO(), and for CreateIORequest() you call DeleteIORequest().
If you allocated the I/O request memory at compile time, you naturally
have nothing to free.

Finally, you must delete the message port you created. You delete the
message port by calling DeleteMsgPort() if you used CreateMsgPort(), or
DeletePort() if you used CreatePort().

Here is the checklist for gracefully exiting:

* Abort any outstanding I/O requests with
AbortIO()
.

* Wait for the completion of any outstanding or aborted I/O
requests with

WaitIO()
.

* Close the device with
CloseDevice()
.

* Release the I/O request memory with either DeleteIORequest(),
DeleteExtIO() or FreeMem() (as appropriate).

* Delete the message port with DeleteMsgPort() or DeletePort().

1.12 19 Exec Device I/O / Devices With Functions

Some devices, in addition to their commands, provide library-style
functions which can be directly called by applications. These functions
are documented in the device specific FD files and Autodocs of the Amiga
ROM Kernel Reference Manual: Includes and Autodocs, and in the Devices
volume of this manual set.

Devices with functions behave much like Amiga libraries, i.e., you set up
a base address pointer and call the functions as offsets from the pointer.
See the "Exec Libraries" chapter for more information.

Libraries 11 / 12

The procedure for accessing a device’s functions is as follows:

* Declare the device base address variable in the global data area.
The correct name for the base address can be found in the device’s FD
file.

* Create a message port data structure.

* Create an I/O request data structure.

* Call
OpenDevice()
, passing the I/O request. If OpenDevice() is

successful (returns 0), the address of the device base may be found
in the io_Device field of the I/O request structure. Consult the
include file for the structure you are using to determine the full
name of the io_Device field. The base address is only valid while
the device is open.

* Set the device base address variable to the pointer returned in the
io_Device field.

We will use the timer device to illustrate the above method. The name of
the timer device base address is listed in its FD file as TimerBase.

#include <devices/timer.h>

struct Library *TimerBase; /* device base address pointer */
struct MsgPort *TimerMP; /* message port pointer */
struct timerequest *TimerIO; /* I/O request pointer */

if (TimerMP=CreatePort(NULL,NULL)) /* Create the message port. */
{

/* Create the I/O request. */
if (TimerIO = (struct timerequest *)

CreateExtIO(TimerMP,sizeof(struct timerequest)))
{

/* Open the timer device. */
if (!(OpenDevice(TIMERNAME,UNIT_MICROHZ,TimerIO,0)))
{

/* Set up pointer for timer functions. */
TimerBase = (struct Library *)TimerIO->tr_node.io_Device;

/* Use timer device library-style functions such as /*
/* CmpTime() ...*/

CloseDevice(TimerIO); /* Close the timer device. */
}
else

printf("Error: Could not open %s\n",TIMERNAME);
}
else

printf("Error: Could not create I/O request\n");
}
else

printf("Error: Could not create message port\n");

Libraries 12 / 12

}

1.13 19 Exec Device I/O / Function Reference

The following chart gives a brief description of the Exec ←↩
functions that

control device I/O. See the Amiga ROM Kernel Reference Manual: Includes
and Autodocs for details about each call.

Table 19-4: Exec Device I/O Functions
__
| |
| Exec Device |
| I/O Function Description |
|==|
| CreateIORequest() Create an IORequest structure (V36). |
| DeleteIORequest() Delete an IORequest created by CreateIORequest() |
| (V36). |
| OpenDevice() Gain access to an Exec device. |
| CloseDevice() Close Exec device opened with OpenDevice(). |
| DoIO() Perform a device I/O command and wait for |
| completion. |
| SendIO() Initiate an I/O command. Do not wait for it to |
| complete. |
| CheckIO() Get the status of an IORequest. |
| WaitIO() Wait for completion of an I/O request. |
| AbortIO() Attempt to abort an I/O request that is in |
| progress. |
|__|

Table 19-5: Exec Support Functions in amiga.lib
__
| |
| Function Description |
|==|
| BeginIO() Initiate an asynchronous device I/O request. |
| CreateExtIO() Create an

IORequest
data structure. |

| DeleteExtIO() Free an IORequest structure allocated by |
| CreateExtIO(). |
|__|

	Libraries
	Amiga® RKM Libraries: 19 Exec Device I/O
	19 Exec Device I/O / What is a Device?
	19 Exec Device I/O / Accessing a Device
	19 / Accessing a Device / Creating a Message Port
	19 / Accessing a Device / Creating an I/O Request
	19 / Accessing a Device / Opening a Device
	19 Exec Device I/O / Using a Device
	19 / Using A Device / Synchronous Vs. Asynchronous Requests
	19 / Using A Device / I/O Request Completion
	19 / / I/O Request Completion / Closing the Device
	19 / / I/O Request Completion / Ending Device Access
	19 Exec Device I/O / Devices With Functions
	19 Exec Device I/O / Function Reference

