
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 15 GadTools Library . 1

1.2 15 GadTools Library / Elements of GadTools . 1

1.3 15 / Elements of GadTools / GadTools Tags . 2

1.4 15 GadTools Library / GadTools Menus . 3

1.5 15 / GadTools Menus / The NewMenu Structure . 4

1.6 15 / GadTools Menus / Functions for GadTools Menus . 7

1.7 15 / / Functions for GadTools Menus / Creating Menus . 7

1.8 15 / / Functions for GadTools Menus / Layout of the Menus . 9

1.9 15 / / Functions for GadTools Menus / Layout for Individual Menus . 10

1.10 15 / / Functions for GadTools Menus / Freeing Menus . 11

1.11 15 / GadTools Menus / GadTools Menus and IntuiMessages . 11

1.12 15 / GadTools Menus / Restrictions on GadTools Menus . 12

1.13 15 / GadTools Menus / Language-Sensitive Menus . 12

1.14 15 GadTools Library / GadTools Gadgets . 13

1.15 15 / GadTools Gadgets / The NewGadget Structure . 14

1.16 15 / GadTools Gadgets / Creating Gadgets . 16

1.17 15 / GadTools Gadgets / Handling Gadget Messages . 17

1.18 15 / GadTools Gadgets / IDCMP Flags . 18

1.19 15 / GadTools Gadgets / Freeing Gadgets . 19

1.20 15 / GadTools Gadgets / Modifying Gadgets . 19

1.21 15 / GadTools Gadgets / The Kinds of GadTools Gadgets . 21

1.22 15 / / The Kinds of GadTools Gadgets / Button Gadgets . 21

1.23 15 / / Kinds of GadTools Gadgets / Text-Entry and Number-Entry Gadgets . 22

1.24 15 / / The Kinds of GadTools Gadgets / Checkbox Gadgets . 25

1.25 15 / / The Kinds of GadTools Gadgets / Mutually-Exclusive Gadgets . 25

1.26 15 / / The Kinds of GadTools Gadgets / Cycle Gadgets . 27

1.27 15 / / The Kinds of GadTools Gadgets / Slider Gadgets . 27

1.28 15 / / The Kinds of GadTools Gadgets / Scroller Gadgets . 30

1.29 15 / / The Kinds of GadTools Gadgets / Listview Gadgets . 32

Libraries iv

1.30 15 / / The Kinds of GadTools Gadgets / Palette Gadgets . 34

1.31 15 / / Kinds of GadTools / Text-Display and Numeric-Display Gadgets . 35

1.32 15 / / The Kinds of GadTools Gadgets / Generic Gadgets . 36

1.33 15 / GadTools / Functions for Setting Up GadTools Menus and Gadgets . 37

1.34 15 / / / GetVisualInfo() and FreeVisualInfo() . 37

1.35 15 / / Setting Up GadTools Menus and Gadgets / CreateContext() . 38

1.36 15 / GadTools Gadgets / Creating Gadget Lists . 39

1.37 15 / GadTools Gadgets / Gadget Refresh Functions . 41

1.38 15 / GadTools Gadgets / Other GadTools Functions . 42

1.39 15 / / Other Functions / GT_FilterIMsg() and GT_PostFilterIMsg() . 42

1.40 15 / / Other GadTools Functions / DrawBevelBox() . 44

1.41 15 / GadTools Gadgets / Gadget Keyboard Equivalents . 45

1.42 15 / / Keyboard Equivalents / Denoting a Gadget’s Keyboard Equivalent . 45

1.43 15 / / / Implementing a Gadget’s Keyboard Equivalent Behavior . 46

1.44 15 / GadTools Gadgets / Restrictions on GadTools Gadgets . 48

1.45 15 / GadTools Gadgets / Documented Side-Effects . 49

1.46 15 GadTools Library / Function Reference . 50

Libraries 1 / 51

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 15 GadTools Library

GadTools is a new library in Release 2 that is designed to ←↩
simplify the

task of creating user interfaces with Intuition. GadTools offers a
flexible and varied selection of gadgets and menus to help programmers
through what used to be a difficult chore.

Intuition, the Amiga’s graphical user interface, is a powerful and
flexible environment. It allows a software designer a great degree of
flexibility in creating dynamic and powerful user interfaces. However,
the drawback of this flexibility is that programming even straightforward
user interfaces can be complicated, and certainly difficult for first-time
Intuition programmers.

What the Gadget Toolkit (GadTools) attempts to do is harness the power of
Intuition by providing easy-to-use, high-level chunks of user interface.
GadTools doesn’t pretend to answer all possible user interface needs of
every application but by meeting the user interface needs of most
applications, GadTools greatly simplifies the problem of designing
user-friendly software on the Amiga. (For applications with special
needs, custom solutions can be created with Intuition’s already-familiar
gadgets or its new Boopsi object-oriented custom gadget system; GadTools
is compatible with these.)

Elements of GadTools

GadTools Gadgets

GadTools Menus

Function Reference

1.2 15 GadTools Library / Elements of GadTools

Libraries 2 / 51

GadTools is the easy way to program gadgets and menus. With ←↩
GadTools, the

system handles the detail work required to control gadgets and menus so
the application uses less code and simpler data structures.

Another key benefit of GadTools is its standardized and elegant look. All
applications that use GadTools will share a similar appearance and
behavior. Users will appreciate a sense of instant familiarity even the
first time they use a product.

GadTools provides a significant degree of visual consistency across
multiple applications that use it. For instance, in Release 2, the
Preferences editors, the Workbench "Information" window and Commodities
Exchange share the same polished look and feel thanks to GadTools. There
is also internal consistency between different elements of GadTools; the
look is clean and orderly. Depth is used not just for visual
embellishment, but as an important cue. For instance, the user is free to
select symbols that appear inside a "raised" area, but "recessed" areas
are informational only, and clicking in them has no effect.

GadTools is not amenable to creative post-processing or hacking by
programmers looking to achieve a result other than what GadTools currently
offers. Software developers whose needs extend beyond the standard
features of GadTools should create custom gadgets that share the look and
feel of GadTools by using either BOOPSI or by directly programming gadgets
at a lower level. See the chapters on "Intuition Gadgets" and "BOOPSI"
for more information. Follow the GadTools rules. Only in this way may
GadTools grow and improve without hindrance, even allowing new features to
automatically appear in future software when reasonable.

GadTools Tags

1.3 15 / Elements of GadTools / GadTools Tags

Many of the GadTools functions use TagItem arrays or tag lists to ←↩
pass

information across the function interface. These tag-based functions come
in two types, one that takes a pointer to an array of tag items and one
that takes a variable number of tag item arguments directly in the
function call. In general, the second form, often called the varargs form
because the call takes a variable number of arguments, is provided for
convenience and is internally converted to the first form. When looking
through the Autodocs or other Amiga reference material, the documentation
for both forms is usually available in the array-based function
description.

All GadTools tags begin with a leading "GT". In general, they also have a
two-letter mnemonic for the kind of gadget in question. For example,
slider gadgets recognize tags such as "

GTSL_Level
". The GadTools tags are

defined in <libraries/gadtools.h>. Certain GadTools gadgets also

Libraries 3 / 51

recognize other Intuition tags such as GA_Disabled and PGA_Freedom, which
can be found in <intuition/gadgetclass.h>.

For more information on tags and tag-based functions, be sure to see the
"Utility Library" chapter in this manual.

1.4 15 GadTools Library / GadTools Menus

GadTools menus are easy to use. Armed only with access to a
VisualInfo
data structure, GadTools allows the application to easily create, ←↩

layout
and delete Intuition menus.

Normally, the greatest difficulty in creating menus is that a large number
of structures must be filled out and linked. This is bothersome since
much of the required information is orderly and is easier to do
algorithmically than to do manually. GadTools handles this for you.

There are also many complexities in creating a sensible layout for menus.
This includes some mechanical items such as handling various font sizes,
automatic columnization of menus that are too tall and accounting for
space for checkmarks and Amiga-key equivalents. There are also aesthetic
considerations, such as how much spacing to provide, where sub-menus
should be placed and so on.

GadTools menu functions support all the features that most applications
will need. These include:

* An easily constructed and legible description of the menus.

* Font-sensitive layout.

* Support for menus and sub-menus.

* Sub-menu indicators (a ">>" symbol attached to items with sub-menus).

* Separator bars for sectioning menus.

* Command-key equivalents.

* Checkmarked and mutually exclusive checkmarked menu items.

* Graphical menu items.

With GadTools, it takes only one structure, the
NewMenu
structure, to

specifiy the whole menu bar, For instance, here is how a typical menu
strip containing two menus might be specified:

struct NewMenu mynewmenu[] =
{

{ NM_TITLE, "Project", 0 , 0, 0, 0,},

Libraries 4 / 51

{ NM_ITEM, "Open...", "O", 0, 0, 0,},
{ NM_ITEM, "Save", "S", 0, 0, 0,},
{ NM_ITEM, NM_BARLABEL, 0 , 0, 0, 0,},
{ NM_ITEM, "Print", 0 , 0, 0, 0,},
{ NM_SUB, "Draft", 0 , 0, 0, 0,},
{ NM_SUB, "NLQ", 0 , 0, 0, 0,},
{ NM_ITEM, NM_BARLABEL, 0 , 0, 0, 0,},
{ NM_ITEM, "Quit...", "Q", 0, 0, 0,},

{ NM_TITLE, "Edit", 0 , 0, 0, 0,},
{ NM_ITEM, "Cut", "X", 0, 0, 0,},
{ NM_ITEM, "Copy", "C", 0, 0, 0,},
{ NM_ITEM, "Paste", "V", 0, 0, 0,},
{ NM_ITEM, NM_BARLABEL, 0 , 0, 0, 0,},
{ NM_ITEM, "Undo", "Z", 0, 0, 0,},

{ NM_END, NULL, 0 , 0, 0, 0,},
};

This
NewMenu
specification would produce the two menus below:

Figure 15-1: Two Example Menus

The
NewMenu
arrays are designed to be read easily. The elements in the

NewMenu array appear in the same order as they will appear on-screen.
Unlike the lower-level menu structures described in the "Intuition Menus"
chapter earlier, there is no need to specify sub-menus first, then the
menu items with their sub-menus, and finally the menu headers with their
menu items. The indentation shown above also helps highlight the
relationship between menus, menu items and sub-items.

The NewMenu Structure

GadTools Menus And IntuiMessages
GadTools Menus Example
Restrictions on GadTools Menus

Functions for GadTools Menus

Language-Sensitive Menus

1.5 15 / GadTools Menus / The NewMenu Structure

The NewMenu structure used to specify GadTools menus is defined in
<libraries/gadtools.h> as follows:

struct NewMenu

Libraries 5 / 51

{
UBYTE nm_Type;
STRPTR nm_Label;
STRPTR nm_CommKey;
UWORD nm_Flags;
LONG nm_MutualExclude;
APTR nm_UserData;
};

nm_Type
The first field, nm_Type, defines what this particular NewMenu
describes. The defined types provide an unambiguous and convenient
representation of the application’s menus.

NM_TITLE
Used to signify a textual menu heading. Each NM_TITLE signifies
the start of a new menu within the menu strip.

NM_ITEM or IM_ITEM
Used to signify a textual (NM_ITEM) or graphical (IM_ITEM) menu
item. Each NM_ITEM or IM_ITEM becomes a menu item in the
current menu.

NM_SUB or IM_SUB
Used to signify a textual (NM_SUB) or graphical (IM_SUB) menu
sub-item. All the consecutive NM_SUBs and IM_SUBs that follow a
menu item (NM_ITEM or IM_ITEM) compose that item’s sub-menu. A
subsequent NM_ITEM or IM_ITEM would indicate the start of the
next item in the original menu, while a subsequent NM_TITLE
would begin the next menu.

NM_END
Used to signify the end of the NewMenu structure array. The
last element of the array must have NM_END as its type.

nm_Label
NM_TITLE, NM_ITEM and NM_SUB are used for textual menu headers, menu
items and sub-items respectively, in which case nm_Label points to
the string to be used. This string is not copied, but rather a
pointer to it is kept. Therefore the string must remain valid for
the active life of the menu.

Menus don’t have to use text, GadTools also supports graphical menu
items and sub-items (graphical menu headers are not possible since
they are not supported by Intuition). Simply use IM_ITEM and IM_SUB
instead and point nm_Label at a valid Image structure. The Image
structure can contain just about any graphic image (see the chapter
on "Intuition Images, Line Drawing and Text" for more on this).

Sometimes it is a good idea to put a separator between sets of menu
items or sub-items. The application may want to separate drastic
menu items such as "Quit" or "Delete" from more mundane ones.
Another good idea is to group related checkmarked items by using
separator bars.

NM_BARLABEL
GadTools will provide a separator bar if the special constant

Libraries 6 / 51

NM_BARLABEL is supplied for the nm_Label field of an NM_ITEM or
NM_SUB.

nm_CommKey
A single character string used as the Amiga-key equivalent for the
menu item or sub-item.

Menu headers cannot have command keys. Note that assigning a
command-key equivalent to a menu item that has sub-items is
meaningless and should be avoided.

The nm_CommKey field is a pointer to a string and not a character
itself. This was done in part because routines to support different
languages typically return strings, not characters. The first
character of the string is actually copied into the resulting
MenuItem structure.

nm_Flags
The nm_Flags field of the NewMenu structure corresponds roughly to
the Flags field of the Intuition’s lower-level Menu and MenuItem
structures.

For programmer convenience the sense of the Intuition MENUENABLED and
ITEMENABLED flags are inverted. When using GadTools, menus, menu
items and sub-items are enabled by default.

NM_MENUDISABLED
To specify a disabled menu, set the NM_MENUDISABLED flag in this
field.

NM_ITEMDISABLED
To disable an item or sub-item, set the NM_ITEMDISABLED flag.

The Intuition flag bits COMMSEQ (indication of a command-key
equivalent), ITEMTEXT (indication of a textual or graphical item) and
HIGHFLAGS (method of highlighting) will be automatically set
depending on other attributes of the menus. Do not set these values
in nm_Flags.

The nm_Flags field is also used to specify checkmarked menu items.
To get a checkmark that the user can toggle, set the CHECKIT and
MENUTOGGLE flags in the nm_Flags field. Also set the CHECKED flag if
the item or sub-item is to start in the checked state.

nm_MutualExclude
For specifying mutual exclusion of checkmarked items. All the items
or sub-items that are part of a mutually exclusive set should have
the CHECKIT flag set.

This field is a bit-wise representation of the items (or sub-items),
in the same menu or sub-menu, that are excluded by this item (or
sub-item). In the simple case of mutual exclusion, where each choice
excludes all others, set nm_MutualExclude to ~(1<<item number) or ~1,
~2, ~4, ~8, etc. Separator bars count as items and should be
included in the position calculation. See the "Intuition Menus"
chapter for more details on menu mutual exclusion.

Libraries 7 / 51

nm_UserData
The NewMenu structure also has a user data field. This data is
stored with the Intuition Menu or MenuItem structures that GadTools
creates. Use the macros GTMENU_USERDATA(menu) and
GTMENUITEM_USERDATA(menuitem) defined in <libraries/gadtools.h> to
extract or change the user data fields of menus and menu items,
respectively.

The application may place index numbers in this field and perform a
switch statement on them, instead of using the Intuition menu
numbers. The advantage of this is that the numbers chosen remain
valid even if the menus are rearranged, while the Intuition menu
numbers would change when the menus are rearranged.

Alternately, an efficient technique for menu handling is to create a
handler function for each menu item and put a pointer to that
function in the corresponding item’s UserData field. When the
program receives a IDCMP_MENUPICK message it may call the selected
item’s function through this field.

1.6 15 / GadTools Menus / Functions for GadTools Menus

In this section the basic GadTools menu functions are presented. ←↩
See the

listing above for an example of how to use these functions.

Creating Menus

Layout for Individual Menus

Layout of the Menus

Freeing Menus

1.7 15 / / Functions for GadTools Menus / Creating Menus

The CreateMenus() function takes an array of
NewMenu
s and creates a set of

initialized and linked Intuition Menu, MenuItem, Image and IntuiText
structures, that need only to be formatted before being used. Like the
other tag-based functions, there is a CreateMenusA() call that takes a
pointer to an array of TagItems and a CreateMenus() version that expects
to find its tags on the stack.

struct Menu *CreateMenusA(struct NewMenu *newmenu,
struct TagItem *taglist);

struct Menu *CreateMenus(struct NewMenu *newmenu, Tag tag1, ...);

The first argument to these functions, newmenu, is a pointer to an array

Libraries 8 / 51

of
NewMenu
structures as described earlier. The tag arguments can be any

of the following items:

GTMN_FrontPen (ULONG)
The pen number to use for menu text and separator bars. The default
is zero.

GTMN_FullMenu (BOOL)
(New for V37, ignored under V36). This tag instructs CreateMenus()
to fail if the supplied

NewMenu
structure does not describe a

complete Menu structure. This is useful if the application does not
have direct control over the NewMenu description, for example if it
has user-configurable menus. The default is FALSE.

GTMN_SecondaryError (ULONG *)
(New for V37, ignored under V36). This tag allows CreateMenus() to
return some secondary error codes. Supply a pointer to a
NULL-initialized ULONG, which will receive an appropriate error code
as follows:

GTMENU_INVALID
Invalid menu specification. For instance, a sub-item directly
following a menu-title or an incomplete menu. CreateMenus()
failed in this case, returning NULL.

GTMENU_NOMEM
Failed for lack of memory. CreateMenus() returned NULL.

GTMENU_TRIMMED
The number of menus, items or sub-items exceeded the maximum
number allowed so the menu was trimmed. In this case,
CreateMenus() does not fail but returns a pointer to the trimmed
Menu structure.

NULL
If no error was detected.

CreateMenus() returns a pointer to the first Menu structure created, while
all the MenuItem structures and any other Menu structures are attached
through the appropriate pointers. If the

NewMenu
structure begins with an

entry of type
NM_ITEM
or

IM_ITEM
, then CreateMenus() will return a pointer

to the first MenuItem created, since there will be no first Menu
structure. If the creation fails, usually due to a lack of memory,
CreateMenus() will return NULL.

Starting with V37, GadTools will not create any menus, menu items or
sub-items in excess of the maximum number allowed by Intuition. Up to 31

Libraries 9 / 51

menus may be defined, each menu with up to 63 items, each item with up to
31 sub-items. See the "Intuition Menus" chapter for more information on
menus and their limitations. If the

NewMenu
array describes a menu that

is too big, CreateMenus() will return a trimmed version.
GTMN_SecondaryError can be used to learn when this happens.

Menus need to be added to the window with Intuition’s SetMenuStrip()
function. Before doing this, they must be formatted with a call to

LayoutMenus()
.

1.8 15 / / Functions for GadTools Menus / Layout of the Menus

The Menu and MenuItem structures returned by
CreateMenus()
contain no size

or positional information. This information is added in a separate layout
step, using LayoutMenus(). As with the other tag-based functions, the
program may call either LayoutMenus() or LayoutMenusA().

BOOL LayoutMenusA(struct Menu *firstmenu, APTR vi,
struct TagItem *taglist);

BOOL LayoutMenus(struct Menu *firstmenu, APTR vi, Tag tag1, ...);

Set firstmenu to a pointer to a Menu structure returned by a previous call
to

CreateMenus()
. The vi argument is a a
VisualInfo
handle obtained from

GetVisualInfo()
. See the documentation of GadTools gadgets below for more

about this call. For the tag arguments, tag1 or taglist, LayoutMenus()
recognizes a single tag:

GTMN_TextAttr
A pointer to an openable font (TextAttr structure) to be used for the
menu item and sub-item text. The default is to use the screen’s font.

LayoutMenus() fills in all the size, font and position information for the
menu strip. LayoutMenus() returns TRUE if successful and FALSE if it
fails. The usual reason for failure is that the font supplied cannot be
opened.

LayoutMenus() takes care of calculating the width, height and position of
each individual menu item and sub-item, as well as the positioning of all
menus and sub-menus. In the event that a menu would be too tall for the
screen, it is broken up into multiple columns. Additionally, whole menus
may be shifted left from their normal position to ensure that they fit on
screen. If a large menu is combined with a large font, it is possible,

Libraries 10 / 51

even with columnization and shifting, to create a menu too big for the
screen. GadTools does not currently trim off excess menus, items or
sub-items, but relies on Intuition to clip menus at the edges of the
screen.

It is perfectly acceptable to change the menu layout by calling
ClearMenuStrip() to remove the menus, then LayoutMenus() to make the
change and then SetMenuStrip() to display the new layout. Do this when
changing the menu’s font (this can be handled by a tag to LayoutMenus()),
or when updating the menu’s text (to a different language, for instance).
Run-time language switching in menus will be discussed later.

1.9 15 / / Functions for GadTools Menus / Layout for Individual Menus

LayoutMenuItems() performs the same function as
LayoutMenus()
, but only

affects the menu items and sub-items of a single menu instead of the whole
menu strip. Ordinarily, there is no need to call this function after
having called LayoutMenus(). This function is useful for adding menu
items to an extensible menu, such as the Workbench "Tools" menu.

For example, a single MenuItem can be created by calling
CreateMenus()
with a two-entry
NewMenu
array whose first entry is of type

NM_ITEM
and

whose second is of type
NM_END
. The menu strip may then be removed and

this new item linked to the end of an extensible menu by placing its
address in the NextItem field of the last MenuItem in the menu.
LayoutMenuItems() can then be used to to recalculate the layout of just
the items in the extensible menu and, finally, the menu strip can be
reattached to the window.

BOOL LayoutMenuItemsA(struct MenuItem *firstitem, APTR vi,
struct TagItem *taglist);

BOOL LayoutMenuItems(struct MenuItem *firstitem, APTR vi,
Tag tag1, ...);

Set firstitem to a pointer to the first MenuItem in the linked list of
MenuItems that make up the Menu. (See the "Intuition Menus" chapter for
more about these structures.) Set vi to the address of a

VisualInfo
handle obtained from
GetVisualInfo()
. The tag arguments, tag1 or taglist,

may be set as follows:

GTMN_TextAttr
A pointer to an openable font (TextAttr structure) to be used for the

Libraries 11 / 51

menu item and sub-item text. The default is to use the screen’s font.

GTMN_Menu
Use this tag to provide a pointer to the Menu structure whose
FirstItem is passed as the first parameter to this function. This
tag should always be used.

LayoutMenuItems() returns TRUE if it succeeds and FALSE otherwise.

1.10 15 / / Functions for GadTools Menus / Freeing Menus

The FreeMenus() function frees all the memory allocated by the
corresponding call to

CreateMenus()
.

void FreeMenus(struct Menu *menu);

Its one argument is the Menu or MenuItem pointer that was returned by

CreateMenus()
. It is safe to call FreeMenus() with a NULL parameter, the

function will then return immediately.

1.11 15 / GadTools Menus / GadTools Menus and IntuiMessages

If the window uses GadTools menus and GadTools gadgets, then use ←↩
the

GT_GetIMsg()
and

GT_ReplyIMsg()
functions described below (or

GT_FilterIMsg()
and

GT_PostFilterIMsg()
, if applicable). However, if the

window has GadTools menus, but no GadTools gadgets, it is acceptable to
use GetMsg() and ReplyMsg() in the usual manner.

Additionally, no context need be created with
CreateContext()
if no

GadTools gadgets are used. For more about these functions, see the
section on "

Other GadTools Functions
" later in this chapter.

Libraries 12 / 51

1.12 15 / GadTools Menus / Restrictions on GadTools Menus

GadTools menus are regular Intuition menus. Once the menus have ←↩
been laid

out, the program may do anything with them, including attaching them or
removing them from windows, enabling or disabling items, checking or
unchecking checkmarked menu items, etc. See the documentation for
SetMenuStrip(), ClearMenuStrip(), ResetMenuStrip(), OnMenu() and OffMenu()
in the "Intuition Menus" chapter for full details.

If a GadTools-created menu strip is not currently attached to any window,
the program may change the text in the menu headers (Menu->MenuName), the
command-key equivalents (MenuItem->Command) or the text or imagery of menu
items and sub-items, which can be reached as:

((struct IntuiText *)MenuItem->ItemFill)->IText
or

((struct Image *)MenuItem->ItemFill)

The application may also link in or unlink menus, menu items or sub-items.
However, do not add sub-items to a menu item that was not created with
sub-items and do not remove all the sub-items from an item that was
created with some.

Any of these changes may be made, provided the program subsequently calls

LayoutMenus()
or

LayoutMenuItems()
as appropriate. Then, reattach the

menu strip using SetMenuStrip().

Some of these manipulations require walking the menu strip using the usual
Intuition-specified linkages. Beginning with the first Menu structure,
simply follow its FirstItem pointer to get to the first MenuItem. The
MenuItem->SubItem pointer will lead to the sub-menus. MenuItems are
connected via the MenuItem->NextItem field. Successive menus are linked
together with the Menu->NextMenu pointer. Again, see the chapter
"Intuition Menus" for details.

1.13 15 / GadTools Menus / Language-Sensitive Menus

Allowing the application to switch the language displayed in the ←↩
menus,

can be done quite easily. Simply detach the menu strip and replace the
strings in the IntuiText structures as described above. It may be
convenient to store some kind of index number in the Menu and MenuItem

UserData
which can be used to retrieve the appropriate string for the

desired language. After all the strings have been installed, call

LayoutMenus()

Libraries 13 / 51

and SetMenuStrip().

If the application has the localized strings when the menus are being
created, it simply places the pointers to the strings and command
shortcuts into the appropriate fields of the

NewMenu
structure. The menus

may then be processed in the normal way.

1.14 15 GadTools Library / GadTools Gadgets

The heart of GadTools is in its ability to easily create and ←↩
manipulate a

sophisticated and varied array of gadgets. GadTools supports the
following kinds of gadgets:

Table 15-1: Standard Gadget Types Supported by the GadTools Library

Gadget Type Description or Example Usage
----------- ----------------------------
Button Familiar action gadgets, such as "OK" or "Cancel".
String For text entry.
Integer For numeric entry.
Checkboxes For on/off items.
Mutually exclusive Radio buttons, select one choice among several.
Cycle Multiple-choice, pick one of a small number of

choices.
Sliders To indicate a level within a range.
Scrollers To indicate a position in a list or area.
Listviews Scrolling lists of text.
Palette Color selection.
Text-display Read-only text.
Numeric-display Read-only numbers.

GadTools gadget handling consists of a body of routines to create, manage
and delete any of the 12 kinds of standard gadgets listed in table 15-1,
such as buttons, sliders, mutually exclusive buttons and scrolling lists.

To illustrate the flexibility, power and simplicity that GadTools offers,
consider the GadTools slider gadget. This gadget is used to indicate and
control the level of something, for example volume, speed or color
intensity. Without GadTools, applications have to deal directly with
Intuition proportional and their arcane variables, such as HorizBody to
control the slider knob’s size and HorizPot to control the knob’s
position. Using the GadTools slider allows direct specification of the
minimum and maximum levels of the slider, as well as its current level.
For example, a color slider might have a minimum level of 0, a maximum
level of 15 and a current level of 11.

To simplify event-processing for the slider, GadTools only sends the
application a message when the knob has moved far enough to cause the
slider level, as expressed in application terms, to change. If a user

Libraries 14 / 51

were to slowly drag the knob of this color slider all the way to the
right, the program will only hear messages for levels 12, 13, 14 and 15,
with an optional additional message when the user releases the
mouse-button.

Changing the current level of the slider from within the program is as
simple as specifying the new level in a function call. For instance, the
application might set the slider’s value to 5.

As a final point, the slider is very well-behaved. When the user releases
the mouse-button, the slider immediately snaps to the centered position
for the level. If a user sets their background color to light gray, which
might have red = green = blue = 10, all three color sliders will have
their knobs at precisely the same relative position, instead of anywhere
in the range that means "ten".

The NewGadget Structure

Creating Gadgets

Handling Gadget Messages

IDCMP Flags

Freeing Gadgets
Simple GadTools Gadget Example

Modifying Gadgets

The Kinds of GadTools Gadgets

Functions for Setting Up GadTools Menus and Gadgets

Creating Gadget Lists

Gadget Refresh Functions

Other GadTools Functions

Gadget Keyboard Equivalents
Complete GadTools Gadget Example

Restrictions on GadTools Gadgets

Documented Side-Effects

1.15 15 / GadTools Gadgets / The NewGadget Structure

For most gadgets, the NewGadget structure is used to specify its ←↩
common

attributes. Additional attributes that are unique to specific kinds of
gadgets are specified as tags sent to the

CreateGadget()

Libraries 15 / 51

function
(described below).

The NewGadget structure is defined in <libraries/gadtools.h> as:

struct NewGadget
{
WORD ng_LeftEdge, ng_TopEdge;
WORD ng_Width, ng_Height;
UBYTE *ng_GadgetText;
struct TextAttr *ng_TextAttr;
UWORD ng_GadgetID;
ULONG ng_Flags;
APTR ng_VisualInfo;
APTR ng_UserData;
};

The fields of the NewGadget structure are used as follows:

ng_LeftEdge, ng_TopEdge
Define the position of the gadget being created.

ng_Width and ng_Height
Define the size of the gadget being created.

ng_GadgetText
Most gadgets have an associated label, which might be the text in a
button or beside a checkmark. This field contains a pointer to the
appropriate string. Note that only the pointer to the text is
copied, the text itself is not. The string supplied must remain
constant and valid for the life of the gadget.

ng_TextAttr
The application must specify a font to use for the label and any
other text that may be associated with the gadget.

ng_Flags
Used to describe general aspects of the gadget, which includes where
the label is to be placed and whether the label should be rendered in
the highlight color. The label may be positioned on the left side,
the right side, centered above, centered below or dead-center on the
gadget. For most gadget kinds, the label is placed on the left side
by default, exceptions will be noted.

ng_GadgetID, ng_UserData
These user fields are copied into the resulting Gadget structure.

ng_VisualInfo
This field must contain a pointer to an instance of the

VisualInfo
structure, which contains information needed to create and ←↩

render
GadTools gadgets. The VisualInfo structure itself is private to
GadTools and subject to change. Use the specialized GadTools
functions for accessing the VisualInfo pointer, defined below. Never
access or modify fields within this structure.

Libraries 16 / 51

1.16 15 / GadTools Gadgets / Creating Gadgets

The main call used to create a gadget with GadTools is ←↩
CreateGadget().

This function can be used to create a single gadget or it can be called
repeatedly to create a linked list of gadgets. It takes three arguments
followed by a set of tags:

struct Gadget *CreateGadget(ULONG kind, struct Gadget *prevgad,
struct NewGadget *newgad,
struct TagItem *taglist)

struct Gadget *CreateGadgetA(ULONG kind, struct Gadget *prevgad,
struct NewGadget *newgad,
struct Tag tag1, ...)

Set the kind argument to one of the 12 gadget types supported by GadTools.
Set the prevgad argument to the gadget address returned by

CreateContext()
if this is the first (or only) gadget in the list. Subsequent ←↩

calls to
CreateGadget() can be used to create and link gadgets together in a list
in which case the prevgad argument is set to the address of the gadget
returned by the preceding call to CreateGadget().

Set the newgad argument to the address of the
NewGadget
structure

describing the gadget to be created and set any special attributes for
this gadget type using the tag arguments, tag1 or taglist. For instance,
the following code fragment might be used to create the color slider
discussed earlier:

slidergad = CreateGadget(SLIDER_KIND, newgadget, prevgad,
GTSL_Min, 0,
GTSL_Max, 15,
GTSL_Level, 11,
TAG_END);

CreateGadget() typically allocates and initializes all the necessary
Intuition structures, including in this case the Gadget, IntuiText and
PropInfo structures, as well as certain buffers. For more about these
underlying structures, see the "Intuition Gadgets" chapter.

Since CreateGadget() is a tag-based function, it is easy to add more tags
to get a fancier gadget. For example, GadTools can optionally display the
running level beside the slider. The caller must supply a printf()-style
formatting string and the maximum length that the string will resolve to
when the number is inserted:

slidergad = CreateGadget(SLIDER_KIND, newgadget, prevgad,
GTSL_Min, 0,
GTSL_Max, 15,
GTSL_Level, 11,

Libraries 17 / 51

GTSL_LevelFormat, "%2ld" /* printf()-style formatting string */
GTSL_MaxLevelLen, 2, /* maximum length of string */
TAG_END);

The level, 0 to 15 in this example, would then be displayed beside the
slider. The formatting string could instead be "%2ld/15", so the level
would be displayed as "0/15" through "15/15".

1.17 15 / GadTools Gadgets / Handling Gadget Messages

GadTools gadgets follow the same input model as other Intuition
components. When the user operates a GadTools gadget, Intuition notifies
the application about the input event by sending an IntuiMessage. The
application can get these messages at the Window.UserPort. However
GadTools gadgets use different message handling functions to get and reply
these messages. Instead of the Exec functions GetMsg() and ReplyMsg(),
applications should get and reply these messages through a pair of special
GadTools functions, GT_GetIMsg() and GT_ReplyIMsg().

struct IntuiMessage *GT_GetIMsg(struct MsgPort *iport)
void GT_ReplyIMsg(struct IntuiMessage *imsg)

For GT_GetIMsg(), the iport argument should be set to the window’s
UserPort. For GT_ReplyIMsg(), the imsg argument should be set to a
pointer to the IntuiMessage returned by GT_GetIMsg().

These functions ensure that the application only sees the gadget events
that concern it and in a desirable form. For example, with a GadTools
slider gadget, a message only gets through to the application when the
slider’s level actually changes and that level can be found in the
IntuiMessage’s Code field:

imsg = GT_GetIMsg(win->UserPort);
object = imsg->IAddress;
class = imsg->Class;
code = imsg->Code;
GT_ReplyIMsg(imsg);
switch (class)

{
case IDCMP_MOUSEMOVE:

if (object == slidergad)
{
printf("Slider at level %ld\n", code);
}

...
break;

...
}

In general, the IntuiMessages received from GadTools contain more
information in the Code field than is found in regular Intuition gadget
messages. Also, when dealing with GadTools a lot of messages (mostly
IDCMP_MOUSEMOVEs) do not have to be processed by the application. These
are two reasons why dealing with GadTools gadgets is much easier than

Libraries 18 / 51

dealing with regular Intuition gadgets. Unfortunately this processing
cannot happen magically, so applications must use GT_GetIMsg() and
GT_ReplyIMsg() where they would normally have used GetMsg() and ReplyMsg().

GT_GetIMsg() actually calls GetMsg() to remove a message from the
specified window’s UserPort. If the message pertains to a GadTools gadget
then some dispatching code in GadTools will be called to process the
message. What the program will receive from GT_GetIMsg() is actually a
copy of the real IntuiMessage, possibly with some supplementary
information from GadTools, such as the information typically found in the
Code field.

The GT_ReplyIMsg() call will take care of cleaning up and replying to the
real IntuiMessage.

Warning:

When an IDCMP_MOUSEMOVE message is received from a GadTools gadget,
GadTools arranges to have the gadget’s pointer in the IAddress
field of the IntuiMessage. While this is extremely convenient, it
is also untrue of messages from regular Intuition gadgets (described
in the "Intuition Gadgets" chapter). Do not make the mistake of
assuming it to be true.

This description of the inner workings of GT_GetIMsg() and GT_ReplyIMsg()
is provided for understanding only; it is crucial that the program make no
assumptions or interpretations about the real IntuiMessage. Any such
inferences are not likely to hold true in the future. See the section on

documented side-effects
for more information.

1.18 15 / GadTools Gadgets / IDCMP Flags

The various GadTools gadget types require certain classes of IDCMP
messages in order to work. Applications specify these IDCMP classes when
the window is opened or later with ModifyIDCMP() (see "Intuition Windows"
chapter for more on this). Each kind of GadTools gadget requires
one or more of these IDCMP classes: IDCMP_GADGETUP, IDCMP_GADGETDOWN,
IDCMP_MOUSEMOVE, IDCMP_MOUSEBUTTONS and IDCMP_INTUITICKS. As a
convenience, the IDCMP classes required by each kind of gadget are defined
in <libraries/gadtools.h>. For example, SLIDERIDCMP is defined to be:

#define SLIDERIDCMP (IDCMP_GADGETUP | IDCMP_GADGETDOWN |
IDCMP_MOUSEMOVE)

Always OR the IDCMP Flag Bits.

When specifying the IDCMP classes for a window, never add the
flags together, always OR the bits together. Since many of the
GadTools IDCMP constants have multiple bits set, adding the values
will not lead to the proper flag combination.

Libraries 19 / 51

If a certain kind of GadTools gadget is used, the window must use all
IDCMP classes required by that kind of gadget. Do not omit any that are
given for that class, even if the application does require the message
type.

Because of the way GadTools gadgets are implemented, programs that use
them always require notification about window refresh events. Even if the
application performs no rendering of its own, it may not use the
WFLG_NOCAREREFRESH window flag and must always set IDCMP_REFRESHWINDOW.
See the section on "

Gadget Refresh Functions
" later in this chapter for

more on this.

1.19 15 / GadTools Gadgets / Freeing Gadgets

After closing the window, the gadgets allocated using
CreateGadget()
must

be released. FreeGadgets() is a simple call that will free all the
GadTools gadgets that it finds, beginning with the gadget whose pointer is
passed as an argument.

void FreeGadgets(struct Gadget *gad);

The gad argument is a pointer to the first gadget to be freed. It is safe
to call FreeGadgets() with a NULL gadget pointer, the function will then
return immediately. Before calling FreeGadgets(), the application must
first either remove the gadgets or close the window.

When the gadget passed to FreeGadgets() is the first gadget in a linked
list, the function frees all the GadTools gadgets on the list without
patching pointers or trying to maintain the integrity of the list. Any
non-GadTools gadgets found on the list will not be freed, hence the result
will not necessarily form a nice list since any intervening GadTools
gadgets will be gone.

See the section on "
Creating Gadget Lists
" for more information on using

linked lists of gadgets.

1.20 15 / GadTools Gadgets / Modifying Gadgets

The attributes of a gadget are set up when the gadget is created. ←↩
Some of

these attributes can be changed later by using the GT_SetGadgetAttrs()
function:

void GT_SetGadgetAttrs (struct Gadget *gad, struct Window *win,

Libraries 20 / 51

struct Requester *req, Tag tag1, ...)
void GT_SetGadgetAttrsA(struct Gadget *gad, struct Window *win,

struct Requester *req, struct TagItem *taglist)

The gad argument specifies the gadget to be changed while the win argument
specifies the window the gadget is in. Currently, the req argument is
unused and must be set to NULL.

The gadget attributes are changed by passing tag arguments to these
functions. The tag arguments can be either a set of TagItems on the stack
for GT_SetGadgetAttrs(), or a pointer to an array of TagItems for
GT_SetGadgetAttrsA(). The tag items specify the attributes that are to be
changed for the gadget. Keep in mind though that not every gadget
attribute can be modified this way.

For example, in the slider gadget presented earlier, the level-formatting
string may not be changed after the gadget is created. However, the
slider’s level may be changed to 5 as follows:

GT_SetGadgetAttrs(slidergad, win, req,
GTSL_Level, 5,
TAG_END);

Here are some other example uses of GT_SetGadgetAttrs() to change gadget
attributes after it is created.

/* Disable a button gadget */
GT_SetGadgetAttrs(buttongad, win, NULL,

GA_Disabled, TRUE,
TAG_END);

/* Change a slider’s range to be 1 to 100, currently at 50 */
GT_SetGadgetAttrs(slidergad, win, NULL,

GTSL_Min, 1,
GTSL_Max, 100,
GTSL_Level, 50,
TAG_END);

/* Add a node to the head of listview’s list, and make it */
/* the selected one */
GT_SetGadgetAttrs(listviewgad, win, NULL,

/* detach list before modifying */
GTLV_Labels, ~0,
TAG_END);

AddHead(&lvlabels, &newnode);
GT_SetGadgetAttrs(listviewgad, win, NULL,

/* re-attach list */
GTLV_Labels, &lvlabels,
GTLV_Selected, 0,
TAG_END);

When changing a gadget using these functions, the gadget will
automatically update its visuals. No refresh is required, nor should any
refresh call be performed.

Warning:

Libraries 21 / 51

The GT_SetGadgetAttrs() functions may not be called inside of a

GT_BeginRefresh()/GT_EndRefresh()
pair. This is true of Intuition

gadget functions generally, including those discussed in the
"Intuition Gadgets" chapter.

In the sections that follow all the possible attributes for each kind of
gadget are discussed. The tags are also described in the Autodocs for
GT_SetGadgetAttrs() in the Amiga ROM Kernel Reference Manual: Includes and
Autodocs.

Important:

Tags that can only be sent to

CreateGadget()
and not to

GT_SetGadgetAttrs() will be marked as create only in the
discussion that follows. Those that are valid parameters to both
functions will be marked as create and set.

1.21 15 / GadTools Gadgets / The Kinds of GadTools Gadgets

This section discusses the unique features of each kind of gadget
supported by the GadTools library.

Button Gadgets

Text-Entry and Number-Entry Gadgets

Checkbox Gadgets

Mutually-Exclusive Gadgets

Cycle Gadgets

Slider Gadgets

Scroller Gadgets

Listview Gadgets

Palette Gadgets

Text-Display and Numeric-Display Gadgets

Generic Gadgets

1.22 15 / / The Kinds of GadTools Gadgets / Button Gadgets

Libraries 22 / 51

Button gadgets (BUTTON_KIND) are perhaps the simplest kind of GadTools
gadget. Button gadgets may be used for objects like the "OK" and "Cancel"
buttons in requesters. GadTools will create a hit-select button with a
raised bevelled border. The label supplied will be centered on the
button’s face. Since the label is not clipped, be sure that the gadget is
large enough to contain the text supplied.

Button gadgets recognize only one tag:

GA_Disabled (BOOL)
Set this attribute to TRUE to disable or ghost the button gadget, to
FALSE otherwise. The default is FALSE. (Create and set.)

When the user selects a button gadget, the program will receive an
IDCMP_GADGETUP event.

If clicking on a button causes a requester to appear, for example a button
that brings up a color requester, then the button text should end in
ellipsis (...), as in "Quit..."

1.23 15 / / Kinds of GadTools Gadgets / Text-Entry and Number-Entry Gadgets

Text-entry (STRING_KIND) and number-entry (INTEGER_KIND) gadgets ←↩
are

fairly typical Intuition string gadgets. The typing area is contained by
a border which is a raised ridge.

Text-entry gadgets accept the following tags:

GTST_String (STRPTR)
A pointer to the string to be placed into the text-entry gadget
buffer or NULL to get an empty text-entry gadget. The string itself
is actually copied into the gadget’s buffer. The default is NULL.
(Create and set.)

GTST_MaxChars (UWORD)
The maximum number of characters that the text-entry gadget should
hold. The string buffer that gets created for the gadget will
actually be one bigger than this number, in order to hold the
trailing NULL. The default is 64. (Create only.)

Number-entry gadgets accept the following tags:

GTIN_Number (ULONG)
The number to be placed into the number-entry gadget. The default is
zero. (Create and set.)

GTIN_MaxChars (UWORD)
The maximum number of digits that the number-entry gadget should
hold. The string buffer that gets created for the gadget will
actually be one bigger than this, in order to hold the trailing NULL.
The default is 10. (Create only.)

Libraries 23 / 51

Both text-entry and number-entry gadgets, which are collectively called
string gadgets, accept these common tags:

STRINGA_Justification
This attribute controls the placement of the string or number within
its box and can be one of GACT_STRINGLEFT, GACT_STRINGRIGHT or
GACT_STRINGCENTER. The default is GACT_STRINGLEFT. (Create only.)

STRINGA_ReplaceMode (BOOL)
Set STRINGA_ReplaceMode to TRUE to get a string gadget which is in
replace-mode, as opposed to auto-insert mode. (Create only.)

GA_Disabled (BOOL)
Set this attribute to TRUE to disable the string gadget, otherwise to
FALSE. The default is FALSE. (Create and set.)

STRINGA_ExitHelp (BOOL)
(New for V37, ignored under V36). Set this attribute to TRUE if the
application wants to hear the Help key from within this string
gadget. This feature allows the program to hear the press of the
Help key in all cases. If TRUE, pressing the help key while this
gadget is active will terminate the gadget and send a message. The
program will receive an IDCMP_GADGETUP message having a Code value of
0x5F, the rawkey code for Help. Typically, the program will want to
reactivate the gadget after performing the help-display. The default
is FALSE. (Create only.)

GA_TabCycle (BOOL)
(New for V37, ignored under V36). If the user types Tab or Shift Tab
into a GA_TabCycle gadget, Intuition will activate the next or
previous such gadget in sequence. This gives the user easy keyboard
control over which text-entry or number-entry gadget is active. Tab
moves to the next GA_TabCycle gadget in the gadget list and Shift Tab
moves to the previous one. When the user presses Tab or Shift Tab,
Intuition will deactivate the gadget and send this program an
IDCMP_GADGETUP message with the code field set to 0x09, the ASCII
value for a tab. Intuition will then activate the next indicated
gadget. Check the shift bits of the qualifier field to learn if
Shift Tab was typed. The ordering of the gadgets may only be
controlled by the order in which they were added to the window. For
special cases, for example, if there is only one string gadget in the
window, this feature can be suppressed by specifying the tagitem pair
{GA_TabCycle, FALSE}. The default is TRUE. (Create only.)

GTST_EditHook (struct Hook *)
(New for V37, ignored under V36). Pointer to a custom editing hook
for this string or integer gadget. See the "Intuition Gadgets"
chapter for more information on string gadget edit-hooks.

As with all Intuition string gadgets, the program will receive an
IDCMP_GADGETUP message only when the user presses Enter, Return, Help, Tab
or Shift Tab while typing in the gadget. Note that, like Intuition string
gadgets, the program will not hear anything if the user deactivates the
string gadget by clicking elsewhere. Therefore, it is a good idea to
always check the string gadget’s buffer before using its contents, instead
of just tracking its value as IDCMP_GADGETUP messages are received for

Libraries 24 / 51

this gadget.

Be sure the code is designed so that nothing drastic happens, like closing
a requester or opening a file, if the IDCMP_GADGETUP message has a
non-zero Code field; the program will want to handle the Tab and Help
cases intelligently.

To read the string gadget’s buffer, look at the Gadget’s StringInfo Buffer:

((struct StringInfo *)gad->SpecialInfo)->Buffer

To determine the value of an integer gadget, look at the Gadget’s
StringInfo LongInt in the same way.

Always use the GTST_String or GTIN_Number tags to set these values. Never
write to the StringInfo->Buffer or StringInfo->LongInt fields directly.

GadTools string and integer gadgets do not directly support the
GA_Immediate property (which would cause Intuition to send an
IDCMP_GADGETDOWN event when such a gadget is first selected). However,
this property can be very important. Therefore, the following technique
can be used to enable this property.

Warning:

Note that the technique shown here relies on directly setting flags
in a GadTools gadget; this is not normally allowed since it hinders
future compatibility. Do not attempt to change other flags or
properties of GadTools gadgets except through the defined interfaces
of

CreateGadgetA()
and

GT_SetGadgetAttrsA()
. Directly modifying

flags or properties is legal only when officially sanctioned by
Commodore.

To get the GA_Immediate property, pass the {GA_Immediate,TRUE} tag to

CreateGadgetA()
. Even though this tag is ignored for string and integer

gadgets under V37, this will allow future versions of GadTools to learn of
your request in the correct way. Then, under V37 only, set the
GACT_IMMEDIATE flag in the gadget’s Activation field:

gad = CreateGadget(STRING_KIND, gad, &ng,
/* string gadget tags go here */
GTST_...,

/* Add this tag for future GadTools releases */
GA_Immediate, TRUE,
...
TAG_DONE);

if ((gad) && (GadToolsBase->lib_Version == 37))
{

/* Under GadTools V37 only, set this attribute

Libraries 25 / 51

* directly. Do not set this attribute under

* future versions of GadTools, or for gadgets

* other than STRING_KIND or INTEGER_KIND.

*/
gad->Activation |= GACT_IMMEDIATE;

}

1.24 15 / / The Kinds of GadTools Gadgets / Checkbox Gadgets

Checkboxes (CHECKBOX_KIND) are appropriate for presenting options ←↩
which

may be turned on or off. This kind of gadget consists of a raised box
which contains a checkmark if the option is selected or is blank if the
option is not selected. Clicking on the box toggles the state of the
checkbox.

The width and height of a checkbox are currently fixed (to 26x11). If
variable-sized checkboxes are added in the future, they will be done in a
compatible manner. Currently the width and height specified in the

NewGadget
structure are ignored.

The checkbox may be controlled with the following tags:

GTCB_Checked (BOOL)
Set this attribute to TRUE to set the gadget’s state to checked. Set
it to FALSE to mark the gadget as unchecked. The default is FALSE.
(Create and set.)

GA_Disabled (BOOL)
Set this attribute to TRUE to disable the checkbox, to FALSE
otherwise. The default is FALSE. (Create and set.)

When the user selects a checkbox, the program will receive an IntuiMessage
with a class of IDCMP_GADGETUP. As this gadget always toggles, the
program can easily track the state of the gadget. Feel free to read the
Gadget->Flags GFLG_SELECTED bit. Note, however, that the Gadget structure
itself is not synchronized to the IntuiMessages received. If the user
clicks a second time, the GFLG_SELECTED bit can toggle again before the
program gets a chance to read it. This is true of any of the dynamic
fields of the Gadget structure, and is worth being aware of, although only
rarely will an application have to account for it.

1.25 15 / / The Kinds of GadTools Gadgets / Mutually-Exclusive Gadgets

Use mutually exclusive gadgets (MX_KIND), or radio buttons, when ←↩
the user

must choose only one option from a short list of possibilities. Mutually
exclusive gadgets are appropriate when there are a small number of

Libraries 26 / 51

choices, perhaps eight or less.

A set of mutually exclusive gadgets consists of a list of labels and
beside each label, a small raised oval that looks like a button. Exactly
one of the ovals is recessed and highlighted, to indicate the selected
choice. The user can pick another choice by clicking on any of the raised
ovals. This choice will become active and the previously selected choice
will become inactive. That is, the selected oval will become recessed
while the previous one will pop out, like the buttons on a car radio.

Mutually exclusive gadgets recognize these tags:

GTMX_Labels (STRPTR *)
A NULL-pointer-terminated array of strings which are to be the labels
beside each choice in the set of mutually exclusive gadgets. This
array determines how many buttons are created. This array must be
supplied to

CreateGadget()
and may not be changed. The strings

themselves must remain valid for the lifetime of the gadget. (Create
only.)

GTMX_Active (UWORD)
The ordinal number, counting from zero, of the active choice of the
set of mutually exclusive gadgets. The default is zero. (Create and
set.)

GTMX_Spacing (UWORD)
The amount of space, in pixels, that will be placed between
successive choices in a set of mutually exclusive gadgets. The
default is one. (Create only.)

When the user selects a new choice from a set of mutually exclusive
gadgets, the program will receive an IDCMP_GADGETDOWN IntuiMessage. Look
in the IntuiMessage’s Code field for the ordinal number of the new active
selection.

The
ng_GadgetText
field of the

NewGadget
structure is ignored for mutually

exclusive gadgets. The text position specified in
ng_Flags

determines
whether the item labels are placed to the left or the right of the radio
buttons themselves. By default, the labels appear on the left. Do not
specify PLACETEXT_ABOVE, PLACETEXT_BELOW or PLACETEXT_IN for this kind of
gadget.

Like the checkbox, the size of the radio button is currently fixed, and
the dimensions supplied in the

NewGadget
structure are ignored. If in the

future the buttons are made scalable, it will be done in a compatible
manner. Currently, mutually exclusive gadgets may not be disabled.

Libraries 27 / 51

1.26 15 / / The Kinds of GadTools Gadgets / Cycle Gadgets

Like mutually exclusive gadgets, cycle gadgets (CYCLE_KIND) allow ←↩
the user

to choose exactly one option from among several.

The cycle gadget appears as a raised rectangular button with a vertical
divider near the left side. A circular arrow glyph appears to the left of
the divider, while the current choice appears to the right. Clicking on
the cycle gadget advances to the next choice, while shift-clicking on it
changes it to the previous choice.

Cycle gadgets are more compact than mutually exclusive gadgets, since only
the current choice is displayed. They are preferable to mutually
exclusive gadgets when a window needs to have several such gadgets as in
the PrinterGfx Preferences editor, or when there is a medium number of
choices. If the number of choices is much more than about a dozen, it may
become too frustrating and inefficient for the user to find the desired
choice. In that case, use a listview (scrolling list) instead.

The tags recognized by cycle gadgets are:

GTCY_Labels (STRPTR *)
Like

GTMX_Labels
, this tag is associated with a

NULL-pointer-terminated array of strings which are the choices that
this gadget allows. This array must be supplied to

CreateGadget()
,

and can only be changed starting in V37. The strings themselves must
remain valid for the lifetime of the gadget. (Create only (V36),
Create and set (V37).)

GTCY_Active (UWORD)
The ordinal number, counting from zero, of the active choice of the
cycle gadget. The default is zero. (Create and set.)

GA_Disabled (BOOL)
(New for V37, ignored by V36.) Set this attribute to TRUE to disable
the cycle gadget, to FALSE otherwise. The default is FALSE. (Create
and set.)

When the user clicks or shift-clicks on a cycle gadget, the program will
receive an IDCMP_GADGETUP IntuiMessage. Look in the Code field of the
IntuiMessage for the ordinal number of the new active selection.

1.27 15 / / The Kinds of GadTools Gadgets / Slider Gadgets

Libraries 28 / 51

Sliders are one of the two kinds of proportional gadgets offered by
GadTools. Slider gadgets (SLIDER_KIND) are used to control an amount, a
level or an intensity, such as volume or color. Scroller gadgets
(SCROLLER_KIND) are discussed below.

Slider gadgets accept the following tags:

GTSL_Min (WORD)
The minimum level of a slider. The default is zero. (Create and
set.)

GTSL_Max (WORD)
The maximum level of a slider. The default is 15. (Create and set.)

GTSL_Level (WORD)
The current level of a slider. The default is zero. When the level is
at its minimum, the knob will be all the way to the left for a
horizontal slider or all the way at the bottom for a vertical slider.
Conversely, the maximum level corresponds to the knob being to the
extreme right or top. (Create and set.)

GTSL_LevelFormat (STRPTR)
The current level of the slider may be displayed in real-time
alongside the gadget. To use the level-display feature, the program
must be using a monospace font for this gadget.

GTSL_LevelFormat specifies a printf()-style formatting string used to
render the slider level beside the slider (the complete set of
formatting options is described in the Exec library function
RawDoFmt()). Be sure to use the ‘l’ (long word) modifier for the
number. Field-width specifiers may be used to ensure that the
resulting string is always of constant width. The simplest would be
"%2ld". A 2-digit hexadecimal slider might use "%02lx", which adds
leading zeros to the number. Strings with extra text, such as "%3ld
hours", are permissible. If this tag is specified, the program must
also provide GTSL_MaxLevelLen. By default, the level is not
displayed. (Create only.)

GTSL_MaxLevelLen (UWORD)
The maximum length of the string that will result from the given
level-formatting string. If this tag is specified, the program must
also provide GTSL_LevelFormat. By default, the level is not
displayed. (Create only.)

GTSL_LevelPlace
To choose where the optional display of the level is positioned. It
must be one of PLACETEXT_LEFT, PLACETEXT_RIGHT, PLACETEXT_ABOVE or
PLACETEXT_BELOW. The level may be placed anywhere with the following
exception: the level and the label may not be both above or both
below the gadget. To place them both on the same side, allow space
in the gadget’s label (see the example). The default is
PLACETEXT_LEFT. (Create only.)

GTSL_DispFunc (LONG (*function)(struct Gadget *, WORD))
Optional function to convert the level for display. A slider to
select the number of colors for a screen may operate in screen depth

Libraries 29 / 51

(1 to 5, for instance), but actually display the number of colors (2,
4, 8, 16 or 32). This may be done by providing a GTSL_DispFunc
function which returns 1 << level. The function must take a pointer
to the Gadget as the first parameter and the level, a WORD, as the
second and return the result as a LONG. The default behavior for
displaying a level is to do so without any conversion. (Create only.)

GA_Immediate (BOOL)
Set this to TRUE to receive an IDCMP_GADGETDOWN IntuiMessage when the
user presses the mouse button over the slider. The default is FALSE.
(Create only.)

GA_RelVerify (BOOL)
Set this to TRUE to receive an IDCMP_GADGETUP IntuiMessage when the
user releases the mouse button after using the slider. The default
is FALSE. (Create only.)

PGA_Freedom
Specifies which direction the knob may move. Set to LORIENT_VERT for
a vertical slider or LORIENT_HORIZ for a horizontal slider. The
default is LORIENT_HORIZ. (Create only.)

GA_Disabled (BOOL)
Set this attribute to TRUE to disable the slider, to FALSE otherwise.
The default is FALSE. (Create and set.)

Up to three different classes of IntuiMessage may be received at the port
when the user plays with a slider, these are IDCMP_MOUSEMOVE,
IDCMP_GADGETUP and IDCMP_GADGETDOWN. The program may examine the
IntuiMessage Code field to discover the slider’s level.

IDCMP_MOUSEMOVE IntuiMessages will be heard whenever the slider’s level
changes. IDCMP_MOUSEMOVE IntuiMessages will not be heard if the knob has
not moved far enough for the level to actually change. For example if the
slider runs from 0 to 15 and is currently set to 12, if the user drags the
slider all the way up the program will hear no more than three
IDCMP_MOUSEMOVEs, one each for 13, 14 and 15.

If {GA_Immediate, TRUE} is specified, then the program will always hear an
IDCMP_GADGETDOWN IntuiMessage when the user begins to adjust a slider. If
{GA_RelVerify, TRUE} is specified, then the program will always hear an
IDCMP_GADGETUP IntuiMessage when the user finishes adjusting the slider.
If IDCMP_GADGETUP or IDCMP_GADGETDOWN IntuiMessages are requested, the
program will always hear them, even if the level has not changed since the
previous IntuiMessage.

Note that the Code field of the IntuiMessage structure is a UWORD, while
the slider’s level may be negative, since it is a WORD. Be sure to copy
or cast the IntuiMessage->Code into a WORD if the slider has negative
levels.

If the user clicks in the container next to the knob, the slider level
will increase or decrease by one. If the user drags the knob itself, then
the knob will snap to the nearest integral position when it is released.

Here is an example of the screen-depth slider discussed earlier:

Libraries 30 / 51

/* NewGadget initialized here. Note the three spaces

* after "Slider:", to allow a blank plus the two digits

* of the level display

*/
ng.ng_Flags = PLACETEXT_LEFT;
ng.ng_GadgetText = "Slider: ";

LONG DepthToColors(struct Gadget *gad, WORD level)
{
return ((WORD)(1 << level));
}

...

gad = CreateGadget(SLIDER_KIND, gad, &ng,
GTSL_Min, 1,
GTSL_Max, 5,
GTSL_Level, current_depth,
GTSL_MaxLevelLen, 2,
GTSL_LevelFormat, "%2ld",
GTSL_DispFunc, DepthToColors,
TAG_END);

1.28 15 / / The Kinds of GadTools Gadgets / Scroller Gadgets

Scrollers (SCROLLER_KIND) bear some similarity to sliders, but are used
for a quite different job: they allow the user to adjust the position of a
limited view into a larger area. For example, Workbench’s windows have
scrollers that allow the user to see icons that are outside the visible
portion of a window. Another example is a scrolling list in a file
requester which has a scroller that allows the user to see different parts
of the whole list.

A scroller consists of a proportional gadget and usually also has a pair
of arrow buttons.

While the slider deals in minimum, maximum and current level, the scroller
understands Total, Visible and Top. For a scrolling list, Total would be
the number of items in the entire list, Visible would be the number of
lines visible in the display area and Top would be the number of the first
line displayed in the visible part of the list. Top would run from zero
to Total - Visible. For an area-scroller such as those in Workbench’s
windows, Total would be the height (or width) of the whole area, Visible
would be the visible height (or width) and Top would be the top (or left)
edge of the visible part.

Note that the position of a scroller should always represent the position
of the visible part of the project and never the position of a cursor or
insertion point.

Scrollers respect the following tags:

GTSC_Top (WORD)
The top line or position visible in the area that the scroller
represents. The default is zero. (Create and set.)

Libraries 31 / 51

GTSC_Total (WORD)
The total number of lines or positions that the scroller represents.
The default is zero. (Create and set.)

GTSC_Visible (WORD)
The visible number of lines or positions that the scroller
represents. The default is two. (Create and set.)

GTSC_Arrows (UWORD)
Asks for arrow gadgets to be attached to the scroller. The value
supplied will be used as the width of each arrow button for a
horizontal scroller or the height of each arrow button for a vertical
scroller, the other dimension will be set by GadTools to match the
scroller size. It is generally recommend that arrows be provided.
The default is no arrows. (Create only.)

GA_Immediate (BOOL)
Set this to TRUE to receive an IDCMP_GADGETDOWN IntuiMessage when the
user presses the mouse button over the scroller. The default is
FALSE. (Create only.)

GA_RelVerify (BOOL)
Set this to TRUE to receive an IDCMP_GADGETUP IntuiMessage when the
user releases the mouse button after using the scroller. The default
is FALSE. (Create only.)

PGA_Freedom
Specifies which direction the knob may move. Set to LORIENT_VERT for
a vertical scroller or LORIENT_HORIZ for a horizontal scroller. The
default is LORIENT_HORIZ. (Create only.)

GA_Disabled (BOOL)
Set this attribute to TRUE to disable the scroller, to FALSE
otherwise. The default is FALSE. (Create and set.)

The IntuiMessages received for a scroller gadget are the same in nature as
those for a slider defined above, including the fact that messages are
only heard by the program when the knob moves far enough for the Top value
to actually change. The Code field of the IntuiMessage will contain the
new Top value of the scroller.

If the user clicks on an arrow gadget, the scroller moves by one unit. If
the user holds the button down over an arrow gadget, it repeats.

If the user clicks in the container next to the knob, the scroller will
move by one page, which is the visible amount less one. This means that
when the user pages through a scrolling list, any pair of successive views
will overlap by one line. This helps the user understand the continuity
of the list. If the program is using a scroller to pan through an area
then there will be an overlap of one unit between successive views. It is
recommended that Top, Visible and Total be scaled so that one unit
represents about five to ten percent of the visible amount.

Libraries 32 / 51

1.29 15 / / The Kinds of GadTools Gadgets / Listview Gadgets

Listview gadgets (LISTVIEW_KIND) are scrolling lists. They ←↩
consist of a

scroller with arrows, an area where the list itself is visible and
optionally a place where the current selection is displayed, which may be
editable. The user can browse through the list using the scroller or its
arrows and may select an entry by clicking on that item.

There are a number of tags that are used with listviews:

GTLV_Labels (struct List *)
An Exec list whose nodes’ ln_Name fields are to be displayed as items
in the scrolling list. If the list is empty, an empty List structure
or a NULL value may be used for GTLV_Labels. This tag accepts a
value of "~0" to detach the list from the listview, defined below.
The default is NULL. (Create and set.)

GTLV_Top (UWORD)
The ordinal number of the top item visible in the listview. The
default is zero. (Create and set.)

GTLV_ReadOnly (BOOL)
Set this to TRUE for a read-only listview, which the user can browse,
but not select items from. A read-only listview can be recognized
because the list area is recessed, not raised. The default is FALSE.
(Create only.)

GTLV_ScrollWidth (UWORD)
The width of the scroller to be used in the listview. Any value
specified must be reasonably bigger than zero. The default is 16.
(Create only.)

GTLV_ShowSelected (struct Gadget *)
Use this tag to show the currently selected entry displayed
underneath the listview. Set its value to NULL to get a read-only
(

TEXT_KIND
) display of the currently selected entry or set it to a

pointer to an already-created GadTools
STRING_KIND
gadget to allow

the user to directly edit the current entry. By default, there is no
display of the currently selected entry. (Create only.)

GTLV_Selected (UWORD)
Ordinal number of the item to be placed into the display of the
current selection under the listview. This tag is ignored if
GTLV_ShowSelected is not used. Set it to "~0" to have no current
selection. The default is "~0". (Create and set.)

LAYOUTA_Spacing (UWORD)
Extra space, in pixels, to be placed between the entries in the
listview. The default is zero. (Create only.)

The program will only hear from a listview when the user selects an item

Libraries 33 / 51

from the list. The program will then receive an IDCMP_GADGETUP
IntuiMessage. This message will contain the ordinal number of the item
within the list that was selected in the Code field of the message. This
number is independent of the displayed listview, it is the offset from the
start of the list of items.

If the program attaches a display gadget by using the TagItem
{GTLV_ShowSelected, NULL}, then whenever the user clicks on an entry in
the listview it will be copied into the display gadget.

If the display gadget is to be editable, then the program must first
create a GadTools

STRING_KIND
gadget whose width matches the width of the

listview. The TagItem {GTLV_ShowSelected, stringgad} is used to install
the editable gadget, where stringgad is the pointer returned by

CreateGadget()
. When the user selects any entry from the listview, it

gets copied into the string gadget. The user can edit the string and the
program will hear normal string gadget IDCMP_GADGETUP messages from the
STRING_KIND gadget.

The Exec List and its Node structures may not be modified while they are
attached to the listview, since the list might be needed at any time. If
the program has prepared an entire new list, including a new List
structure and all new nodes, it may replace the currently displayed list
in a single step by calling

GT_SetGadgetAttrs()
with the TagItem

{GTLV_Labels, newlist}. If the program needs to operate on the list that
has already been passed to the listview, it should detach the list by
setting the GTLV_Labels attribute to "~0". When done modifying the list,
resubmit it by setting GTLV_Labels to once again point to it. This is
better than first setting the labels to NULL and later back to the list,
since setting GTLV_Labels to NULL will visually clear the listview. If
the GTLV_Labels attribute is set to "~0", the program is expected to set
it back to something determinate, either a list or NULL, soon after.

The height specified for the listview will determine the number of lines
in the list area. When creating a listview, it will be no bigger than the
size specified in the

NewGadget
structure. The size will include the

current-display gadget, if any, that has been requested via the
GTLV_ShowSelected tag. The listview may end up being less tall than the
application asked for, since the calculated height assumes an integral
number of lines in the list area.

By default, the gadget label will be placed above the listview. This may
be overridden using

ng_Flags
.

Currently, a listview may not be disabled.

Libraries 34 / 51

1.30 15 / / The Kinds of GadTools Gadgets / Palette Gadgets

Palette gadgets (PALETTE_KIND) let the user pick a color from a ←↩
set of

several. A palette gadget consists of a number of colored squares, one
for each color available. There may also be an optional indicator square
which is filled with the currently selected color. To create a color
editor, a palette gadget would be combined with some sliders to control
red, green and blue components, for example.

Palette gadgets use the following tags:

GTPA_Depth (UWORD)
The number of bitplanes that the palette represents. There will be 1
<< depth squares in the palette gadget. The default is one. (Create
only.)

GTPA_Color (UBYTE)
The selected color of the palette. The default is one. (Create and
set.)

GTPA_ColorOffset (UBYTE)
The first color to use in the palette. For example, if GTPA_Depth is
two and GTPA_ColorOffset is four, then the palette will have squares
for colors four, five, six and seven. The default is zero. (Create
only.)

GTPA_IndicatorWidth (UWORD)
The desired width of the current-color indicator. By specifying this
tag, the application is asking for an indicator to be placed to the
left of the color selection squares. The indicator will be as tall
as the gadget itself. By default there is no indicator. (Create
only.)

GTPA_IndicatorHeight (UWORD)
The desired height of the current-color indicator. By specifying
this tag, the application is asking for an indicator to be placed
above the color selection squares. The indicator will be as wide as
the gadget itself. By default there is no indicator. (Create only.)

GA_Disabled (BOOL)
Set this attribute to TRUE to disable the palette gadget, to FALSE
otherwise. The default is FALSE. (Create and set.)

An IDCMP_GADGETUP IntuiMessage will be received when the user selects a
color from the palette. The current-color indicator is recessed,
indicating that clicking on it has no effect.

If the palette is wide and not tall, use the GTPA_IndicatorWidth tag to
put the indicator on the left. If the palette is tall and narrow, put the
indicator on top using GTPA_IndicatorHeight.

By default, the gadget’s label will go above the palette gadget, unless
GTPA_IndicatorWidth is specified, in which case the label will go on the
left. In either case, the default may be overridden by setting the
appropriate flag in the

Libraries 35 / 51

NewGadget
’s
ng_Flags
field.

The size specified for the palette gadget will determine how the area is
subdivided to make the individual color squares. The actual size of the
palette gadget will be no bigger than the size given, but it can be
smaller in order to make the color squares all exactly the same size.

1.31 15 / / Kinds of GadTools / Text-Display and Numeric-Display Gadgets

Text-display (TEXT_KIND) and numeric-display (NUMBER_KIND) gadgets ←↩
are

read-only displays of information. They are useful for displaying
information that is not editable or selectable, while allowing the
application to use the GadTools formatting and visuals. Conveniently, the
visuals are automatically refreshed through normal GadTools gadget
processing. The values displayed may be modified by the program in the
same way other GadTools gadgets may be updated.

Text-display and number-display gadgets consist of a fixed label (the one
supplied as the

NewGadget
’s
ng_GadgetText
), as well as a changeable string

or number (GTTX_Text or GTNM_Number respectively). The fixed label is
placed according to the PLACETEXT_ flag chosen in the NewGadget

ng_Flags
field. The variable part is aligned to the left-edge of the ←↩

gadget.

Text-display gadgets recognize the following tags:

GTTX_Text (STRPTR)
Pointer to the string to be displayed or NULL for no string. The
default is NULL. (Create and set.)

GTTX_Border (BOOL)
Set to TRUE to place a recessed border around the displayed string.
The default is FALSE. (Create only.)

GTTX_CopyText (BOOL)
This flag instructs the text-display gadget to copy the supplied
GTTX_Text string instead of using only a pointer to the string. This
only works for the value of GTTX_Text set at

CreateGadget()
time. If

GTTX_Text is changed, the new text will be referenced by pointer, not
copied. Do not use this tag without a non-NULL GTTX_Text. (Create
only.)

Libraries 36 / 51

Number-display gadgets have the following tags:

GTNM_Number (LONG)
The number to be displayed. The default is zero. (Create or set.)

GTNM_Border (BOOL)
Set to TRUE to place a recessed border around the displayed number.
The default is FALSE. (Create only.)

Since they are not selectable, text-display and numeric-display gadgets
never cause IntuiMessages to be sent to the application.

1.32 15 / / The Kinds of GadTools Gadgets / Generic Gadgets

If the application requires a specialized gadget which does not ←↩
fit into

any of the defined GadTools kinds but would still like to use the GadTools
gadget creation and deletion functions, it may create a GadTools generic
gadget and use it any way it sees fit. In fact, all of the kinds of
GadTools gadgets are created out of GadTools GENERIC_KIND gadgets.

The gadget that gets created will heed almost all the information
contained in the

NewGadget
structure supplied.

If
ng_GadgetText
is supplied, the Gadget’s GadgetText will point to an

IntuiText structure with the provided string and font. However, do not
specify any of the PLACETEXT

ng_Flags
, as they are currently ignored by

GENERIC_KIND gadgets. PLACETEXT flags may be supported by generic
GadTools gadgets in the future.

It is up to the program to set the Flags, Activation, GadgetRender,
SelectRender, MutualExclude and SpecialInfo fields of the Gadget structure.

The application must also set the GadgetType field, but be certain to
preserve the bits set by

CreateGadget()
. For instance, to make a gadget

boolean, use:

gad->GadgetType |= GTYP_BOOLGADGET;

and not

gad->GadgetType = GTYP_BOOLGADGET;

Using direct assignment, (the = operator), clears all other flags in the
GadgetType field and the gadget may not be properly freed by

FreeGadgets()

Libraries 37 / 51

.

1.33 15 / GadTools / Functions for Setting Up GadTools Menus and Gadgets

This section gives all the details on the functions used to set up
GadTools menus and gadgets that were mentioned briefly earlier in this
chapter.

GetVisualInfo() and FreeVisualInfo()

CreateContext()

1.34 15 / / / GetVisualInfo() and FreeVisualInfo()

In order to ensure their best appearance, GadTools gadgets and ←↩
menus need

information about the screen on which they will appear. Before creating
any GadTools gadgets or menus, the program must get this information using
the GetVisualInfo() call.

APTR GetVisualInfoA(struct Screen *screen, struct TagItem *taglist);
APTR GetVisualInfo(struct Screen *screen, Tag tag1, ...);

Set the screen argument to a pointer to the screen you are using. The tag
arguments, tag1 or taglist, are reserved for future extensions. Currently
none are recognized, so only TAG_END should be used.

The function returns an abstract handle called the VisualInfo. For
GadTools gadgets, the

ng_VisualInfo
field of the

NewGadget
structure must

be set to this handle before the gadget can be added to the window.
GadTools menu layout and creation functions also require the VisualInfo
handle as an argument.

There are several ways to get the pointer to the screen on which the
window will be opened. If the application has its own custom screen, this
pointer is known from the call to OpenScreen() or OpenScreenTags(). If
the application already has its window opened on the Workbench or some
other public screen, the screen pointer can be found in Window.WScreen.
Often the program will create its gadgets and menus before opening the
window. In this case, use LockPubScreen() to get a pointer to the desired
public screen, which also provides a lock on the screen to prevent it from
closing. See the chapters "Intuition Screens" and "Intuition Windows" for
more about public screens.

The VisualInfo data must be freed after all the gadgets and menus have

Libraries 38 / 51

been freed but before releasing the screen. Custom screens are released
by calling CloseScreen(), public screens are released by calling
CloseWindow() or UnlockPubScreen(), depending on the technique used. Use
FreeVisualInfo() to free the visual info data.

void FreeVisualInfo(APTR vi);

This function takes just one argument, the VisualInfo handle as returned
by GetVisualInfo(). The sequence of events for using the VisualInfo
handle could look like this:

init()
{
myscreen = LockPubScreen(NULL);
if (!myscreen)

{
cleanup("Failed to lock default public screen");
}

vi = GetVisualInfo(myscreen);
if (!vi)

{
cleanup("Failed to GetVisualInfo");
}

/* Create gadgets here */
ng.ng_VisualInfo = vi;
...
}

void cleanup(STRPTR errorstr)
{
/* These functions may be safely called with a NULL parameter: */
FreeGadgets(glist);
FreeVisualInfo(vi);

if (myscreen)
UnlockPubScreen(NULL, myscreen);

printf(errorstr);
}

1.35 15 / / Setting Up GadTools Menus and Gadgets / CreateContext()

Use of GadTools gadgets requires some per-window context ←↩
information.

CreateContext() establishes a place for that information to go. This
function must be called before any GadTools gadgets are created.

struct Gadget *CreateContext(struct Gadget **glistptr);

The glistptr argument is a double-pointer to a Gadget structure. More
specifically, this is a pointer to a NULL-initialized pointer to a Gadget
structure.

The return value of CreateContext() is a pointer to this gadget, which

Libraries 39 / 51

should be fed to the program’s first call to
CreateGadget()
. This pointer

to the Gadget structure returned by CreateContext(), may then serve as a
handle to the list of gadgets as they are created. The

code fragment
listed in the next section shows how to use CreateContext() ←↩

together with
CreateGadget() to make a linked list of GadTools gadgets.

1.36 15 / GadTools Gadgets / Creating Gadget Lists

In the discussion of
CreateGadget()
presented earlier, the examples showed

only how to make a single gadget. For most applications that use
GadTools, however, a whole list of gadgets will be needed. To do this,
the application could use code such as this:

struct NewGadget *newgad1, *newgad2, *newgad3;
struct Gadget *glist = NULL;
struct Gadget *pgad;

...
/* Initialize NewGadget structures */
...

/* Note that CreateContext() requires a POINTER to a NULL-initialized

* pointer to struct Gadget:

*/
pgad = CreateContext(&glist);

pgad = CreateGadget(BUTTON_KIND, pgad, newgad1, TAG_END);
pgad = CreateGadget(STRING_KIND, pgad, newgad2, TAG_END);
pgad = CreateGadget(MX_KIND, pgad, newgad3, TAG_END);

if (!pgad)
{
FreeGadgets(glist);
exit_error();
}

else
{
if (mywin=OpenWindowTags(NULL,

WA_Gadgets, glist,
...
/* Other tags... */
...
TAG_END))

{
/* Complete the rendering of the gadgets */
GT_RefreshWindow(win, NULL);
...
/* and continue on... */

Libraries 40 / 51

...
CloseWindow(mywin);
}

FreeGadgets(glist);
}

The pointer to the previous gadget, pgad in the code fragment above, is
used for three purposes. First, when

CreateGadget()
is called multiple

times, each new gadget is automatically linked to the previous gadget’s
NextGadget field, thus creating a gadget list. Second, if one of the
gadget creations fails (usually due to low memory, but other causes are
possible), then for the next call to CreateGadget(), pgad will be NULL and
CreateGadget() will fail immediately. This means that the program can
perform several successive calls to CreateGadget() and only have to check
for failure at the end.

Finally, although this information is hidden in the implementation and not
important to the application, certain calls to

CreateGadget()
actually

cause several Intuition gadgets to be allocated and these are
automatically linked together without program interaction, but only if a
previous gadget pointer is supplied. If several gadgets are created by a
single CreateGadget() call, they work together to provide the
functionality of a single GadTools gadget. The application should always
act as though the gadget pointer returned by CreateGadget() points to a
single gadget instance. See "Documented Side-Effects" for a warning.

There is one exception to the fact that a program only has to check for
failure after the last

CreateGadget()
call and that is when the

application depends on the successful creation of a gadget and caches or
immediately uses the gadget pointer returned by CreateGadget().

For instance, if the program wants to create a string gadget and save a
pointer to the string buffer, it might do so as follows:

gad = CreateGadget(STRING_KIND, gad, &ng,
GTST_String, "Hello World",
TAG_END);

if (gad)
{
stringbuffer = ((struct StringInfo *)(gad->SpecialInfo))->Buffer;
}

/* Creation can continue here: */
gad = CreateGadget(..._KIND, gad, &ng2,

...
TAG_END);

A major benefit of having a reusable
NewGadget
structure is that often

Libraries 41 / 51

many fields do not change and some fields change incrementally. For
example, the application can set just the NewGadget’s

ng_VisualInfo
and

ng_TextAttr
only once and never have to modify them again even if the

structure is reused to create many gadgets. A set of similar gadgets may
share size and some positional information so that code such as the
following might be used:

/* Assume that the NewGadget structure ’ng’ is fully

* initialized here for a button labelled "OK"

*/
gad = CreateGadget(BUTTON_KIND, gad, &ng,

TAG_END);

/* Modify only those fields that need to change: */
ng.ng_GadgetID++;
ng.ng_LeftEdge += 80;
ng.ng_GadgetText = "Cancel";
gad = CreateGadget(BUTTON_KIND, gad, &ng,

TAG_END);

Warning:

All gadgets created by GadTools currently have the GADTOOL_TYPE bit
set in their GadgetType field. It is not correct to check for,
set, clear or otherwise rely on this since it is subject to change.

1.37 15 / GadTools Gadgets / Gadget Refresh Functions

Normally, GadTools gadgets are created and then attached to a ←↩
window when

the window is opened, either through the WA_Gadget tag or the
NewWindow.FirstGadget field. Alternately, they may be added to a window
after it is open by using the functions AddGList() and RefreshGList().

Regardless of which way gadgets are attached to a window, the program must
then call the GT_RefreshWindow() function to complete the rendering of
GadTools gadgets. This function takes two arguments.

void GT_RefreshWindow(struct Window *win, struct Requester *req);

This win argument is a pointer to the window that contains the GadTools
gadgets. The req argument is currently unused and should be set to NULL.
This function should only be called immediately after adding GadTools
gadgets to a window. Subsequent changes to GadTools gadget imagery made
through calls to

GT_SetGadgetAttrs()
will be automatically performed by

GadTools when the changes are made. (There is no need to call
GT_RefreshWindow() in that case.)

Libraries 42 / 51

As mentioned earlier, applications must always ask for notification of
window refresh events for any window that uses GadTools gadgets. When the
application receives an IDCMP_REFRESHWINDOW message for a window,
Intuition has already refreshed its gadgets. Normally, a program would
then call Intuition’s BeginRefresh(), perform its own custom rendering
operations, and finally call EndRefresh(). But for a window that uses
GadTools gadgets, the application must call GT_BeginRefresh() and
GT_EndRefresh() in place of BeginRefresh() and EndRefresh(). This allows
the the GadTools gadgets to be fully refreshed.

void GT_BeginRefresh(struct Window *win);
void GT_EndRefresh (struct Window *win, long complete);

For both functions, the win argument is a pointer to the window to be
refreshed. For GT_EndRefresh(), set the complete argument to TRUE if
refreshing is complete, set it to FALSE otherwise. See the discussion of
BeginRefresh() and EndRefresh() in the "Intuition Windows" chapter for
more about window refreshing.

When using GadTools gadgets, the program may not set the window’s
WFLG_NOCAREREFRESH flag. Even if there is no custom rendering to be
performed, GadTools gadgets requires this minimum code to handle
IDCMP_REFRESHWINDOW messages:

case IDCMP_REFRESHWINDOW:
GT_BeginRefresh(win);
/* custom rendering, if any, goes here */
GT_EndRefresh(win, TRUE);
break;

1.38 15 / GadTools Gadgets / Other GadTools Functions

This section discusses some additional support functions in the ←↩
GadTools

library that serve special needs.

GT_FilterIMsg() and GT_PostFilterIMsg()

DrawBevelBox()

1.39 15 / / Other Functions / GT_FilterIMsg() and GT_PostFilterIMsg()

For most GadTools programs,
GT_GetIMsg()
and

GT_ReplyIMsg()
work perfectly

well. In rare cases an application may find they pose a bit of a problem.
A typical case is when all messages are supposed to go through a

Libraries 43 / 51

centralized ReplyMsg() that cannot be converted to a GT_ReplyIMsg().
Since calls to GT_GetIMsg() and GT_ReplyIMsg() must be paired, there would
be a problem.

For such cases, the GT_FilterIMsg() and GT_PostFilterIMsg() functions are
available. These functions allow GetMsg() and ReplyMsg() to be used in a
way that is compatible with GadTools.

Warning:

These functions are for specialized use only and will not be used by
the majority of applications. See

GT_GetIMsg()
and

GT_ReplyIMsg()
for standard message handling.

struct IntuiMessage *GT_FilterIMsg(struct IntuiMessage *imsg);
struct IntuiMessage *GT_PostFilterIMsg(struct IntuiMessage *imsg);

The GT_FilterIMsg() function should be called right after GetMsg(). It
takes a pointer to the original IntuiMessage and, if the message applies
to a GadTools gadget, returns either a modified IntuiMessage or a NULL. A
NULL return signifies that the message was consumed by a GadTools gadget
(and not needed by the application).

The GT_PostFilterIMsg() function should be called before replying to any
message modified by GT_FilterIMsg(). It takes a pointer to the modified
version of an IntuiMessage obtained with GT_FilterIMsg() and returns a
pointer to the original IntuiMessage.

The typical calling sequence for a program that uses these functions, is
to call GetMsg() to get the IntuiMessage. Then, if the message applies to
a window which contains GadTools gadgets, call GT_FilterIMsg(). Any
message returned by GT_FilterIMsg() should be used like a message returned
from

GT_GetIMsg()
.

When done with the message, the application must call GT_PostFilterIMsg()
to perform any clean up necessitated by the previous call to
GT_FilterIMsg(). In all cases, the application must then reply the
original IntuiMessage using ReplyMsg(). This is true even for consumed
messages as these are not replied by GadTools. For example, the
application could use code such as this:

/* port is a message port receiving different messages */
/* gtwindow is the window that contains GadTools gadgets */

imsg = GetMsg(port);

/* Is this the window with GadTools gadgets? */
if (imsg->IDCMPWindow == gtwindow)

{
/* Filter the message and see if action is needed */

Libraries 44 / 51

if (gtimsg = GT_FilterIMsg(imsg))
{
switch (gtimsg->Class)

{
/* Act depending on the message */
...
}

/* Clean up the filtered message. The return value is not */
/* needed since we already have a pointer to the original */
/* message. */
GT_PostFilterIMsg(gtimsg);
}

}
/* other stuff can go here */
ReplyMsg(imsg);

You should not make any assumptions about the contents of the unfiltered
IntuiMessage (imsg in the above example). Only two things are guaranteed:
the unfiltered IntuiMessage must be replied to and the unfiltered
IntuiMessage (if it produces anything when passed through GT_FilterIMsg())
will produce a meaningful GadTools IntuiMessage like those described in
the section on the different

kinds of gadgets
. The relationship between

the unfiltered and filtered messages are expected to change in the future.
See the section on

documented side-effects
for more information.

1.40 15 / / Other GadTools Functions / DrawBevelBox()

A key visual signature shared by most GadTools gadgets is the ←↩
raised or

recessed bevelled box imagery. Since the program may wish to create its
own boxes to match, GadTools provides the DrawBevelBox() and
DrawBevelBoxA() functions.

void DrawBevelBoxA(struct RastPort *rport, long left, long top,
long width, long height, struct TagItem *taglist);

void DrawBevelBox (struct RastPort *rport, long left, long top,
long width, long height, Tag tag1, ...);

The rport argument is a pointer to the RastPort into which the box is to
be rendered. The left, top, width and height arguments specify the
dimensions of the desired box.

The tag arguments, tag1 or taglist, may be set as follows:

GT_VisualInfo (APTR)
The

VisualInfo
handle as returned by a prior call to

GetVisualInfo()
.

Libraries 45 / 51

This value is required.

GTBB_Recessed (BOOL)
A bevelled box may either appear to be raised to signify an area of
the window that is selectable or recessed to signify an area of the
window in which clicking will have no effect. Set this boolean tag
to TRUE to get a recessed box. Omit this tag entirely to get a
raised box.

DrawBevelBox() is a rendering operation, not a gadget. This means that the
program must refresh any bevelled boxes rendered through this function if
the window gets damaged.

1.41 15 / GadTools Gadgets / Gadget Keyboard Equivalents

Often, users find it convenient to control gadgets using the ←↩
keyboard.

Starting with V37, it is possible to denote the keyboard equivalent for a
GadTools gadget. The keyboard equivalent will be an underscored character
in the gadget label, for easy identification. At the present time,
however, the application is still responsible for implementing the
reaction to each keypress.

Denoting a Gadget’s Keyboard Equivalent

Implementing a Gadget’s Keyboard Equivalent Behavior

1.42 15 / / Keyboard Equivalents / Denoting a Gadget’s Keyboard Equivalent

In order to denote the key equivalent, the application may add a
marker-symbol to the gadget label. This is done by placing the
marker-symbol immediately before the character to be underscored. This
symbol can be any character that is not used in the label. The underscore
character, ‘_’ is the recommended marker-symbol. So, for example, to mark
the letter "F" as the keyboard equivalent for a button labelled "Select
Font...", create the gadget text:

ng.ng_GadgetText = "Select _Font...";

To inform GadTools of the underscore in the label, pass the GA_Underscore
tag to

CreateGadget()
or

CreateGadgetA()
. The data-value associated with

this tag is a character, not a string, which is the marker-symbol used in
the gadget label:

GA_Underscore, ’_’,/* Note ’_’, not "_" !!! */

Libraries 46 / 51

GadTools will create a gadget label which consists of the text supplied
with the marker-symbol removed and the character following the
marker-symbol underscored.

The gadget’s label would look something like:

Select Font...
-

1.43 15 / / / Implementing a Gadget’s Keyboard Equivalent Behavior

Currently, GadTools does not process keyboard equivalents for ←↩
gadgets. It

is up to the application writer to implement the correct behavior,
normally by calling

GT_SetGadgetAttrs()
on the appropriate gadget. For

some kinds of gadget, the behavior should be the same regardless of
whether the keyboard equivalent was pressed with or without the shift key.
For other gadgets, shifted and unshifted keystrokes will have different,
usually opposite, effects.

Here is the correct behavior for keyboard equivalents for each kind of
GadTools gadget:

Button Gadgets
The keyboard equivalent should invoke the same function that clicking
on the gadget does. There is currently no way to highlight the
button visuals programmatically when accessing the button through a
keyboard equivalent.

Text-Entry and Number-Entry Gadgets
The keyboard equivalent should activate the gadget so the user may
type into it. Use Intuition’s ActivateGadget() call.

Checkbox Gadgets
The keyboard equivalent should toggle the state of the checkbox. Use

GT_SetGadgetAttrs()
and the

GTCB_Checked
tag.

Mutually-Exclusive Gadgets
The unshifted keystroke should activate the next choice, wrapping
around from the last to the first. The shifted keystroke should
activate the previous choice, wrapping around from the first to the
last. Use

GT_SetGadgetAttrs()
and the

GTMX_Active
tag.

Libraries 47 / 51

Cycle Gadgets
The unshifted keystroke should activate the next choice, wrapping
around from the last to the first. The shifted keystroke should
activate the previous choice, wrapping around from the first to the
last. Use

GT_SetGadgetAttrs()
and the

GTCY_Active
tag.

Slider Gadgets
The unshifted keystroke should increase the slider’s level by one,
stopping at the maximum, while the shifted keystroke should decrease
the level by one, stopping at the minimum. Use

GT_SetGadgetAttrs()
and the

GTSL_Level
tag.

Scroller Gadgets
The unshifted keystroke should increase the scroller’s top by one,
stopping at the maximum, while the shifted keystroke should decrease
the scroller’s top by one, stopping at the minimum. Use

GT_SetGadgetAttrs()
and the

GTSC_Top
tag.

Listview Gadgets
The unshifted keystroke should cause the next entry in the list to
become the selected one, stopping at the last entry, while the
shifted keystroke should cause the previous entry in the list to
become the selected one, stopping at the first entry. Use

GT_SetGadgetAttrs()
and the

GTLV_Top
and

GTLV_Selected
tags.

Palette Gadgets
The unshifted keystroke should select the next color, wrapping around
from the last to the first. The shifted keystroke should activate
the previous color, wrapping around from the first to the last. Use

GT_SetGadgetAttrs()
and the

GTPA_Color
tag.

Text-Display and Number-Display Gadgets
These kinds of GadTools gadget have no keyboard equivalents since
they are not selectable.

Generic Gadgets

Libraries 48 / 51

Define appropriate keyboard functions based on the kinds of keyboard
behavior defined for other GadTools kinds.

1.44 15 / GadTools Gadgets / Restrictions on GadTools Gadgets

There is a strict set of functions and operations that are ←↩
permitted on

GadTools gadgets. Even if a technique is discovered that works for a
particular case, be warned that it cannot be guaranteed and should not be
used. If the trick concocted only works most of the time, it may
introduce subtle problems in the future.

Never selectively or forcibly refresh gadgets. The only gadget refresh
that should ever be performed is the initial

GT_RefreshWindow()
after a

window is opened with GadTools gadgets attached. It is also possible to
add gadgets after the window is opened by calling AddGlist() and
RefreshGlist() followed by GT_RefreshWindow(). These refresh functions
should not be called at any other time.

GadTools gadgets may not overlap with each other, with other gadgets or
with other imagery. Doing this to modify the gadget’s appearance is not
supported.

GadTools gadgets may not be selectively added or removed from a window.
This has to do with the number of Intuition gadgets that each call to

CreateGadget()
produces and with refresh constraints.

Never use OnGadget() or OffGadget() or directly modify the GFLG_DISABLED
Flags bit. The only approved way to disable or enable a gadget is to use

GT_SetGadgetAttrs()
and the GA_Disabled tag. Those kinds of GadTools

gadgets that do not support GA_Disabled may not be disabled (for now).

The application should never write into any of the fields of the Gadget
structure or any of the structures that hang off it, with the exception
noted earlier for

GENERIC_KIND
gadgets. Avoid making assumptions about

the contents of these fields unless they are explicitly programmer fields
(GadgetID and UserData, for example) or if they are guaranteed meaningful
(LeftEdge, TopEdge, Width, Height, Flags). On occasion, the program is
specifically invited to read a field, for example the StringInfo->Buffer
field.

GadTools gadgets may not be made relative sized or relative positioned.
This means that the gadget flags GFLG_RELWIDTH, GFLG_RELHEIGHT,
GFLG_RELBOTTOM and GFLG_RELRIGHT may not be specified. The activation
type of the gadget may not be modified (for example changing
GACT_IMMEDIATE to GACT_RELVERIFY). The imagery or the highlighting method

Libraries 49 / 51

may not be changed.

These restrictions are not imposed without reason; subtle or blatant
problems may arise now or in future versions of GadTools for programs that
violate these guidelines.

1.45 15 / GadTools Gadgets / Documented Side-Effects

There are certain aspects of the behavior of GadTools gadgets that ←↩
should

not be depended on. This will help current applications remain compatible
with future releases of the GadTools library.

When using
GT_FilterIMsg()
and

GT_PostFilterIMsg()
, never make assumptions

about the message before or after filtering. I.e., do not interpret the
unfiltered message, assume that it will or will not result in certain
kinds of filtered message or assume it will result in a consumed message
(i.e., when GT_FilterIMsg() returns NULL).

IDCMP_INTUITICKS messages are consumed when a scroller’s arrows are
repeating. That is, IDCMP_INTUITICKS will not be received while the user
is pressing a scroller arrows. Do not depend or rely on this side effect,
though, it will not necessarily remain so in the future.

A single call to
CreateGadget()
may create one or more actual gadgets.

These gadgets, along with the corresponding code in GadTools, define the
behavior of the particular kind of GadTools gadget requested. Only the
behavior of these gadgets is documented, the number or type of actual
gadgets is subject to change. Always refer to the gadget pointer received
from CreateGadget() when calling

GT_SetGadgetAttrs()
. Never refer to

other gadgets created by GadTools, nor create code which depends on their
number or form.

For text-display gadgets, the
GTTX_CopyText
tag does not cause the text to

be copied when the text is later changed with
GTTX_Text
.

The PLACETEXT
ng_Flags
are currently ignored by

GENERIC_KIND
gadgets.

However, this may not always be so.

Libraries 50 / 51

All GadTools gadgets set GADTOOL_TYPE in the gadget’s GadgetType field.
Do not use this flag to identify GadTools gadgets, as this flag is not
guaranteed to be set in the future.

The palette gadget subdivides its total area into the individual color
squares. Do not assume that the subdivision algorithm won’t change.

1.46 15 GadTools Library / Function Reference

The following are brief descriptions of the Intuition functions discussed
in this chapter. See the "Amiga ROM Kernel Reference Manual: Includes and
Autodocs" for details on each function call. All of these functions
require Release 2 or a later version of the operating system.

Table 15-2: GadTools Library Functions
__
| |
| Function Description |
|==|
| CreateGadgetA() Allocate GadTools gadget, tag array form. |
| CreateGadget() Allocate GadTools gadget, varargs form. |
| FreeGadgets() Free all GadTools gadgets. |
| GT_SetGadgetAttrsA() Update gadget, tag array form. |
| GT_SetGadgetAttrs() Update gadget, varargs form. |
CreateContext() Create a base for adding GadTools gadgets.
CreateMenusA() Allocate GadTools menu structures, tag array
form.
CreateMenus() Allocate GadTools menu structures, varargs
form.
FreeMenus() Free menus allocated with CreateMenus().
LayoutMenuItemsA() Format GadTools menu items, tag array form.
LayoutMenuItems() Format GadTools menu items, varargs form.
LayoutMenusA() Format GadTools menus, tag array form.
LayoutMenus() Format GadTools menus, varargs form.
--
GT_GetIMsg() GadTools gadget compatible version of
GetMsg().
GT_ReplyIMsg() GadTools gadget compatible version of
ReplyMsg().
GT_FilterIMsg() Process GadTools gadgets with
GetMsg()/ReplyMsg().
GT_PostFilterIMsg() Process GadTools gadgets with
GetMsg()/ReplyMsg().
--
GT_RefreshWindow() Display GadTools gadget imagery after
creation.
GT_BeginRefresh() GadTools gadget compatible version of
BeginRefresh().
GT_EndRefresh() GadTools gadget compatible version of
EndRefresh().
--

Libraries 51 / 51

| DrawBevelBoxA() Draw a 3D box, tag array form. |
DrawBevelBox() Draw a 3D box, varargs form.
GetVisualInfoA() Get drawing information for GadTools, tag
array form.
GetVisualInfo() Get drawing information for GadTools, varargs
form.
FreeVisualInfo() Free drawing information for GadTools.
__

	Libraries
	Amiga® RKM Libraries: 15 GadTools Library
	15 GadTools Library / Elements of GadTools
	15 / Elements of GadTools / GadTools Tags
	15 GadTools Library / GadTools Menus
	15 / GadTools Menus / The NewMenu Structure
	15 / GadTools Menus / Functions for GadTools Menus
	15 / / Functions for GadTools Menus / Creating Menus
	15 / / Functions for GadTools Menus / Layout of the Menus
	15 / / Functions for GadTools Menus / Layout for Individual Menus
	15 / / Functions for GadTools Menus / Freeing Menus
	15 / GadTools Menus / GadTools Menus and IntuiMessages
	15 / GadTools Menus / Restrictions on GadTools Menus
	15 / GadTools Menus / Language-Sensitive Menus
	15 GadTools Library / GadTools Gadgets
	15 / GadTools Gadgets / The NewGadget Structure
	15 / GadTools Gadgets / Creating Gadgets
	15 / GadTools Gadgets / Handling Gadget Messages
	15 / GadTools Gadgets / IDCMP Flags
	15 / GadTools Gadgets / Freeing Gadgets
	15 / GadTools Gadgets / Modifying Gadgets
	15 / GadTools Gadgets / The Kinds of GadTools Gadgets
	15 / / The Kinds of GadTools Gadgets / Button Gadgets
	15 / / Kinds of GadTools Gadgets / Text-Entry and Number-Entry Gadgets
	15 / / The Kinds of GadTools Gadgets / Checkbox Gadgets
	15 / / The Kinds of GadTools Gadgets / Mutually-Exclusive Gadgets
	15 / / The Kinds of GadTools Gadgets / Cycle Gadgets
	15 / / The Kinds of GadTools Gadgets / Slider Gadgets
	15 / / The Kinds of GadTools Gadgets / Scroller Gadgets
	15 / / The Kinds of GadTools Gadgets / Listview Gadgets
	15 / / The Kinds of GadTools Gadgets / Palette Gadgets
	15 / / Kinds of GadTools / Text-Display and Numeric-Display Gadgets
	15 / / The Kinds of GadTools Gadgets / Generic Gadgets
	15 / GadTools / Functions for Setting Up GadTools Menus and Gadgets
	15 / / / GetVisualInfo() and FreeVisualInfo()
	15 / / Setting Up GadTools Menus and Gadgets / CreateContext()
	15 / GadTools Gadgets / Creating Gadget Lists
	15 / GadTools Gadgets / Gadget Refresh Functions
	15 / GadTools Gadgets / Other GadTools Functions
	15 / / Other Functions / GT_FilterIMsg() and GT_PostFilterIMsg()
	15 / / Other GadTools Functions / DrawBevelBox()
	15 / GadTools Gadgets / Gadget Keyboard Equivalents
	15 / / Keyboard Equivalents / Denoting a Gadget's Keyboard Equivalent
	15 / / / Implementing a Gadget's Keyboard Equivalent Behavior
	15 / GadTools Gadgets / Restrictions on GadTools Gadgets
	15 / GadTools Gadgets / Documented Side-Effects
	15 GadTools Library / Function Reference

