
Libraries

Libraries ii

COLLABORATORS

TITLE :

Libraries

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Libraries iii

Contents

1 Libraries 1

1.1 Amiga® RKM Libraries: 1 Introduction to Amiga System Libraries . 1

1.2 1 Introduction to Libraries / Programming in the Amiga Environment . 1

1.3 1 / Programming in the Amiga Environment / Multitasking . 2

1.4 1 / / Multitasking / What the System Does For You . 2

1.5 1 / / Multitasking / What the System Doesn’t Do For You . 3

1.6 1 / Programming in the Amiga Environment / Libraries of Functions . 3

1.7 1 / / Libraries of Functions / Opening a Library in C . 5

1.8 1 / / Libraries of Functions / Opening a Library in Assembler . 5

1.9 1 / / Libraries of Functions / Another Kind of Function Library . 6

1.10 1 / / Libraries of Functions / Libraries, Devices and Resources . 7

1.11 1 / Programming in the Amiga Environment / Dynamic Memory Architecture 9

1.12 1 / / Dynamic Memory Architecture / Exec: The System Executive . 10

1.13 1 / Programming in the Amiga Environment / Operating System Versions . 11

1.14 1 / / Operating System Versions / About Release 2 . 12

1.15 1 / Programming in the Amiga Environment / The Custom Chips . 13

1.16 1 / / The Custom Chips / Custom Chip Revisions . 13

1.17 1 / / The Custom Chips / Two Kinds of Memory . 14

1.18 1 Introduction to Amiga System Libraries / About the Examples . 14

1.19 1 Introduction to Libraries / General Amiga Development Guidelines . 15

1.20 1 / General Development Guidelines / 68010/020/030/040 Compatibility . 19

1.21 1 / General Development Guidelines / Hardware Programming Guidelines . 20

1.22 1 / General Guidelines / Additional Assembler Development Guidelines . 21

1.23 1 Introduction to Amiga System Libraries / 1.3 Compatibility Issues . 22

1.24 1 / 1.3 Compatibility Issues / Design Decisions . 22

1.25 1 / / Design Decisions / Transparent Release 2 Extensions . 23

1.26 1 / / Design Decisions / Conditional Code . 24

1.27 1 / / Design Decisions / ASL Requesters . 25

1.28 1 / / Design / DOS System(), CreateNewProc(), and CON: Enhancements . 25

1.29 1 / / Design Decisions / The Display Database . 26

Libraries iv

1.30 1 / / Design Decisions / ARexx . 26

1.31 1 / 1.3 Compatibility Issues / Compatible Libraries . 27

1.32 1 / / Compatible Libraries / IFFParse Library . 27

1.33 1 / / Compatible Libraries / Single Precision IEEE Math Libraries . 27

1.34 1 / / Compatible Libraries / Third Party Compatible Libraries . 28

1.35 1 / Introduction / Commodore Applications and Technical Support (CATS) . 28

1.36 1 Introduction to Amiga System Libraries / Error Reports . 28

Libraries 1 / 29

Chapter 1

Libraries

1.1 Amiga® RKM Libraries: 1 Introduction to Amiga System Libraries

The Amiga, like other microcomputers, contains a ROM full of ←↩
routines that

make programming the machine easier. The purpose of this book is to show
you how to use these routines. Perhaps the best way to learn Amiga
programming is by following examples and that is the method used in this
book. Before starting though it will be helpful to go over some Amiga
fundamentals. This section presents some of the basics that all Amiga
programmers need to know.

Programming in the Amiga Environment

About the Examples

General Amiga Development Guidelines

1.3 Compatibility Issues

Commodore Applications and Technical Support (CATS)

Error Reports

1.2 1 Introduction to Libraries / Programming in the Amiga Environment

To program in the Amiga’s dynamic environment you need to ←↩
understand these

special features of the Amiga’s design:

* Multitasking (without memory protection)

* Shared libraries of functions

* Dynamic memory architecture (no memory map)

Libraries 2 / 29

* Operating system versions

* Custom chips with DMA access (two kinds of memory)

Multitasking

Dynamic Memory Architecture

The Custom Chips

Libraries of Functions

Operating System Versions

1.3 1 / Programming in the Amiga Environment / Multitasking

The key feature of the Amiga’s operating system design is ←↩
multitasking.

Multitasking means many programs, or tasks, reside in memory at the same
time sharing system resources with one another. Programs take turns
running so it appears that many programs are running simultaneously.

Multitasking is based on the concept that a program spends most of its
time waiting for things to happen. A program waits for events like key
presses, mouse movement, or disk activity. While a program is waiting,
the CPU is idle. The CPU could be used to run a different program during
this idle period if there was a convenient method for rapidly switching
from one program to another. This is what multitasking does.

What the System Does For You

What the System Doesn’t Do For You

1.4 1 / / Multitasking / What the System Does For You

The Amiga uses preemptive multitasking which means that the operating
system keeps track of all the tasks in memory and decides which one should
run. The system checks hundreds of times per second to see which task
should be run based on whether or not it is waiting, and other factors.
Since the system handles all the work of task switching, multitasking is
transparent to the application. From the application’s point of view, it
appears to have the machine all to itself.

The Amiga OS also manages the sharing of resources between tasks. This is
important because in order for a variety of tasks to run independently in
the Amiga’s multitasking environment, tasks must be prevented from
interfering with one another. Imagine if five tasks were allowed to use
the parallel port at the same time. The result would be I/O chaos. To

Libraries 3 / 29

prevent this, the operating system provides an arbitration method (usually
a function call) for every system resource. For instance you must call a
function, AllocMem(), to get exclusive access to a block of memory.

1.5 1 / / Multitasking / What the System Doesn’t Do For You

The Amiga operating system handles most of the housekeeping needed for
multitasking, but this does not mean that applications don’t have to worry
about multitasking at all. The current generation of Amiga systems do not
have hardware memory protection, so there is nothing to stop a task from
using memory it has not legally acquired. An errant task can easily
corrupt some other task by accidentally overwriting its instructions or
data. Amiga programmers need to be extra careful with memory; one bad
memory pointer can cause the machine to crash (debugging utilities such as
MungWall and Enforcer will prevent this).

In fact, Amiga programmers need to be careful with every system resource,
not just memory. All system resources from audio channels to the floppy
disk drives are shared among tasks. Before using a resource, you must ask
the system for access to the resource. This may fail if the resource is
already being used by another task.

Once you have control of a resource, no other task can use it, so give it
up as soon as you are finished. When your program exits, you must give
everything back whether it’s memory, access to a file, or an I/O port. You
are responsible for this, the system will not do it for you automatically.

__
| |
What Every Amiga Programmer Should Know:
The Amiga is a multitasking computer. Keep in mind that other
tasks are running at the same time as your application. Always ask
the system for control of any resource you need; some other task may
already be using it. Give it back as soon as you are done; another
task may want to use it. This applies to just about every computing
activity your application can perform.
__

1.6 1 / Programming in the Amiga Environment / Libraries of Functions

Most of the routines that make up the Amiga’s operating system are
organized into groups called libraries. In order to call a function on
the Amiga you must first open the library that contains the function. For
example, if you want to call the Read() function to read data from disk
you must first open the DOS library.

The system’s master library, called
Exec
, is always open. Exec keeps

track of all the other libraries and is in charge of opening and closing
them. One Exec function, OpenLibrary(), is used to open all the other
libraries.

Libraries 4 / 29

Almost any program you write for the Amiga will have to call the
OpenLibrary() function. Usage is as follows:

struct Library *LibBase; /* Global: declare this above main() */

main()
{
LibBase = OpenLibrary("library.name",version);

if(!LibBase) { /* Library did not open, so exit */ }
else { /* Library opened, so use its functions */ }
}

LibBase
This is a pointer to the library structure in memory, often referred
to as the library base. The library base must be global because the
system uses it to handle the library’s function calls. The name of
this pointer is established by the system (you cannot use any name
you want). Refer to the list below for the appropriate name.

library.name
This is a C string that describes the name of the library you wish to
open. The list of Amiga library names is given below.

version
This should be set to the earliest acceptable

library version
. A

value of 0 matches any version. A value of 33 means you require at
least version 33, or a later version of the library. If the library
version in the system is older than the one you specify,
OpenLibrary() will fail (return 0).

The following table shows all the function libraries that are currently
part of the Amiga system software. Column one shows the name string to
use with OpenLibrary(); column two shows the name of the global variable
you should use to hold the pointer to the library; column three shows the
oldest

version
of the library still in use.

Table 1-1: Parameters to Use With OpenLibrary()

Oldest Version
Library Name Library Base Name In Use
(library.name)* (LibBase) (version)
-------------- ----------------- --------------
asl.library AslBase 36
commodities.library CxBase 36
diskfont.library DiskfontBase 33
dos.library DOSBase 33
exec.library SysBase 33
expansion.library ExpansionBase 33
gadtools.library GadToolsBase 36

Libraries 5 / 29

graphics.library GfxBase 33
icon.library IconBase 33
iffparse.library IFFParseBase 36
intuition.library IntuitionBase 33
keymap.library KeymapBase 33
layers.library LayersBase 33
mathffp.library MathBase 33
mathtrans.library MathTransBase 33
mathieeedoubbas.library MathIeeeDoubBasBase 33
mathieeedoubtrans.library MathIeeeDoubTransBase 33
mathieeesingbas.library MathIeeeSingBasBase 33
mathieeesingtrans.library MathIeeeSingTransBase 33
rexxsyslib.library RexxSysBase 36
translator.library TranslatorBase 33
utility.library UtilityBase 36
wb.library WorkbenchBase 33

* Other libraries may exist that are not supplied by Commodore since
it is a feature of the operating system to allow such libraries.

Opening a Library in C

Another Kind of Function Library

Opening a Library in Assembler

Libraries, Devices and Resources

1.7 1 / / Libraries of Functions / Opening a Library in C

Call
OpenLibrary()
to open an Amiga function library. OpenLibrary()

returns the address of the library structure (or library base) which you
must assign to a specific global system variable as specified in the

table above
(case is important).

If the library cannot open for some reason, the
OpenLibrary()
function

returns zero. Here’s a brief example showing how it’s used in C.

easy.c

1.8 1 / / Libraries of Functions / Opening a Library in Assembler

Libraries 6 / 29

Here’s the same example written in 68000 assembler. The ←↩
principles are

the same as with
C
: you must always open a library before using any of its

functions. However, in assembler, library bases are treated a little
differently than in C. In C, you assign the library base you get from

OpenLibrary()
to a global variable and forget about it (the system handles

the rest). In assembler, the library base must always be in register A6
whenever calling any of the functions in the library.

You get the library base for any library except
Exec
, by calling

OpenLibrary()
. For Exec, you get the library base from the longword in

memory location 4 ($0000 0004). Exec is opened automatically by the system
at boot time, and its library base is stored there.

easy.asm

The Amiga library functions are set up to accept parameters in certain
68000 registers and always return results in data register D0. This
allows programs and functions written in assembler to communicate quickly.
It also eliminates the dependence on the stack frame conventions of any
particular language.

Amiga library functions use registers D0, D1, A0 and A1 for work space and
use register A6 to hold the library base. Do not expect these registers
to be the same after calling a function. All routines return a full 32
bit longword unless noted otherwise.

1.9 1 / / Libraries of Functions / Another Kind of Function Library

The Amiga has two kinds of libraries: run-time libraries and link
libraries. All the libraries discussed so far are run-time libraries.
Run-time libraries make up most of the Amiga’s operating system and are
the main topic of this book.

There is another type of library known as a link library. Even though a
link library is a collection of functions just like a run-time library,
there are some major differences in the two types.

Run-time libraries
A run-time, or shared library is a group of functions managed by

Exec
that resides either in ROM or on disk (in the LIBS: directory) ←↩

. A
run-time library must be opened before it can be used (as explained

Libraries 7 / 29

above
). The functions in a run-time library are accessed dynamically

at run-time and can be used by many programs at once even though only
one copy of the library is in memory. A disk based run-time library
is loaded into memory only if requested by a program and can be
automatically flushed from memory when no longer needed.

Link libraries
A link library is a group of functions on disk that are managed by
the compiler at link time. Link libraries do not have to be opened
before they are used, instead you must link your code with the
library when you compile a program. The functions in a link library
are actually copied into every program that uses them. For instance
the exit() function used in the C program listed above is not part of
any of the libraries that make up the Amiga OS. It comes from the
link library supplied with the

compiler
(lc.lib for SAS/Lattice C or

c.lib for Manx Aztec C). The code that performs the exit() function
is copied into the program when it is compiled.

1.10 1 / / Libraries of Functions / Libraries, Devices and Resources

Most of the Amiga’s OS routines are organized into groups of ←↩
shared

run-time
libraries. The Amiga also has specialized function groups called

devices and resources that programmers use to perform basic I/O operations
or access low-level hardware.

Devices and resources are similar in concept to a shared
run-time
library.

They are managed by
Exec
and must be opened before they can be used.

Their functions are separate from the programs that use them and are
accessed dynamically at run time. Multiple programs can access the device
or resource even though only one copy exists in memory (a few resources
can only be used by one program at a time.)

________________ ________________
AmigaDOS CLI		Workbench
& utilities		Icons/Drawers/
		Utilities
________________		________________

_________	______		
	___	____	
	/ \		
	/ Console \		
		Device	

Libraries 8 / 29

	\ /	
	________/	

______|___|_____ ___|___|________
AmigaDOS		Intuition
Processes,		Windows,Menus
File System		Gadgets,Events
________________		________________

| ______| | |______
| ___|____ | _______|________
/ \				
/ Input \		Layers		
	Device			Library
\ /				
________/		________________		

	_____	___	______	
		Graphics		
		Rendering		
		Text, Gels		

____|___ ___|____ | ________ ________
/ \ / \ | / \ / \

/ SCSI & \ / Keyboard \ | / Audio \ / Serial \
| Trackdisk | | & Gameport | | | Device | | & Parallel |
\ Device / \ Devices / | \ / \ Devices /
________/ ________/ | ________/ ________/

| | | | |
______|_____________|____________|_____________|______________|______

| |
| Exec: Tasks, Messages, Interrupts, I/O, Libraries and Devices |
|___|

| | | | |
______|_____________|____________|_____________|____________|________

Disk Control	Keyboard	Graphics	Audio	I/O Ports
	& Mouse			
______________	____________	_____________	_____________	_____________

Figure 1-1: Amiga System Software Hierarchy

Devices and resources are managed by
Exec
just as libraries are. For more

information on devices and resources, see the chapter on Exec Device I/O
later in this book or refer to the Amiga ROM Kernel Reference Manual:
Devices for detailed descriptions of each device.

| |
What Every Amiga Programmer Should Know:
The functions in the Amiga OS are accessed through shared

run-time

Libraries 9 / 29

|
| libraries. Libraries must be opened before their functions may be |
| used. The system’s master library,

Exec
, is always open. The Exec |

| function
OpenLibrary()
is used to open all other libraries. |

|___|

1.11 1 / Programming in the Amiga Environment / Dynamic Memory Architecture

Unlike some microcomputer operating systems, the Amiga OS relies ←↩
on

absolute memory addresses as little as possible. Instead the Amiga OS
uses a technique (sometimes referred to as soft machine architecture)
which allows system routines and data structures to be positioned anywhere
in memory.

Amiga
run-time
libraries may be positioned anywhere in memory because they

are always accessed through a jump table. Each library whether in ROM or
loaded from disk has an associated Library structure and jump table in RAM.

Low Memory
/|\
|

_________|_________
| |
| JMP Function N |
| · |
| · |
| JMP Function 3 |
| JMP Function 2 |
| JMP Function 1 |

Library Base____|___________________|
| |
| Library Structure |
|___________________|
| |
| Data Area |
|___________________|

|
|

\|/
High Memory

Figure 1-2: Amiga Library Structure and Jump Table

The system knows where the jump table starts in RAM because when a library

Libraries 10 / 29

is opened for the first time,
Exec
creates the library structure and keeps

track of its location. The order of the entries in the library’s jump
table is always preserved between versions of the OS but the functions
they point to can be anywhere in memory. Hence, system routines in ROM
may be moved from one version of the OS to another. Given the location of
the jump table and the appropriate offset into the table, any function can
always be found.

Not only are system routines relocatable but system data structures are
too. In the Amiga’s

multitasking
environment, multiple applications run

at the same time and each may have its own screen, memory, open files, and
even its own subtasks. Since any number of application tasks are run and
stopped at the user’s option, system data structures have to be set up as
needed. They cannot be set up ahead of time at a fixed memory location
because there is no way to tell how many and what type will be needed.

The Amiga system software manages this confusion by using linked lists of
information about items such as libraries, tasks, screens, files and
available memory. A linked list is a chain of data items with each data
item containing a pointer to the next item in the chain. Given a pointer
to the first item in a linked list, pointers to all the other items in the
chain can be found.

Exec: The System Executive

1.12 1 / / Dynamic Memory Architecture / Exec: The System Executive

On the Amiga, the module that keeps track of linked lists is Exec, ←↩
the

system executive. Exec is the heart of the Amiga operating system since
it also is in charge of

multitasking
, granting access to system resources

(like memory) and managing the Amiga library system.

As
previously discussed
, memory location 4 ($0000 0004), also known as

SysBase, contains a pointer to the Exec library structure. This is the
only absolutely defined location in the Amiga operating system. A program
need only know where to find the Exec library to find, use and manipulate
all other system code and data.

$04 Sysbase
|
|

Exec Library
|

Libraries 11 / 29

_____________________________|_____________________________
| | | | | | |
| | | | | | |

LIBRARIES DEVICES MEMORY RESOURCES INTS PORTS TASKS
| | | | | | |

DOS Trackdisk Chunk 1 Potgo END IDCMP |
| | | | | |

Graphics Serial Chunk 2 Keymap IDCMP / \
| | | | | / \

Intuition Parallel END CIAA Workbench / \
| | | | / WAITING

Expansion Printer CIAB END / |
| | | / File System

Layers Input Disk / |
| | | READY File System

Mathffp Keyboard MISC | |
| | | Shell Input.device

Icon Gameport END | |
| | RAM END

Diskfont Timer |
| | Application

END Audio Task 1
| |

Console Application
| Task 2

END |
END

Figure 1-3: Exec and the Organization of the Amiga OS

The diagram above shows how the entire Amiga operating system is built as
a tree starting at SysBase. Exec keeps linked lists of all the system
libraries, devices, memory, tasks and other data structures. Each of
these in turn can have its own variables and linked lists of data
structures built onto it. In this way, the flexibility of the OS is
preserved so that upgrades can be made without jeopardizing

compatibility
.

| |
What Every Amiga Programmer Should Know:
The Amiga has a

dynamic memory
map. There are no fixed locations for |

| operating system variables and routines. Do not call ROM routines or |
| access system data structures directly. Instead use the indirect |
| access methods provided by the system. |
|___|

1.13 1 / Programming in the Amiga Environment / Operating System Versions

Libraries 12 / 29

The Amiga operating system has undergone several major revisions
summarized in the table below. The latest revision is Release 2
(corresponds to library versions 36 and above).

System library
version number Kickstart release
-------------- -----------------

0 Any version
30 Kickstart V1.0 (obsolete)
31 Kickstart V1.1 (NTSC only - obsolete)
32 Kickstart V1.1 (PAL only - obsolete)
33 Kickstart V1.2 (the oldest revision still in use)
34 Kickstart V1.3 (adds autoboot to V33)
35 Special Kickstart version to support A2024

high-resolution monitor
36 Kickstart V2.0 (old version of Release 2)
37 Kickstart V2.04 (current version of Release 2)

The examples listed throughout this book assume you are using Release 2.

Many of the libraries and functions documented in this manual are
available in all versions of the Amiga operating system. Others are
completely new and cannot be used unless you have successfully opened the
appropriate version of the library.

To find out which functions are new with Release 2 refer to the ROM Kernel
Reference Manual: Includes and Autodocs. The functions which are new are
marked with (V36) or (V37) in the NAME line of the function Autodoc.
These new functions require you to use a matching version number (36, 37,
or higher) when opening the library.

Exit gracefully and informatively if the required library version is not
available.

About Release 2

1.14 1 / / Operating System Versions / About Release 2

Release 2 first appeared on the Amiga 3000. This initial version
corresponds to Kickstart V2.00, system library version number V36.
Release 2 was subsequently revised and this older version is now
considered obsolete.

Programs written for Release 2 should use only the later version
corresponding to Kickstart V2.04, system library version number V37. If
your system is using the earlier version of Release 2, you should upgrade
your system. (Upgrade kits may be obtained from an authorized Commodore
service center.)

| |

Libraries 13 / 29

What Every Amiga Programmer Should Know:
Some libraries or specific functions are not available in older
versions of the Amiga operating system. Be sure to ask for the
lowest library version that meets the requirements of your program.

1.15 1 / Programming in the Amiga Environment / The Custom Chips

The most important feature of the Amiga’s hardware design is the ←↩
set of

custom chips that perform specialized tasks independently of the CPU. Each
of the custom chips (named Paula, Agnus, and Denise) is dedicated to a
particular job:

Paula (8364) Audio, floppy disk, serial, interrupts
Agnus (8361/8370/8372) Copper (video coprocessor), blitter, DMA control
Denise (8362) Color registers, color DACs (Digital to Analog

Converters) and sprites

The custom chips can perform work independently of the CPU because they
have DMA, or Direct Memory Access, capability. DMA means the custom chips
can access special areas of memory by themselves without any CPU
involvement. (On computer systems without DMA, the CPU must do some or
all of the memory handling for support chips.) The Amiga’s custom chips
make

multitasking
especially effective because they can handle things like

rendering graphics and playing sound independently, giving the CPU more
time to handle the overhead of

task-switching
and other important jobs.

Custom Chip Revisions

Two Kinds of Memory

1.16 1 / / The Custom Chips / Custom Chip Revisions

The
custom chips
have been revised as the Amiga platform has evolved and

newer models of the Amiga developed. The latest revision of the Amiga
custom chips is known as the Enhanced Chip Set, or ECS. Certain features
of the Amiga operating system, such as higher resolution screens and
special genlock modes, require the ECS version of the custom chips. In
this book, features that require ECS are noted in the accompanying text.
For more details about the special features of ECS, see Appendix C of
the Amiga Hardware Reference Manual.

Libraries 14 / 29

1.17 1 / / The Custom Chips / Two Kinds of Memory

To keep the Amiga running efficiently, the Amiga has two memory ←↩
buses and

two kinds of memory. Chip memory is memory that both the CPU and

custom chips
can access. Fast memory is memory that only the CPU (and

certain expansion cards) can access. Since Chip memory is shared, CPU
access may be slowed down if the custom chips are doing heavy-duty
processing. CPU access to Fast memory is never slowed down by contention
with the custom chips.

The distinction between Chip memory and Fast memory is very important for
Amiga programmers to keep in mind because any data accessed directly by
the custom chips such as video display data, audio data or sprite data
must be in Chip memory.

| |
What Every Amiga Programmer Should Know:
The Amiga has two kinds of memory: Chip memory and Fast memory.
Use the right kind.

1.18 1 Introduction to Amiga System Libraries / About the Examples

For the most part, the examples in this book are written in C (there are a
few 68000 assembly language examples too).

C examples have been compiled under SAS C, version 5.10a. The compiler
options used with each example are noted in the comments preceding the
code.

In general, the examples are also compatible with Manx Aztec C 68K,
version 5.0d, and other C compilers, however some changes will usually be
necessary. Specifically, all the C examples assume that the automatic
Ctrl-C feature of the compiler has been disabled. For SAS C (and Lattice
C revisions 4.0 and greater) this is handled with:

/* Add this before main() to override the default Ctrl-C handling

* provided in SAS (Lattice) C. Ctrl-C event will be ignored */

int CXBRK (void) { return(0); }
int chkabort(void) { return(0); }

For Manx Aztec C, replace the above with:

/* Add this near the top */
#include <functions.h>

/* Add this before main() */

Libraries 15 / 29

extern int Enable_Abort; /* reference abort enable */

/* Add this after main(), as the first active line in the program */
Enable_Abort=0; /* turn off CTRL-C */

Other changes may be required depending on the example and the C compiler
you are using. Most of the C examples in this book use the following
special option flags of the SAS/C compiler (set the equivalent option of
whatever compiler you are using):

-b1 = Small data model.
-cf = Check for function prototypes.

i = Ignore #include statements that are identical to one already given.
s = Store all literal strings that are identical in the same place.
t = Enable warnings for structures that are used before they are defined.

-v = Do not include stack checking code with each function.
-y = Load register A4 with the data section base address on function

entry. The -v and -y flags are are generally only needed for parts
of the program that are called directly by the system such as
interrupt servers, subtasks, handlers and callback hook functions.

Except where noted, each example was linked with the standard SAS/C
startup code c.o, the SAS/C linker library lc.lib and the Commodore linker
library amiga.lib. The SAS/C compiler defaults to 32-bit ints. If your
development environment uses 16-bit ints you may need to explicitly cast
certain arguments as longs (for example 1L << sigbit instead of 1 <<
sigbit).

The 68000 assembly language examples have been assembled under the
Innovatronics CAPE assembler V2.x, the HiSoft Devpac assembler V1.2, and
the Lake Forest Logic ADAPT assembler 1.0. No substantial changes should
be required to switch between assemblers.

1.19 1 Introduction to Libraries / General Amiga Development Guidelines

In the earlier sections of this chapter, the
basic environment
of the

Amiga operating system was discussed. This section presents specific
guidelines that all Amiga programmers must follow. Some of these
guidelines are for advanced programmers or apply only to code written in
assembly language.

* Check for memory loss. Arrange your Workbench screen so that you
have a Shell available and can start your program without rearranging
any windows. In the Shell window type Avail flush several times (the
flush option requires the

Release 2
version of the Avail command).

Note the total amount of free memory. Run your program (do not
rearrange any windows other than those created by the program) and

Libraries 16 / 29

then exit. At the Shell, type Avail flush several times again.
Compare the total amount of free memory with the earlier figure.
They should be the same. Any difference indicates that your
application is not freeing some memory it used or is not closing a
disk-loaded library, device or font it opened. Note that under
Release 2, a small amount of memory loss is normal if your
application is the first to use the audio or narrator device.

* Use all of the program debugging and stress tools that are available
when writing and testing your code. New debugging tools such as
Enforcer, MungWall, and Scratch can help find uninitialized pointers,
attempted use of freed memory and misuse of scratch registers or
condition codes (even in programs that appear to work perfectly).

* Always make sure you actually get any system resource that you ask
for. This applies to memory, windows, screens, file handles,
libraries, devices, ports, etc. Where an error value or return is
possible, ensure that there is a reasonable failure path. Many
poorly written programs will appear to be reliable, until some error
condition (such as memory full or a disk problem) causes the program
to continue with an invalid or null pointer, or branch to untested
error handling code.

* Always clean up after yourself. This applies for both normal program
exit and program termination due to error conditions. Anything that
was opened must be closed, anything allocated must be deallocated.
It is generally correct to do closes and deallocations in reverse
order of the opens and allocations. Be sure to check your
development language manual and startup code; some items may be
closed or deallocated automatically for you, especially in abort
conditions. If you write in the C language, make sure your code
handles

Ctrl-C
properly.

* Remember that memory, peripheral configurations, and ROMs differ
between models and between individual systems. Do not make
assumptions about memory address ranges, storage device names, or the
locations of system structures or code. Never call ROM routines
directly. Beware of any example code you find that calls routines at
addresses in the $F0 0000 - $FF FFFF range. These are ROM routines
and they will move with every OS release. The only supported
interface to system ROM code is through the library, device, and
resource calls.

* Never assume library bases or structures will exist at any particular
memory location. The only

absolute address
in the system is $0000

0004, which contains a pointer to the Exec library base. Do not
modify or depend on the format of private system structures. This
includes the poking of copper lists, memory lists, and library bases.

* Never assume that programs can access hardware resources directly.
Most hardware is controlled by system software that will not respond
well to interference from other programs. Shared hardware requires
programs to use the proper sharing protocols. Use the defined

Libraries 17 / 29

interface; it is the best way to ensure that your software will
continue to operate on future models of the Amiga.

* Never access shared data structures directly without the proper
mutual exclusion (locking). Remember that other tasks may be
accessing the same structures.

* The system does not monitor the size of a program’s stack. (Your
compiler may have an

option
to do this for you.) Take care that your

program does not cause stack overflow and provide extra stack space
for the possibility that some functions may use up additional stack
space in future versions of the OS.

* Never use a polling loop to test signal bits. If your program waits
for external events like menu selection or keystrokes, do not bog
down the

multitasking
system by busy-waiting in a loop. Instead, let

your task go to sleep by Wait()ing on its signal bits. For example:

signals = (ULONG)Wait((1<<windowPtr->UserPort->mp_SigBit) |
(1<<consoleMsgPortPtr->mp_SigBit));

This turns the signal bit number for each port into a mask, then
combines them as the argument for the Exec library Wait() function.
When your task wakes up, handle all of the messages at each port
where the mp_SigBit is set. There may be more than one message per
port, or no messages at the port. Make sure that you ReplyMsg() to
all messages that are not replies themselves. If you have no signal
bits to Wait() on, use Delay() or WaitTOF() to provide a measured
delay.

* Tasks (and processes) execute in 680x0 user mode. Supervisor mode is
reserved for interrupts, traps, and task dispatching. Take extreme
care if your code executes in supervisor mode. Exceptions while in
supervisor mode are deadly.

* Most system functions require a particular execution environment.
All DOS functions and any functions that might call DOS (such as the
opening of a disk-resident library, font, or device) can only be
executed from a process. A task is not sufficient. Most other ROM
kernel functions may be executed from tasks. Only a few may be
executed from interrupts.

* Never disable interrupts or multitasking for long periods. If you
use Forbid() or Disable(), you should be aware that execution of any
system function that performs the Wait() function will temporarily
suspend the Forbid() or Disable() state, and allow multitasking and
interrupts to occur. Such functions include almost all forms of DOS
and device I/O, including common stdio functions like printf().

* Never tie up system resources unless it is absolutely necessary. For
example, if your program does not require constant use of the
printer, open the printer device only when you need it. This will
allow other tasks to use the printer while your program is running.

Libraries 18 / 29

You must provide a reasonable error response if a resource is not
available when you need it.

* All data for the
custom chips
must reside in

Chip memory
(type

MEMF_CHIP). This includes bitplanes, sound samples, trackdisk
buffers, and images for sprites, bobs, pointers, and gadgets. The
AllocMem() call takes a flag for specifying the type of memory. A
program that specifies the wrong type of memory may appear to run
correctly because many Amigas have only Chip memory. (On all models
of the Amiga, the first 512K of memory is Chip memory. In later
models, Chip memory may occupy up to the first one or two megabytes).

However, once
expansion memory
has been added to an Amiga (type

MEMF_FAST), any memory allocations will be made in the expansion
memory area by default. Hence, a program can run correctly on an
unexpanded Amiga which has only

Chip memory
while crashing on an

Amiga which has expanded memory. A developer with only Chip memory
may fail to notice that memory was incorrectly specified.

Most compilers have
options
to mark specific data structures or

object modules so that they will load into
Chip RAM
. Some older

compilers provide the Atom utility for marking object modules. If
this method is unacceptable, use the AllocMem() call to dynamically
allocate Chip memory, and copy your data there.

When making allocations that do not require
Chip memory
, do not

explicitly ask for
Fast memory
. Instead ask for memory type

MEMF_PUBLIC or 0L as appropriate. If Fast memory is available, you
will get it.

* Never use software delay loops! Under the
multitasking
operating

system, the time spent in a loop can be better used by other tasks.
Even ignoring the effect it has on multitasking, timing loops are
inaccurate and will wait different amounts of time depending on the
specific model of Amiga computer. The timer device provides
precision timing for use under the multitasking system and it works
the same on all models of the Amiga. The AmigaDOS Delay() function
or the graphics library WaitTOF() function provide a simple interface
for longer delays. The 8520 I/O chips provide timers for developers

Libraries 19 / 29

who are bypassing the operating system (see the Amiga Hardware
Reference Manual for more information).

* Always obey structure conventions!

· All non-byte fields must be word-aligned. Longwords should be
longword-aligned for performance.

· All address pointers should be 32 bits (not 24 bits). Never use
the upper byte for data.

· Fields that are not defined to contain particular initial values
must be initialized to zero. This includes pointer fields.

· All reserved or unused fields must be initialized to zero for
future compatibility.

· Data structures to be accessed by the
custom chips
, public data

structures (such as a task control block), and structures which
must be longword aligned must not be allocated on a program’s
stack.

· Dynamic allocation of structures with AllocMem() provides
longword aligned memory of a specified type with optional
initialization to zero, which is useful in the allocation of
structures.

For 68010/68020/68030/68040 Compatibility

Hardware Programming Guidelines

Additional Assembler Development Guidelines

1.20 1 / General Development Guidelines / 68010/020/030/040 Compatibility

Special care must be taken to be compatible with the entire family of
68000 processors:

* Do not use the upper 8 bits of a pointer for storing unrelated
information. The 68020, 68030, and 68040 use all 32 bits for
addressing.

* Do not use signed variables or signed math for addresses.

* Do not use software delay loops, and do not make assumptions about
the order in which asynchronous tasks will finish.

* The stack frame used for exceptions is different on each member of
the 68000 family. The type identification in the frame must be
checked! In addition, the interrupt autovectors may reside in a
different location on processors with a VBR register.

Libraries 20 / 29

* Do not use the MOVE SR,<dest> instruction! This 68000 instruction
acts differently on other members of the 68000 family. If you want
to get a copy of the processor condition codes, use the Exec library
GetCC() function.

* Do not use the CLR instruction on a hardware register which is
triggered by Write access. The 68020 CLR instruction does a single
Write access. The 68000 CLR instruction does a Read access first,
then a Write access. This can cause a hardware register to be
triggered twice. Use MOVE.x #0, <address> instead.

* Self-modifying code is strongly discouraged. All 68000 family
processors have a pre-fetch feature. This means the CPU loads
instructions ahead of the current program counter. Hence, if your
code modifies or decrypts itself just ahead of the program counter,
the pre-fetched instructions may not match the modified instructions.
The more advanced processors prefetch more words. If self-modifying
code must be used, flushing the cache is the safest way to prevent
troubles.

* The 68020, 68030 and 68040 processors all have instruction caches.
These caches store recently used instructions, but do not monitor
writes. After modifying or directly loading instructions, the cache
must be flushed. See the Exec library CacheClearU() Autodoc for more
details. If your code takes over the machine, flushing the cache
will be trickier. You can account for the current processors, and
hope the same techniques will work in the future:

CACRF_ClearI EQU $0008 ;Bit for clear instruction cache
;
;Supervisor mode only. Use this only if you have taken over
;the machine. Read and store the ExecBase processor AttnFlags
;flags at boot time, call this code only if the "68020 or
; better" bit was set.
;
ClearICache: dc.w $4E7A,$0002 ;MOVEC CACR,D0

tst.w d0 ;movec does not affect CC’s
bmi.s cic_040 ;A 68040 with enabled cache!
ori.w #CACRF_ClearI,d0
dc.w $4E7B,$0002 ;MOVEC D0,CACR
bra.s cic_exit

cic_040: dc.w $f4b8 ;CPUSHA (IC)
cic_exit:

1.21 1 / General Development Guidelines / Hardware Programming Guidelines

If you find it necessary to program the hardware directly, then it ←↩
is your

responsibility to write code that will work correctly on the various
models and configurations of the Amiga. Be sure to properly request and
gain control of the hardware resources you are manipulating, and be
especially careful in the following areas:

* Kickstart 2.0 uses the 8520 Complex Interface Adaptor (CIA) chips

Libraries 21 / 29

differently than 1.3 did. To ensure compatibility, you must always
ask for CIA access using the cia.resource AddICRVector() and
RemICRVector() functions. Do not make assumptions about what the
system might be using the CIA chips for. If you write directly to
the CIA chip registers, do not expect system services such as the
trackdisk device to function. If you are leaving the system up, do
not read or write to the CIA Interrupt Control Registers directly;
use the cia.resource AbleICR(), and SetICR() functions. Even if you
are taking over the machine, do not assume the initial contents of
any of the CIA registers or the state of any enabled interrupts.

* All
custom chip
registers are Read-only or Write-only. Do not read

Write-only registers, and do not write to Read-only registers.

* Never write data to, or interpret data from the unused bits or
addresses in the

custom chip
space. To be software-compatible with

future chip revisions, all undefined bits must be set to zeros on
writes, and must be masked out on reads before interpreting the
contents of the register.

* Never write past the current end of
custom chip
space. Custom chips

may be extended or enhanced to provide additional registers, or to
use bits that are currently undefined in existing registers.

* Never read, write, or use any currently undefined address ranges or
registers. The current and future usage of such areas is reserved by
Commodore and is subject to change.

* Never assume that a hardware register will be initialized to any
particular value. Different versions of the OS may leave registers
set to different values. Check the Amiga Hardware Reference Manual
to ensure that you are setting up all the registers that affect your
code.

1.22 1 / General Guidelines / Additional Assembler Development Guidelines

If you are writing in assembly language there are some extra rules to keep
in mind in addition to those listed above.

* Never use the TAS instruction on the Amiga. System DMA can conflict
with this instruction’s special indivisible read-modify-write cycle.

* System functions must be called with register A6 containing the
library or device base. Libraries and devices assume A6 is valid at
the time of any function call. Even if a particular function does
not currently require its base register, you must provide it for
compatibility with future system software releases.

Libraries 22 / 29

* Except as noted, system library functions use registers D0, D1, A0,
and A1 as scratch registers and you must consider their former
contents to be lost after a system library call. The contents of all
other registers will be preserved. System functions that provide a
result will return the result in D0.

* Never depend on processor condition codes after a system call. The
caller must test the returned value before acting on a condition
code. This is usually done with a TST or MOVE instruction.

1.23 1 Introduction to Amiga System Libraries / 1.3 Compatibility Issues

This 3rd edition of the Amiga Technical Reference Series focuses ←↩
on the

Release 2

version
of the Amiga operating system (Kickstart V2.04, V37).

Release 2 of the operating system was first shipped on the Amiga 3000 and
now available as an upgrade kit for the Amiga 500 and Amiga 2000 models to
replace the older 1.3 (V34) operating system. Release 2 contains several
new libraries and hundreds of new library functions and features to assist
application writers.

Design Decisions

Compatible Libraries

1.24 1 / 1.3 Compatibility Issues / Design Decisions

The latest Amiga models, including all A3000’s, are running
Release 2
.

But many older Amigas are still running 1.3 at this time. Depending on
your application and your market, you may choose to require the Release 2
operating system as a minimum platform. This can be a reasonable
requirement for vertical markets and professional applications. Release 2
can also be a reasonable requirement for new revisions of existing
software products, since you could continue to ship the older
1.3-compatible release in the same package. If you have made the decision
to require Release 2, then you are free to take advantage of all of the
new libraries and features that Release 2 provides.

Throughout this latest edition of the Amiga Technical Reference Series,
features, functions and libraries that are new for

Release 2
are usually

indicated by (V36) or (V37) in the description of the feature. Such
features are not available on Amiga models that are running 1.3 (V34) or

Libraries 23 / 29

earlier versions
of the OS. Unconditional use of Release 2 functions will

cause a program to fail when it is run on a machine with the 1.3 OS. It
is very important to remember this when designing and writing your code.

Developers of consumer-priced productivity, entertainment and utility
software may not yet be ready to write applications that require

Release 2
, but even these developers can enhance their products by taking

advantage of Release 2 while remaining 1.3 compatible.

There are three basic methods that will allow you to take advantage of
enhanced Release 2 features while remaining 1.3 compatible:

* Transparent Release 2 Extensions

* Conditional Code

* Compatible Libraries

Transparent Release 2 Extensions

Conditional Code

ASL Requesters

DOS System(), CreateNewProc(), and CON: Enhancements

The Display Database

ARexx

1.25 1 / / Design Decisions / Transparent Release 2 Extensions

To provide
Release 2
enhancements while remaining compatible with the

older 1.3
version
of the OS, several familiar 1.3 system structures have

been extended to include an optional pointer to additional information.
The new extended versions of such structures are generally defined in the
same include file as the original structure. These extended structures
are passed to the same 1.3 system functions as the unextended structure
(e.g., OpenWindow(), OpenScreen(), AddGadget(), OpenDiskFont()). The
existence of the extended information is signified by setting a new flag
bit in the structure. (In one case, PROPNEWLOOK, only the flag bit itself
is significant). These extensions are transparent to previous versions of
the operating system. Only the Release 2 operating system will recognize
the bit and act on the extended information.

Libraries 24 / 29

The table below lists the flag bit for each structure to specify that
extended information is present.

Original Extended Flag Field Flag Bit Defined In
-------- -------- ---------- -------- ----------
NewScreen ExtNewScreen Type NS_EXTENDED <intuition/screens.h>
NewWindow ExtNewWindow Flags WFLG_NW_EXTENDED <intuition/intuition.h>
Gadget Gadget Flags GFLG_STRINGEXTEND <intuition/intuition.h>
PropInfo PropInfo Flags PROPNEWLOOK <intuition/intuition.h
TextAttr TTextAttr tta_Style FSF_TAGGED <graphics/text.h>

Through the use of such extensions, applications can request special

Release 2
features in a 1.3-compatible manner. When the application is

run on a Release 2 machine, the enhanced capabilities will be active.

The enhancements available through these extensions include:

Screen: Overscan, 3D Look (SA_Pens), public screens, PAL/NTSC, new modes
Window: Autoadjust sizing, inner dimensions, menu help
Gadget: Control of font, pens, and editing of string gadgets

PropInfo: Get 3D Look proportional gadgets when running under Release 2
TTextAttr: Control width of scaled fonts

Extensible longword arrays called TagItem lists are used to specify the
extended information for many of these structures. Tag lists provide an
open-ended and backwards-compatible method of growing system structures by
storing all new specifications in an extendible array of longwords pairs.

Another transparent
Release 2
extension is the diskfont library’s ability

to scale bitmap and outline fonts to arbitrary sizes and the availability
of scalable outline fonts. Make sure that these new scalable fonts are
available to your application by not setting the FPF_DESIGNED flag for
AvailFonts() or OpenDiskFont(). Allow the user to create new font sizes
by providing a way for her to manually enter the desired font size (the
1.3 OS returns the closest size, Release 2 returns the requested size).

See the Intuition and graphics library chapters, and the include file
comments for additional information. See the "Utility Library" chapter
for more information on TagItems and tag lists.

1.26 1 / / Design Decisions / Conditional Code

Conditional code provides a second way to take advantage of
Release 2
enhancements in a 1.3-compatible application. The basic idea is ←↩

to add

Libraries 25 / 29

low overhead conditional code, based on library version, to make use of
selected Release 2 features if they are available. There are some
powerful and beneficial Release 2 features which are definitely worth
conditional code.

The control flow for such conditional code is always based on whether a
particular version of a library is available. Failure of

OpenLibrary()
(i.e., return value of NULL) means that the library version ←↩

requested is
not available. The version number of a library that successfully opened
can be checked by testing LibBase->lib_Version. Always check for a
version greater or equal to the version you need.

Examples of conditional library checking code:

/* Checking for presence of a new Release 2 library */
if(AslBase = OpenLibrary("asl.library", 37L))

{ /* OK to use the ASL requester */ }
else

{ /* Must use a different method */ }

/* Check version of an existing library with new Release 2 features */
if(GfxBase->lib_Version >= 37) { /* then allow new genlock modes */}

1.27 1 / / Design Decisions / ASL Requesters

The Release 2 ASL library provides standard file and font requesters.
Allocation and use of an ASL requester can be handled by coding a simple
subroutine to use the ASL requester if available. Otherwise use fallback
code or a public domain requester. By now, many of you have probably coded
your own requesters and you may be quite attached to them. In that case,
at least give your users the option to use the ASL requester if they wish.
By using the ASL requesters, you can provide a familiar interface to your
users, gain the automatic benefit of all ASL file requester improvements,
and stop maintaining your own requester code.

1.28 1 / / Design / DOS System(), CreateNewProc(), and CON: Enhancements

If your program currently uses the 1.3 AmigaDOS Execute() or ←↩
CreateProc()

functions, then it is definitely worth conditional code to use their V37
replacements when running under

Release 2
. The System() function of

Release 2 allows you to pass a command line to AmigaDOS as if it had been
typed at a Shell window. System() can run synchronously with return
values or asynchronously with automatic cleanup and it also sets up a
proper stdio environment when passed a DOS filehandle for SYS_Input and
NULL for SYS_Output. In combination with enhanced Release 2 CON:

Libraries 26 / 29

features, System() can provide a suitable execution environment on either
Workbench or a custom screen. The CreateNewProc() function provides
additional control and ease in process creation.

CON: input and output in custom Intuition screens and windows is now
supported. New options in the

Release 2
console handler (CON:) provide

the ability to open a CON: on any public Intuition screen, or to attach a
CON: to an existing Intuition window. Additional options can add a close
gadget or create an AUTO console window which will only open if accessed
for read or write. Add conditional code to use these system-supported
methods when running under Release 2 or later versions of the OS. Note
that additional CON: option keywords can be easily removed under 1.3 at
runtime by terminating the CON: string with NULL after the window title.
Consult The AmigaDOS Manual by Bantam Books for additional information on
Release 2 CON: and DOS features.

1.29 1 / / Design Decisions / The Display Database

The
Release 2
graphics library and the Enhanced Chip Set (

ECS
) provide

programmable display modes and enhanced genlock capabilities. Users with
Release 2 and ECS may wish to use your application in one of the newer
display modes. The Release 2 display database provides information on all
of the display modes available with the user’s machine and monitor. In
addition, it provides useful information on the capabilities and aspect
ratio of each mode (DisplayInfo.Resolution.x and .y). A new function
named ModeNotAvailable() allows you to easily check if particular modes
are available.

The ExtNewScreen structure used with Intuition’s OpenScreen() function
allows you to specify new display modes with the SA_DisplayID tag and a
longword ModeID. The Release 2 graphics library VideoControl() function
provides greatly enhanced genlock capabilities for machines with

ECS
and a

genlock. Little conditional code is required to support these features.
See the graphics library chapters and Autodocs for more information.

1.30 1 / / Design Decisions / ARexx

Add conditional ARexx capabilities to your program. ARexx is ←↩
available on

all
Release 2
machines, and many 1.3 users have purchased ARexx

Libraries 27 / 29

separately. ARexx capability adds value to your product and allows users
and vertical market developers to create custom and hybrid applications.
Add the ability to control your application externally via ARexx, and
internally via ARexx macros. Allow the user to execute ARexx scripts to
control other programs, including the ability to pass information from
your program to other applications. For more information on adding ARexx
functionality to your application, see the Amiga Programmer’s Guide to
ARexx, a publication by Commodore Applications and Technical Support
(

CATS
). Contact your local Commodore support organization for ←↩

information
on ordering this book.

1.31 1 / 1.3 Compatibility Issues / Compatible Libraries

Compatible libraries provide a third method for using
Release 2
while

remaining 1.3-compatible. Some Release 2 libraries are 1.3-compatible and
may be distributed with your product if you have a 1.3 Workbench License
and an amendment to distribute the additional library.

IFFParse Library

Single Precision IEEE Math Libraries

Third Party Compatible Libraries

1.32 1 / / Compatible Libraries / IFFParse Library

The new IFFParse library is compatible with both
Release 2
and the 1.3

version of the OS. IFFParse is a run-time library which provides low
level code for writing, reading, and parsing IFF files. Use of IFFParse
library and the new IFF example code modules can significantly reduce your
development and debugging time. In addition, the IFFParse code modules
provide effortless handing of the clipboard device. See the IFFParse
Library chapter in this book and the IFF Appendix of the Amiga ROM
Kernel Reference Manual: Devices for additional information.

1.33 1 / / Compatible Libraries / Single Precision IEEE Math Libraries

Libraries 28 / 29

The Release 2 single precision IEEE math libraries are also compatible
with 1.3. These libraries provide single-precision math functions that
will use a math coprocessor if available.

1.34 1 / / Compatible Libraries / Third Party Compatible Libraries

Developers of new code may wish to take advantage of the ease with which a
user interface can be created using the Release 2 GadTools and ASL support
libraries. These new libraries are not 1.3-compatible but there are some
third party development efforts towards providing 1.3-compatible versions
of them. You may wish to explore this possibility.

1.35 1 / Introduction / Commodore Applications and Technical Support (CATS)

Commodore maintains a technical support group dedicated to helping
developers achieve their goals with the Amiga. Currently, technical
support programs are available to meet the needs of both smaller,
independent software developers and larger corporations. Subscriptions to
Commodore’s technical support publication, Amiga Mail, is available to
anyone with an interest in the latest news, Commodore software and
hardware changes, and tips for developers.

To request an application for Commodore’s developer support program, or a
list of CATS technical publications send a self-addressed, stamped, 9" x
12" envelope to:

CATS-Information
1200 West Wilson Drive
West Chester, PA 19380-4231

1.36 1 Introduction to Amiga System Libraries / Error Reports

In a complex technical manual, errors are often found after publication.
When errors in this manual are found, they will be corrected in a
subsequent printing. Updates will be published in Amiga Mail, Commodore’s
technical support publication.

Bug reports can be sent to Commodore electronically or by mail. Submitted
reports must be clear, complete, and concise. Reports must include a
telephone number and enough information so that the bug can be quickly
verified from your report (i.e., please describe the bug and the steps
that produced it).

Amiga Software Engineering Group
ATTN: BUG REPORTS
Commodore Business Machines
1200 Wilson Drive

Libraries 29 / 29

West Chester, PA 19380-4231
USA

BIX: amiga.com/bug.reports(Commercial developers)
amiga.cert/bug.reports(Certified developers)
amiga.dev/bugs(Others)

USENET: bugs@commodore.COM or uunet!cbmvax!bugs

	Libraries
	Amiga® RKM Libraries: 1 Introduction to Amiga System Libraries
	1 Introduction to Libraries / Programming in the Amiga Environment
	1 / Programming in the Amiga Environment / Multitasking
	1 / / Multitasking / What the System Does For You
	1 / / Multitasking / What the System Doesn't Do For You
	1 / Programming in the Amiga Environment / Libraries of Functions
	1 / / Libraries of Functions / Opening a Library in C
	1 / / Libraries of Functions / Opening a Library in Assembler
	1 / / Libraries of Functions / Another Kind of Function Library
	1 / / Libraries of Functions / Libraries, Devices and Resources
	1 / Programming in the Amiga Environment / Dynamic Memory Architecture
	1 / / Dynamic Memory Architecture / Exec: The System Executive
	1 / Programming in the Amiga Environment / Operating System Versions
	1 / / Operating System Versions / About Release 2
	1 / Programming in the Amiga Environment / The Custom Chips
	1 / / The Custom Chips / Custom Chip Revisions
	1 / / The Custom Chips / Two Kinds of Memory
	1 Introduction to Amiga System Libraries / About the Examples
	1 Introduction to Libraries / General Amiga Development Guidelines
	1 / General Development Guidelines / 68010/020/030/040 Compatibility
	1 / General Development Guidelines / Hardware Programming Guidelines
	1 / General Guidelines / Additional Assembler Development Guidelines
	1 Introduction to Amiga System Libraries / 1.3 Compatibility Issues
	1 / 1.3 Compatibility Issues / Design Decisions
	1 / / Design Decisions / Transparent Release 2 Extensions
	1 / / Design Decisions / Conditional Code
	1 / / Design Decisions / ASL Requesters
	1 / / Design / DOS System(), CreateNewProc(), and CON: Enhancements
	1 / / Design Decisions / The Display Database
	1 / / Design Decisions / ARexx
	1 / 1.3 Compatibility Issues / Compatible Libraries
	1 / / Compatible Libraries / IFFParse Library
	1 / / Compatible Libraries / Single Precision IEEE Math Libraries
	1 / / Compatible Libraries / Third Party Compatible Libraries
	1 / Introduction / Commodore Applications and Technical Support (CATS)
	1 Introduction to Amiga System Libraries / Error Reports

