
WordPerfect 5.1 TO 6.0 Macro Conversion Error Messages.

This file documents some error messages which may be placed in the 
converted WordPerfect 6.0 macro document.  

Label already referenced with different keystrokes

This error occurs when a label that was initially referenced while WordPerfect 
was in one state (for example, while Block is turned on) is subsequently 
referenced while WordPerfect is in another state.  MCV flags this as a 
problem because the tokens that MCV creates are sometimes dependant on 
what state or mode WordPerfect is in at the time.   Below is an example of a 
converted macro with this problem. (The numbers are for reference purposes
only.)

Example 1:

Macro converted to WP 6.0

1 CALL(move) 
2 PosWordPrevious 
3 BlockOn(CharMode!) PosLineEnd 
4 CALL(move
5 //*** Conversion problem ***
6 //*** Label already referenced with
7 //different keystrokes
8 //{Block}{End}
9 ) 

10 PosPageNext 
11 CALL(move
12 //*** Conversion problem ***
13 //*** Label already referenced with
14 different keystrokes
15 //{Block}{End}{Page Down}
16 )

17 GO(format) 

18 LABEL(move
19 //*** Conversion problem ***
20 //*** Ambiguous keystrokes leading
21 to label
22 ) 
23 BlockOn(SentenceMode!) CopyAndPaste 
24 Switch 
25 PosDocBottom 
26 MoveModeEnd 
27 PosDocBottom 
28 EnterKey 
29 Switch 
30 RETURN 

31 LABEL(format) 



Original WP 5.1 Macro

{CALL}move~
{Word Left}
{Block}{End}
{CALL}move~

{Page Down}
{CALL}move~

{GO}format~

{LABEL}move~

{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}
{RETURN}

{LABEL}format~

In the example above, LABEL(move) is first referenced on line one.  Notice 
that on line three the Block feature is turned on, and then on line four, 
LABEL(move) is again referenced.  MCV remembers what state WordPerfect 
was in when LABEL(move) was first referenced on line 1.  Since Wordperfect 
will be in a different state (BlockOn) when LABEL move is referenced on line 
4, MCV will generate the error "Label already referenced with different 
keystrokes".  On line eight MCV displays the WordPerfect 5.1 commands (i.e.,
{Block}{End}) that triggered the error.  Once this error has occurred, any 
subsequent references to that label (including references made in the same 
state as the first reference) will generate the error as can be seen by 
referring to line 11 where LABEL(move) has been referenced a third time.  To 
see why there is a problem, refer to line 23 and notice that MCV has 
converted "{Move}12" to "BlockOn(SentenceMode!) CopyAndPaste" which 
are the proper tokens when this label was first referenced in line one.  
However, when LABEL(move) is referenced the second time with block on, 
the BlockOn(SentenceMode!) would be an unnecessary token and would 
generate an error if the macro were played.  Consequently, MCV has 
generated an additional error on line 20, "Ambiguous keystrokes leading to 
label", because LABEL(move) has been referenced while WordPerfect was in 
different states; and although the tokens created are correct for the first 
reference, they are likely to be incorrect for the reference made when 
WordPerfect was in a different state.

There are also instances where MCV will generate this error, yet the macro 
will execute properly. Below is an example of such a case.

Example 2:

Macro converted to WP 6.0

1 CALL(search) 
2 Type("WordPerfect") 

3 PosPageNext 

4

BlockOn(CharMode!) 
5 CALL(search
6 //*** Conversion 
problem ***



7 //*** Label already referenced with
8 different keystrokes
9 //{Block}
10 ) 
11 PosWordPrevious 
12 ASSIGN(client; ?BlockedText) 

13 GO(add) 

14 LABEL(search
15 //*** Conversion problem ***
16 //*** Ambiguous keystrokes leading
17 to label
18 ) 
19 SearchString("Company:  ") 
20 SearchNext(Regular!) 
21 RETURN 

22 LABEL(add) 

Original WP 5.1 
Macro

{CALL}search~
WordPerfect

{Page Down}
{Block}
{CALL}search~

{Word Left}
{Macro Commands}
3client{Enter}

{GO}add~

{LABEL}search~

{Search}Company:··
{Search}
{RETURN}

{LABEL}add~
In this particular case, the tokens SearchString("Company:  ") 
SearchNext(Regular!) on lines 19 and 20 are correct whether Block is turned 
on or off.  Consequently, this particular macro will execute properly and the 
conversion problems can be ignored.  Why does MCV still generate an error if
the macro will run properly?  MCV converts macros from top to bottom in a 
single pass.  Consequently, the keystokes in the referenced label are not 
encountered until it has already passed and converted the references to it.  
MCV only knows that the state or mode of WordPerfect for the second 
reference to the label is different from the state when the label was first 
referenced, and that there may be a problem.

Solution:

If there are no other problems that would keep the macro from compiling or 
executing properly, first try ignoring the errors and play the macro to see if it
will run correctly.  If that fails, edit the WordPerfect 5.1 macro and  insert the 
actual keystrokes of the label referenced.  If that label is referenced 
numerous times in different states, it may be easier to create a duplicate 
label, give it a different name, and reference it when in a different state.  For 
example, the WordPerfect 5.1 macro in Example 1 could be changed as 
follows: 

Original WP 5.1 
macro:

{CALL}move~
{Word Left}

{Block}{End}



{CALL}move~

{Page Down}

{CALL}move~

{GO}format~

{LABEL}move~
{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}
{RETURN}

{LABEL}format~

 
Approach A:

{CALL}move~

{Word Left}

{Block}{End}

{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}

{Page Down}

{CALL}move~

{GO}format~

{LABEL}move~
{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}
{RETURN}

{LABEL}format~

Approach B:

{CALL}move~

{Word Left}

{Block}{End}

{CALL}moveblock~

{Page Down}

{CALL}move~

{GO}format~

{LABEL}move~
{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}
{RETURN}

{LABEL}moveblock~
{Move}12
{Switch}
{Home}{Home}
{Down}
{Enter}
{Home}{Home}
{Down}
{Enter}
{Switch}
{RETURN}

{LABEL}format~

If LABEL move is referenced only once with block on, then approach A or B 
could be used to solve the problem.  If LABEL move is referenced numerous 
times with block on, then approach B would be the most efficient way to 
solve the problem.



Ambiguous keystrokes leading to label

This error is related to the "Label already referenced with different 
keystrokes" error message and occurs in the actual label that is being 
referenced by routines in different states or modes. 

Solution:
Making the changes to solve the "Label already referenced with different 
keystrokes" error message will also solve this problem.

Control transfer with pending token

MCV makes one pass from top to bottom when converting macros.  
Consequently, when converting a series of keystrokes to the proper token, 
MCV cannot "jump" to another routine to convert the rest of the keystrokes 
needed to complete that token.  For example, if a {GO} or {CALL} is 
encountered while a token is yet to be completed, that token cannot be 
completed and this error will be generated.

Example 3:

Macro converted to WP 6.0

1
2 CALL(filename) Paste 

3 GO(address) 

4 LABEL(filename) 

5 RETURN 
6 //*** Conversion problem***
7 //*** Control transfer with
8 pending token
9 //{Retrieve}letter.doc

10 LABEL(address) 

Original WP 5.1 Macro

{Retrieve}
{CALL}filename~{Enter}

{GO}address~

{LABEL}filename~
letter.doc
{RETURN}

{LABEL}address~
This error will also occur if a WHILE, FOR, or IF statement occurs in the 
middle of creating a token.  In the example below, an IF statement occurs in 
the middle of creating a line spacing token.

Example 4:

Macro converted to WP 6.0

1 GETSTRING(VAR1;
2 "Please enter your name:  ") 
3 IF(VAR1="") DISCARD(VAR1) 
4 ENDIF 

5 IF(""+VAR1+""="John") 
 
6 ELSE 
7 //*** Conversion problem ***
8 //*** Control transfer with 
9 // pending token



10 //{Format}162

11 ENDIF 

12 LineSpacing(1.5)

Original WP 5.1 Macro

{TEXT}1~
Please·enter·your·name:··~

{Format}16

{IF}"{VAR 1}"="John"~
  2
{ELSE}
  1.5

{END IF}

{Enter}
{Exit}

Solution:

In the WordPerfect 5.1 macro, replace the {GO} or {CALL} with the 
keystrokes of the label that is referenced.  If the problem is caused by a 
WHILE, FOR, or IF statement, restructure the routine so the statement is not 
within the series of keystrokes that would need to be converted to a token. 
For example, the WordPerfect 5.1 version of the macro above (Example 4) 
could be changed as follows:

Original

{Format}16
{IF}"{VAR 1}"="John"~
  2
{ELSE}
  1.5
{END IF}
{Enter}
{Exit}

After change

{IF}"{VAR 1}"="John"~
{ASSIGN}line~2~

{ELSE}
{ASSIGN}line~1.5~

{END IF}
{Format}16
{VARIABLE}line~
{Enter}
{Exit}

After making the changes to the WordPerfect 5.1 macro, reconvert it using 
the MCV.EXE utility.

Pending tokens leading to label

This error is related to "Control transfer with pending token" errors that have 
been generated by {GO} or {CALL} commands.  This error occurs when part 
of the arguments (for the  token being created) are found in another label 
being referenced by the {GO} or {CALL}.  The error will appear in the label 
being referenced by that {GO} or {CALL}.



Example 5:

Macro converted to WP 6.0

1
2
3 CALL(rows
4 //*** Conversion problem***
5 //*** Control transfer with
6 //pending token
7 //{Columns/Tables}2
8 15{Enter}
9 ) TableCreate(5; 
10 //*** Conversion warning***
11 0) 

12 QUIT 

13 LABEL(rows
14 //***Conversion problem***
15 //*** Pending tokens
16 //leading to label
17 ) 

18 RETURN

Original WP 5.1 Macro

{Columns/Tables}21
5{Enter}
{CALL}rows~{Enter}
{Exit}

{QUIT}

{LABEL}rows~
5

{RETURN}
Notice that in line three in the WordPerfect 5.1 macro, the number of rows for
the table being created (which would be one of the arguments MCV would 
need to create the proper token) is located after {LABEL}rows~ on line 13.  
This situation will cause a "Control transfer with pending token" error and 
MCV will then generate a corresponding error "Pending tokens leading to 
label" at {LABEL}rows~ indicating that this LABEL was referenced when 
arguments for a token were not complete. 

Solution:

Making the changes to solve the "Control transfer with pending token" error 
message will also fix this problem.

Cannot generate matching 6.0 Search text

This error occurs when MCV is unable to create the equivalent search text or 
code for WordPerfect 6.0.  The reasons for this can vary from the character 
not existing in WordPerfect 6.0 (see line five in Example 7 below) to having a 
conditional statement such as an IF within the beginning and ending search 
commands (see line 16 in Example 7 below).

Example 6:

Macro converted to 6.0

1 //*** Conversion problem ***
2 //*** Cannot generate matching 6.0
3 //Search text

4 //{Search}
5 //{^A}
6 SearchString("") 
SearchNext(Regular!) 



7 BlockOn(CharMode!) PosWordNext 
8 ASSIGN(VAR1; ?BlockedText) 

9 GETSTRING(VAR3; "Please enter your
10 last name:  ") 
11 IF(VAR3="") DISCARD(VAR3) ENDIF 

12 //*** Conversion problem ***
13 //*** Cannot generate matching
14 //6.0 Search text
15 //{Search}
16 //{IF}"{VAR 3}"
17 //="Smith"~Smith
18 //{ELSE}C

19 //*** Limit exceeded for commands 
20 //skipped

21 Type("ntractor") ENDIF 

22 //*** Conversion problem ***
23 //*** Not at main document at end
24 //of macro
25 //*** Cannot convert to matching 26

//dialog
27 //{Search}{Enter}{VAR 1}

Original WP 5.1 
Macro

{Search}
{^A}
{Search}

{Block}{Word Right}
{Macro Commands} 
31{Enter}

{TEXT}3~Please·enter·
your·last·name:··~

{Search}
{IF}"{VAR3}" 
="Smith"~Smith
{ELSE}Contractor

{END IF}

{Search}
{Enter}{VAR 1}

When MCV generates this error, it will not convert any commands until it 
encounters the ending {Search} code.  The commands not converted or 
"skipped" will be commented out as can be seen by referring to lines 15-18.  
However, there is a limit to the number of commands that MCV will skip and 
when this limit is reached, MCV will generate a second message "Limit 
exceeded for commands skipped" (See line 19) and will begin converting 
again (See line 21).  Usually this will cause other errors to follow.

Solution:

Frequently, this error is caused when previous errors get MCV out of "sync".  
It may be best to fix other problems first, reconvert and see if this particular 
error is also eliminated.  If not, check to see if the problem is caused by an IF
or a similar statement between the beginning and ending {Search} 
commands.  If this is the case, then edit the WordPerfect 5.1 macro and 
restructure the statement so it does not occur within the {Search} 
commands, then  reconvert the file.  For example, the search statement in 



Example 6 above could be changed as follows:

Original

{Search}
{IF}"{VAR 3}" ="Smith"~

Smith
{ELSE}

Contractor
{END IF}

{Search}

After changes

{IF}"{VAR 3}" ="Smith"~
{ASSIGN}4~Smith~

{ELSE}
{ASSIGN}4~Contractor~

{END IF}
{Search}{VAR 4}{Search}

Limit exceeded for commands skipped

See explanation for "Cannot generate matching 6.0 Search text" above.

Fragmented text input

This error will occur when conditional statements such as an {IF} or control 
flow statements using {CALL} or {GO} commands occur within a save 
routine.

Example 7:

Macro converted to WP 6.0

1
2 IF(VAR1=1) 
3 //*** Conversion problem ***
5 //*** Control transfer with 
6 //pending token
7 //{Save}test

 
8 //*** Conversion problem ***
9 //*** Fragmented text input

10 FileSave(".doc") 
11 ELSE 
 
12 //*** Conversion problem ***
13 //*** Fragmented text input

14 FileSave(".txt") 
15 ENDIF

Original WP 5.1 
Macro

{Save}test
{IF}{VAR 1}=1~

       .doc{Enter}
{ELSE}
       

.txt{Enter}
{END IF}

Solution:

Edit the WordPerfect 5.1 macro and restructure the routine so the input for 
the save is not fragmented.  For example, the problem in Example 7 above 
could be eliminated by editing the WordPerfect 5.1 macro, deleting the word 
test after {Save} on line 1 and then typing test in front of .doc on line 10 and
again on line 14 before .txt.  Although in most cases it will be easier for you 
to make the necessary changes to the WordPerfect 5.1 macro and then 



reconvert, the macro above illustrates a situation where editing the 
converted macro would be quicker and easier.  Note that by typing the word 
test before .doc on line 10 and before .txt on line 14 of the converted macro 
will also solve the problem.

Not at main document at end of macro
Cannot convert to matching dialog

If a macro ends and leaves the user in another location other than the main 
document screen, MCV will attempt to convert the keystrokes to the 
corresponding 6.0 dialog command.  If there is no matching 6.0 dialog 
command for the keystrokes that MCV encounters at the end of the macro, 
then these error messages will be generated.  

Example 8:

Macro converted to WP 6.0

1 //*** Conversion problem ***
2 //*** Not at main document at end of 
3 //macro
4 //*** Cannot convert to matching
5 //dialog
6 //{List}c:\wp60{Enter}

Original WP 5.1 
Macro

{List}c:\wp60{Enter}
In Example 8 above, the WordPerfect 5.1 macro leaves the user in the List 
Files screen.  A FileManagerDlg dialog command does exist in WordPerfect 
6.0, but this would not leave the user in the list files screen; consequently, 
MCV has flagged this as a problem.

Solution:

Make sure the WordPerfect 5.1 macro does indeed end in a screen other than
the main editing screen.  Sometimes previous conversion problems can 
cause this error to occur.  Since there is no matching dialog in WordPerfect 
6.0, there is little the user can do without some knowledge of the 
WordPerfect 6.0 macro language.  In the example above, the user could edit 
the WordPerfect 5.1 macro so it ended with only the command {List} which 
MCV could convert to FileManagerDlg.  But as was mentioned before, this 
would not leave the user in the list files screen.  To get a converted macro 
with this particular problem to end exactly as it did in WordPerfect 5.1, the 
user would need to become familiar with the DLGINPUT command and the 
appropriate dialog command in 6.0.  For example, to get the converted 
macro above to end in the list files screen as it did in 5.1, the following 
tokens would need to be inserted at the end of the converted macro:

DLGINPUT(On!)
FileManagerDlg
TYPE("c:\wp60")
Enterkey
DLGINPUT(Off!)

Name Missing



This error message is generated when a macro selects an item from a list, 
but does not do a name search.  MCV is unable to generate a token, since it 
does not know what item the cursor was highlighting.

Example - a WordPerfect 5.1 macro that causes the error in the converted 
macro:

{Font}4{Enter}12{Enter}

Notice the macro presses the font key (Ctrl-F8), 4, then presses ENTER to 
select the currently highlighted font.

The resulting WordPerfect 6.0 macro, after conversion:

SAVESTATE PERSISTALL 
AutoCodePlacement(OFF!) WP51CursorMovement(ON!) VARERRCHK(OFF!)
//*** Conversion problem ***
//*** Name missing
//{Font}4{Enter}
FontSize(12) 

MCV did not have enough information to generate a FONT("font name") 
token.  The WordPerfect 5.1 macro just selected the default font.  In 
WordPerfect 6.0 it is impossible to have a token of FONT(default).  A specific 
value needs to be specified, for example, FONT("Times Roman").

Here's an example WordPerfect 5.1 macro that does not cause the error:

{Font}4nTimes Roman{Enter}{Enter}12{Enter}

The resulting WordPerfect 6.0 macro, after conversion:

SAVESTATE PERSISTALL 
AutoCodePlacement(OFF!) WP51CursorMovement(ON!) VARERRCHK(OFF!)
Font("Times Roman") 
FontSize(12) 

MCV read the keystrokes during the name search to know what font to be 
included in generating the FONT("Times Roman") token.

Conversion Warnings

Warning: Some characters skipped

This warning occurs when a label or variable name contains characters that 
are invalid in the 6.0 macro language. The exception to this is a space which 
MCV will convert to an underscore character.  When MCV encounters these 
characters, they are skipped or omitted.  For example, if there was a 
{LABEL}file+name~ statement in the WordPerfect 5.1 macro, MCV would 
convert it to LABEL(filename) and then generate this warning.



Solution:

The macro will need editing if there are label or variable names whose 
uniqueness is determined by invalid characters.  For example, if there were 
two labels in the 5.1 macro called file+name and file-name, both would be 
converted to filename and a compilation error would occur if the macro were 
played.  Instances where variable names are converted to the same name 
would usually not generate a compilation error, so it would be important to 
check for duplicate variable names where this error has occurred.  If there 
are no problems with duplicate label or variable names, then the warning can
be ignored.

May edit incorrect line

MCV generates this warning due to graphic line editing differences between 
WordPerfect 5.1 and  WordPerfect 6.0.  When editing a graphic line in 
WordPerfect 5.1, the type of line, vertical or horizontal would be indicated 
after positioning the cursor in the correct location.  In WordPerfect 6.0, no 
distinction is made between vertical and horizontal as far as indicating the 
line to be edited.  Instead, the line number, the next line, or the previous line
is indicated.  Since MCV cannot indicate a line number, a 
GraphicsLineEditNext token will be created to indicate the line to be edited.  
This may be a problem depending on cursor position and if there are both 
vertical lines and horizontal lines in the document.  

Example 9:

Macro converted to WP 6.0

1 //*** Conversion warning ***
2 //*** May edit incorrect line
3 GraphicsLineEditNext
4 GraphicsLineType(Horizontal!)
5 GraphicsLineHorizontalPosition(Set!; 4) 
6 GraphicsLineEnd(Save!) 
7 PosLineDown PosLineDown 
8 PosLineDown PosLineDown 
9 //*** Conversion warning ***
10 //*** May edit incorrect line
11 GraphicsLineEditNext
12 GraphicsLineType(Horizontal!)
13 GraphicsLineHorizontalPosition(Right!)
14 GraphicsLineEnd(Save!) 

Original WP 5.1 
Macro

{Graphics}53

154{Enter}
{Enter}
{Down}{Down}
{Down}{Down}

{Graphics}53

12
{Enter}

The macro above edits two horizontal graphic lines.  If the cursor was initially
positioned in front of the first horizontal line code, then the macro would edit 
the correct lines.  However, if the cursor was positioned after the first 
horizontal line code or if there was a vertical line code preceding the first 
horizontal line code, then the macro would edit the wrong lines.

Solution:
Run the macro and see if the correct lines are edited.  If not, turn on Reveal 
Codes in the document that the macro will be editing, note the line numbers 



of the lines to be edited, and replace the GraphicsLineEditNext token in the 
WordPerfect 6.0 macro with a GraphicsLineEdit token and indicate the 
appropriate line number as the argument for that token.  For example, 
suppose in example 9 above that the line numbers of the horizontal lines 
that the macro should edit are 2 and 5.  The GraphicsLineEditNext tokens on 
lines 3 and 11 would need to be changed to GraphicsLineEdit(2) and 
GraphicsLineEdit(5) respectively.


