
APPLICATION PROGRAMMING INTERFACE
Introduction

At the beginning of 1996, the UNITEL –
universal set-top box project was
launched by the ISIS Programme of the
European Commission. The main aim
of this project was to raise awareness of
the benefits of developing a common
platform for user-transparent access to
the widest range of multimedia serv-
ices. Promising progress has since
been achieved towards the harmoniza-
tion of what is now widely called the
Multimedia Home Platform (MHP).

The MHP Launching Group was born
from the UNITEL initiative in order to
open the project to external parties via
joint meetings. Key representatives of
the High Level Strategy Group took
part in this group, and this collabora-
tion eventually led to the transfer of
these activities to the DVB Project. Two
DVB working groups were subse-
quently set up:
4

➩ A commercially-oriented group,
DVB-MHP, to define the user and
market requirements for enhanced
and interactive broadcasting in the
local cluster (including Internet
access).

➩ A technical group, DVB-TAM
(Technical issues Associated with
MHP), to work on the specification
of the DVB Application Program-
ming Interface (API).

DVB-TAM is currently considering
several API candidates:

➩ MHEG-5/Java;

➩ Mediahighway +;

➩ JavaTV;

➩ HTML/Java.

The API chosen by DVB will have to be
open, in order to suit the requirements
of a horizontal market. It will have to
be CA-independent but will support
compatibility in a multi-CA environ-
ment.

Reference model

Different reference models have been
defined for each MHP system currently
in use. UNITEL used object-modelling
tools to define the application classes
and functionalities that would ulti-
mately identify the hardware and soft-
ware resources required by an MHP
system. With this system, users would
be able to access:

➩ enhanced broadcasting services;

➩ interactive broadcasting services;

➩ Internet services.

Fig. 1 shows just a part of the UNITEL
reference model which was submitted
to the DVB-TAM ad-hoc group that is
working on the system modelling.
The Multimedia Home Platform
– an overview

J.-P. Evain
EBU Technical Department
O
ri

g
in

al
 la

n
g

u
ag

e:
 E

n
g

lis
h

M

an
u

sc
ri

p
t

re
ce

iv
ed

: 2
9/

5/
98

.

The Multimedia Home Platform (MHP) encompasses the peripherals and the inter-
connection of multimedia equipment via the in-home digital network. The MHP solu-
tion covers the whole set of technologies that are necessary to implement digital inter-
active multimedia in the home – including protocols, common API languages, interfaces
and recommendations.

This article offers an introduction to the design and harmonization of MHP receivers,
starting with a reference model which has been derived from the DVB and UNITEL
reference models.
EBU Technical Review - Spring 1998
J.-P. Evain

APPLICATION PROGRAMMING INTERFACE
DVB-TAM succeeded in defining a
common generic reference model,
which is shown in Fig. 2. The reference
model shown in Fig. 3 is a combination
of the models shown in Figs. 1 and 2.

Abbreviations

API Application program-
EBU Technical Review - Spring 1998
J.-P. Evain
The reference model shown in Fig. 3
allows the development of high-level
APIs and applications, independent of
the MHP system infrastructure.

This model offers system modularity
through the use of key interfaces. These
interfaces will be able to maintain the
stability of MHP systems as they evolve
Basic OS
layer

(Windows NT,
Windows 95,

Mac, OS9)
– both in terms of hardware and soft-
ware. Backward compatibility will be
supported to the largest possible extent,
e.g. by using scalable applications.

Each application that is developed will
need to comply sufficienly with the ref-
erence model to ensure cross-platform
interoperability in a competitive envi-
Figure 1
UNITEL: MHP hardware and software resources
Figure 2
DVB-TAM reference model: system layers.
ming interface

A/V Audio / video (visual)

CA Conditional access

CCETT (France Telecom’s) Cen-
tre Commun d’Etudes
de Télédiffusion et de
Télécommunications

CPU Central processing unit

DAVIC Digital Audio-Visual
Council

DRAM Dynamic random access
memory

DSM-CC (ISO) Digital storage
media - command
control

DSM-CC UU
(DSM-CC, user-to-user

DVB Digital Video Broad-
casting

DVB-SI DVB - Service Informa-
tion

EEPROM Electrically-erasable
programmable
read-only memory

I/O Input/output

ISO International Organiz-
ation for Standardiz-
ation

JAVA Programming language
for the WWW (devel-
oped by Sun Micro-
systems)

MHEG (ISO/IEC) Multi- and
Hyper-media coding
Experts Group

MHP Multimedia home plat-
form

mips Million instructions per
second

MPEG (ISO) Moving Picture
Experts Group

NIU Network interface unit

ROM Read-only memory

RTE Run-time engine

TAM (DVB) Technical issues
Associated with MHP
5

APPLICATION PROGRAMMING INTERFACE
ronment. This should result in host
platforms where the integrity of the
application is protected, and its behav-
iour is stable and predictable (thus
resulting in a high quality of service).
The reference model must also define
modes for data delivery, memory han-
dling, object handling and instruction
execution.

The reference model consists of five
layers:

➩ application (content, script) and
media (audio, video, subtitle) com-
ponents;

➩ pipes and streams (see Fig. 4);

➩ the API and native navigation/
selection functions;

➩ platform/system software or mid-
dleware, including the interactive
engine, the run-time engine (RTE)
or virtual machine, the application
manager, etc.;

➩ hardware and software resources,
and associated software.

The main system functions are:

➩ application launch and control, ses-
sion/event management;

Figure 3
Reference model: a possible API a
6

➩ security and access;

➩ content loading;

➩ navigation and selection;

➩ declarative content and streams
presentation control;

➩ communication and I/O control;

➩ signalling, bit transport, driver and
management functions.

nd middleware for pipes and stream

Figure 4
Reference model: application “pi
Applications

The predictable environment described
by the reference model will readily
allow applications to be authored and
tested. Compliance with the reference
model will ensure that applications
execute properly, independent of the
precise MHP implementation. The
integrity of the look, feel and function-

s.

pes” and MPEG streams.
EBU Technical Review - Spring 1998
J.-P. Evain

APPLICATION PROGRAMMING INTERFACE
alities of each application will have to
be ensured; the design of the original
application provider must be pre-
served – irrespective of the platform
implementation. It should be possible
to design scalable applications that
maintain compatibility across a range
of receiver implementations.

DVB-TAM defines an application as a
functional implementation of an inter-
active service which is realized as soft-
ware modules. An application can also
be seen as a set of organized functions
that request activation of MHP hard-
ware and software resources (see Fig. 5).

An interactive application is basically
built around:

➩ application script (which can be
declarative and/or procedural)

➩ content/scenes (declarative interface
and media streams).

The declarative interface is the repre-
sentation of the man-machine inter-
face. It can consist of graphics such as
a background design, selection but-
tons, still pictures, text etc. Each scene
can comprise a set of other scenes,
application objects and attributes. The
pipes implement the interconnections
between the scenes and concatenated
functions.

Procedural applications, based on low-
level functions and primitives, are used
when very strong optimization is
required at the host level (e.g. to mini-
mize the platform footprint and maxi-
mize the use of the transmission
resources). Procedural applications are
generally platform-dependent and,
hence, each one must be verified on the
different host platforms.

Declarative applications use high-level
functions and primitives. This allows

Figure 5
DVB-TAM: relationship between
and functions.
EBU Technical Review - Spring 1998
J.-P. Evain
us to define a platform-independent
reference model which can verify
whether such applications comply in
terms of cross-platform compatibility
and performance accuracy.

In reality, applications are neither fully
declarative nor fully procedural. As an
example, declarative applications can
make use of procedural enhancements
to improve their performance. This
allows us to reduce the size of the appli-
cation and to reduce its execution time
by using routines written in executable
code. Platform-independence is en-
sured by relying on embedded RTEs,
virtual machines or other interactive
engines. It is more difficult to achieve
compliance of the compiled code rou-
tine libraries for different platforms, if
they are not taken into account at the
time of the platform design.

Applications are identified and sig-
nalled to indicate their availability, and
an appropriate mode of access is pre-
sented to the user. Applications are
launched automatically or by request.
The application presentation can be
nominal or down-sized (if scalable),
thus maximizing the use of the availa-
ble resources. Application manage-
ment encompasses: interruptions,
failures, priority modes and dynamic
resource allocation. The application
must release the system resources it
has used, when quitting.

Application delivery
mechanisms

Application script and content are
grouped together in application objects
which are converted into DSM-CC car-
ousel objects. DSM-CC has been stand-
ardized by MPEG for the retrieval and
transport of MPEG streams, and has

hardware entities, resources
been adopted by DVB. DSM-CC UU is
the interface that allows us to extract
DSM-CC carousel objects from the
broadcast stream, or via an interactive
access to a remote server.

DSM-CC carousel objects allow one or
more application objects to be carried
in one module of the data carousel.
Objects can be arranged in modules, in
order to optimize the performance and
use of memory. DSM-CC also includes
compression tools to format the appli-
cation objects and carousel modules,
and mechanisms to ensure the secure
downloading of the carousel objects.

Definition of the API

DVB-TAM has defined an API as a set
of high-level functions, data structures
and protocols which represent a stand-
ard interface for platform-independent
application software. It uses object-
oriented languages and it enhances the
flexibility and re-usability of the plat-
form functionalities.

An application describes a set of
objects according to the definition of
high-level APIs. It defines the interface
(via the interactive engine) between the
applications, and the software and
hardware resources of the host. The
primitives that are embedded in the
application objects are interpreted, and
the resources that are requested by the
corresponding declarative and proce-
dural functions are activated. The
interpreter is an executable code.

UNITEL identified the following API
requirements:

➩ Openness: it should be specified in
such a way that it can be used in the
implementation of other interfaces.

➩ Abstraction: it should not expose its
implementation. It should also
hide all aspects of the underlying
software and hardware.

➩ Evolution: it should be flexible and
easily extendible.

➩ Scalability: it should be hardware-
independent in order to take advan-
tage of future improvements in
hardware and of the characteristics
of different hardware implementa-
tions. The API itself can be updated
or complemented by, for example,
adding new libraries (e.g. proce-
dural extensions) by means of
download mechanisms.
7

APPLICATION PROGRAMMING INTERFACE
According to the application format,
low-level and/or high-level APIs will
be used to deal, respectively, with pro-
cedural and declarative functions:

➩ Low-level APIs are more procedural
and tend to access low-level proce-
dural functions. The API interprets
the application function or primi-
tive but also knows how to activate
the resources.

➩ High-level APIs are more declarative.
The higher the level of abstraction
declaration (i.e. the hiding of the
system implementation), the
stronger is the system independ-
ence. The API interprets the appli-
cation function or primitive but
does not need to know how the cor-
responding resources will be acti-
vated.

The specification of an open API should
lead to the embedding of this hard-
ware-independent facility within DVB
receivers.

DVB-MHP has stated that the API
should:

➩ support applications that are
locally stored as well as those that
are down-loaded in either real time
or non-real time;

➩ preserve the “look and feel” of the
application;

➩ enable access to databases (e.g.
DVB-SI);

➩ allow room for competition among
implementers.

An open and evolutionary (modular,
portable, flexible, extendible) API is
vital for the implementation of plat-
forms in an unfragmented horizontal
market. This will allow different con-
tent and service providers to share dif-
ferent implementations of compliant
platforms.

Navigation/selection

The API can also be used by resident
programmes such as the embedded
navigator function that allows a first
level of navigation when the receiver is
switched on. APIs can also be used to
manipulate streams and to enable basic
functions such as channel/pro-
gramme hopping or “zapping”.

The navigator can also be implemented
in executable code, in which case it
does not need to use the API and its
interpreter. In the DVB-TAM model
8

(Fig. 3), the navigator has consequently
been placed at the same level as the API
to enable boot access to pipes and
streams.

The basic navigator should:

➩ list all the programmes available,
without discrimination;

➩ allow user-friendly access to these
programmes by offering appropri-
ate shortcuts (e.g. specific remote-
control buttons).

Enhanced navigation can then be pro-
vided by means of electronic pro-
gramme guides, possibly including
such enhanced facilities as user profiles
and bookmarks.

Application launch and
control

The application launch function, and
the application and presentation con-
trol functions, provide the facilities to
run an application. The application
code may be already resident in the
STU or it may be obtained via a session
to a remote server. After loading, the
application is launched and execution
is transferred to the new code.

It is the application manager’s respon-
sibility to:

➩ check the code and data integrity;

➩ synchronize the commands and
information;

➩ adapt the presentation graphic for-
mat to suit the platform display;

➩ obtain and dispose of the system
resources;

➩ manage the error signalling and
exceptions;

➩ initiate and terminate any new ses-
sions;

➩ allow the sharing of variables and
contents;

➩ conclude in an orderly and clean
fashion.

Security functions

DVB has defined the following security
requirements (although the security
model itself has not yet been defined):

➩ The API should be accompanied by
a system which incorporates a com-
mon security model for the applica-
tions and data. It should enable full
compatibility between the signals
transmitted by the different broad-
casters and content providers.

➩ The security model should include
a description of the procedures and
entities that must be put into place
to support the associated secret
management issues. It should be
independent of CA systems. The
MHP API should give access to CA
functions, if and when required.

Among the important security aspects
to be addressed are (i) machine protec-
tion against abusive requests for sys-
tem resources (e.g. excessive demands
on memory) and (ii) protection against
non-authorized access to data (e.g. pri-
vate data).

Middleware

The possibility of implementing the
API by means of middleware is directly
related to the application format
(whether declarative or procedural)
and the use of either low-level or
high-level APIs. Each middleware
implementation will be tailored for
optimum use by the host platform.

There can be different ways of imple-
menting the interactive or run-time
engine which, in general, is required to
support the following:

➩ the script and content interpreters;

➩ the libraries;

➩ the event manager (remote control
and other devices, user actions,
markers, timers, the handling of
error conditions);

➩ the loader.

Depending on the API used, the RTE
offers low-level interfacing with the
system hardware and software
resources. The RTE may call up resi-
dent programmes which can use a
native platform-dependent interface to
improve the system performance and
to diminish the operational constraints
(e.g. the size of the downloaded appli-
cation objects) at the declarative appli-
cation level. The RTE is executable
code, adapted to each platform and
aligned with the reference model.

The virtual machine can be used to
emulate declarative interfaces but it is
generally used to run procedural func-
tions (e.g. complex calculations, infor-
mation and text processing, data
extraction) or resident programmes
EBU Technical Review - Spring 1998
J.-P. Evain

APPLICATION PROGRAMMING INTERFACE
that enhance the declarative interface
of the application.

The use of run-time engines and vir-
tual machines allows the API to sup-
port the platform independence of
applications.

Hardware and software
resources

The Multimedia Home Platform must
be user-friendly. A minimum set of
peripherals includes a display, a point-
ing device and, optionally, a keyboard
and local internal/external permanent
storage. The connection of these
peripherals should be on a “plug and
play” basis.

Internal resources in the MHP receiver
include the front-end, demux, decod-
ers, filters, a common interface, a com-
munication interface, a CA system,
memory and associated drivers.

Jean-Pierre Evain graduated from
ENSEA, Cergy-Pontoise (near Paris), in
1983. His first employment was with
CCETT in Rennes and, in 1992, he
moved to Geneva to join the EBU Tech-
nical Department as a Senior Engineer.

Currently, Mr Evain works in the EBU
division called “New Systems and Serv-
ices” and is a member of various BMC
project groups. He represents the EBU
in various international consortia and
in European collaborative projects.

Concerning his MHP and API activities,
Jean-Pierre Evain is the project Man-
ager of the CEC DG3 UNITEL project.
He chaired the MHP Launching Group
that eventually led to the transfer of
MHP activities to DVB. He launched
the ICT-SB project group on MHP har-
monization. He is now the Secretary
of the DVB-MHP requirement group
and is actively following the DVB-TAM
and DAVIC activities on the API. He
also represents the EBU and UNITEL in
the ETSI-MTA (Multimedia Terminals
and Applications) group.
EBU Technical Review - Spring 1998
J.-P. Evain
DVB has currently defined three pro-
files. These require a minimum of
1 Mbyte of Flash-ROM and 1 Mbyte of
DRAM, up to a maximum of 16 Mbytes
of Flash-ROM and 32 Mbytes of DRAM,
coupled with a CPU speed from
20 mips to more than 100 mips. It is
sometimes specified that, for example,
70% of CPU time should be devoted to
run the applications, with the remain-
ing 30% being used for the system
management.

Stored in ROM are the following:

➩ the API interpreter;

➩ the libraries;

➩ the run-time engine and/or virtual
machine;

➩ the loader,

➩ the system tools;

➩ the file system;

➩ the firmware;

➩ the operating system (boot-up,
memory management, task sched-
uler, resource identification, alarms
and timers, resource locking);

➩ the drivers;

➩ the navigator.

The use of Flash memory allows a lim-
ited number of revisions to be down-
loaded. Flash memory can be
partitioned in order to reserve memory
segments for different memory uses
and, for example, to refresh selectively
only part of this memory.

The applications delivered via the
DSM-CC carousel are stored in RAM.
RAM is also used for video/audio/
data decoding and buffering, for
dynamic platform management (e.g.
process queues, stacks), for data, and
for persistent storage of data such as
application variables.

The basic system configuration and
factory settings are usually stored on
EEPROM (using less than 10 Kbytes of
memory).

Migration and future
operational issues

Migration is primarily the process by
which a population of receivers based
on proprietary software systems are all
converted to a population of MHP
receivers which use the common
DVB-MHP system and, particularly,
the API. According to DVB-MHP: “the
migration process will be initiated when
service providers have begun to offer serv-
ices in a format that is compatible with the
MHP solution”.

DVB receivers already make use of a
large number of common elements
including the modulation and multi-
plexing schemes, MPEG-2 audio and
video, the DSM-CC UU interface and
protocols, the Common Interface (for
conditional access and other uses) and
the DVB-SI.

Nevertheless, a number of elements
differ between implementations:

➩ the mechanisms which combine
application script and code, data
and contents into application
objects;

➩ compression tools;

➩ the format of procedural functions;

➩ libraries (e.g. procedural exten-
sions, graphics);

➩ data carousels or other cyclic data
delivery mechanisms;

➩ down-loading procedures and
tools;

➩ memory allocation and manage-
ment (e.g. application queues and
garbage collection);

➩ interactivity;

➩ the formats of the variables;

➩ security procedures.

DVB has requested that, in a multi-
provider / multi-application environ-
ment, the MHP solutions should be
based on the separation of data. This
will enable different authorized appli-
cations to use this data (if in a common
data format), particularly as different
applications can be implemented to
accomplish the same task. It will be
possible to reserve part of the data for
specific applications.

At the system level, migration should
be considered carefully in order to
achieve the largest possible use of the
DVB-TAM API. This will help to main-
tain receiver portability and mobility,
particularly for digital terrestrial
broadcasting where the limited
number of programmes is another rea-
son to support solutions which favour
a horizontal retail market. The con-
sumer will probably not invest in sev-
eral receivers if the added content
value is limited.
9

APPLICATION PROGRAMMING INTERFACE
Migration will not be “easy”. It will
require substantial effort and collabo-
ration, e.g. to maintain backward com-
patibility with currently-deployed plat-
forms.

The wide use of a common API will
raise new operational issues. There
will be significant changes in the
modes of operation of the service pro-
viders who, currently, target well-
defined and proven receiving plat-
forms. In order to accommodate differ-
ent implementations of platforms, all
using a common API, we will have to
follow certain generic guidelines:

➩ applications will have to be
down-loadable and should not rely
on persistent storage when the
application is not active;

➩ common libraries (procedural
extensions, graphics etc.) and resi-
dent programmes should be
embedded in order to limit the size
of the application;

➩ application, data and declarative
interfaces should be organized in
accordance with common generic
schemes;

➩ the same data carousel object for-
mat should be used, and the same
mechanisms should be applied for
the delivery of these objects over
the streams being broadcast;

➩ common compression schemes
should be adopted;
10
➩ similar start-up and closing appli-
cation procedures should be used;

➩ the amount of re-inscriptible Flash
memory that is available should be
defined.

MHP platforms will evolve and will be
able to support more complex and,
hopefully, scalable applications. These
may require further API extensions.
Future evolution should certainly aim
at increasing the degree of commonal-
ity of these system elements and proce-
dures. This should contribute towards
increasing the cost-effectiveness of the
system. It should also help to increase
the lifetime of the equipment.

Acknowledgements

The Author would like to thank the
DVB-MHP and DVB-TAM members
who patiently agreed to describe their
respective systems, and also Philippe
Bridel (France-Telecom/CCETT) who
developed the UNITEL architecture
and reference model.

Bibliography
[1] G. Luetteke (Philips): The DVB

Multimedia Home Platform
MUST’98, May 1998.

[2] ITU-R document 11A/107-11:
Examples of API structure
ITU/EBU, April 1997.
[3] DVB document TAM 029 rev. 5:
TAM Reference model.

[4] M. Echiffre et al. (CSELT): MHEG-5
– Aims, concepts, and imple-
mentation issues
IEEE 98.

[5] J. van der Meer and C.M. Huizer
(Philips): Interoperability be-
tween different interactive
engines for digital television,
problems and solutions
Philips, June 1997.

[6] DAVIC 1.4 specification – Part 9

[7] An API and an Operating Sys-
tem for Interactive Digital TV
Decoders
OpenTV, January 1998.

[8] N. Birch (S&T): The UK MHEG pro-
file as a response to DVB TAM
RSD1
UK Digital Television Group, April
1998.

[9] UNITEL Deliverable 3.1: Charac-
terisation and specification of
the architecture reference
model
CCETT on behalf of the UNITEL
Consortium, December 1997.

And in this issue ...

[10] A. Mornington-West: MHEG-5
and Java – the basis for a com-
mon European API?
EBU Technical Review, No. 275,
Spring 1998.
EBU Technical Review - Spring 1998
J.-P. Evain

