

FRAMING STRUCTURE, CHANNEL CODING AND MODULATION FOR MMDS SYSTEMS BELOW 10 GHz

DVB DOCUMENT A015 February 1997

Reproduction of the document in whole or in part without prior permission of the DVB Project Office is forbidden.

TABLE OF CONTENTS

1 Scope		3
2 Normative refere	ences	3
3 Symbols and abb	previations	3
3.1 Symbols		3
3.2 Abbreviation.	S	4
4 MMDS System c	oncept	4
4.1 Baseband int	erfacing ¹⁾ and sync	<i>6</i>
4.2 Sync 1 invers	ion and randomization	6
4.3 Reed-Solomo	n (RS) encoder	<i>6</i>
4.4 Convolutiona	ıl interleaver	6
4.5 Byte to m-tup	ole conversion	<i>6</i>
4.6 Differential e	encoding	<i>6</i>
4.7 Baseband sho	aping	<i>6</i>
4.8 QAM modula	ation and physical interface	6
4.9 MMDS receiv	ver	6
5 MPEG-2 transpo	ort layer	6
6 Framing structur	re	6
7 Channel coding		7
7.1 Randomizatio	on for spectrum shaping	7
7.2 Reed-Solomo	n encoding	8
7.3 Convolutiona	ıl interleaving	9
8 Byte to symbol m	napping	10
9 Modulation		11
	nnex A (normative) : Baseband filter characteristics	
	nnex B (informative): Transparency of MMDS networksnnex C (informative): Bibliography	
Al	men - (mioimanyo) . Dionography	1 U

1 Scope

This European Telecommunication Standard (ETS) describes the framing structure, channel coding and modulation (denoted "the System" for the purposes of this ETS) for a digital multi-program television distribution by MMDS systems operating below 10 GHz. The aim of this ETS is to present a harmonized transmission standard for cable, satellite and MMDS, based on the MPEG-2 System Layer ISO/IEC DIS 13818-1 [1], with the addition of appropriate Forward Error Correction (FEC) technique. This System follows the modulation/channel coding system for digital multi-program television by cable (see ETS 300 429 in the bibliography) and is based on Quadrature Amplitude Modulation (QAM) with 16, 32, and 64 constellation points.

The System FEC is designed to improve Bit Error Ratio (BER) from 10^{-4} to a range, 10^{-10} to 10^{-11} , ensuring "Quasi Error Free" (QEF) operation with approximately one uncorrected error event per transmission hour.

2 Normative references

This ETS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this ETS only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.

[1] ISO/IEC DIS 13818-1 (June 1994): "Coding of moving pictures and associated audio".
[2] IEEE Trans. Comm. Tech., COM-19, pp. 772-781, (October 1971) Forney, G.D.:
"Burst-correcting codes for the classic bursty channel".

3 Symbols and abbreviations

3.1 Symbols

For the purposes of this ETS, the following symbols apply:

 $\begin{array}{lll} \alpha & & Roll\text{-off factor} \\ A_k,\,B_k & & Most \ Significant \ Bits \ at \ the \ output \ of \ the \ Byte \ to \ m\text{-tuple converter} \\ f_0 & & Channel \ centre \ frequency \\ f_N & Nyquist \ frequency \\ \end{array}$

g(x) RS code generator polynomial

HEX Hexadecimal

I Interleaving depth (bytes)

I, Q In-phase, Quadrature phase components of the modulated signal

j Branch index

k Number of bytes mapped into n symbols

m Power of 2^m-level QAM: 4,5,6 for 16-QAM, 32-QAM, 64-QAM, respectively

M Convolutional interleaver branch depth for j = 1, M = N/I

n Number of symbols mapped from k bytes
N Error protected frame length [bytes]
p(x) RS field generator polynomial

r_m In-band ripple (dB) R Randomized sequence

R_s Symbol rate corresponding to the bilateral Nyquist bandwidth of the modulated signal

R₁₁ Useful bit rate after MPEG-2 transport multiplexer

R_{n'} Bit rate after RS outer encoder

Number of differentially uncoded bits: 2,3,4 for 16-QAM, 32-QAM, 64-QAM,

respectively

T Number of bytes which can be corrected in RS error protected packet

T_s Symbol period

3.2 Abbreviations

For the purposes of this ETS, the following abbreviations apply:

BB Baseband
BER Bit Error Ratio

EBU European Broadcasting Union

ETS European Telecommunication Standard

FEC Forward Error Correction

FIFO First In First Out
IF Intermediate Frequency
IRD Integrated Receiver Decoder

LSB Least Significant Bit

MMDS Microwave Multipoint Distribution Systems

MPEG Moving Pictures Experts Group

MSB Most Significant Bit

MUX Multiplex

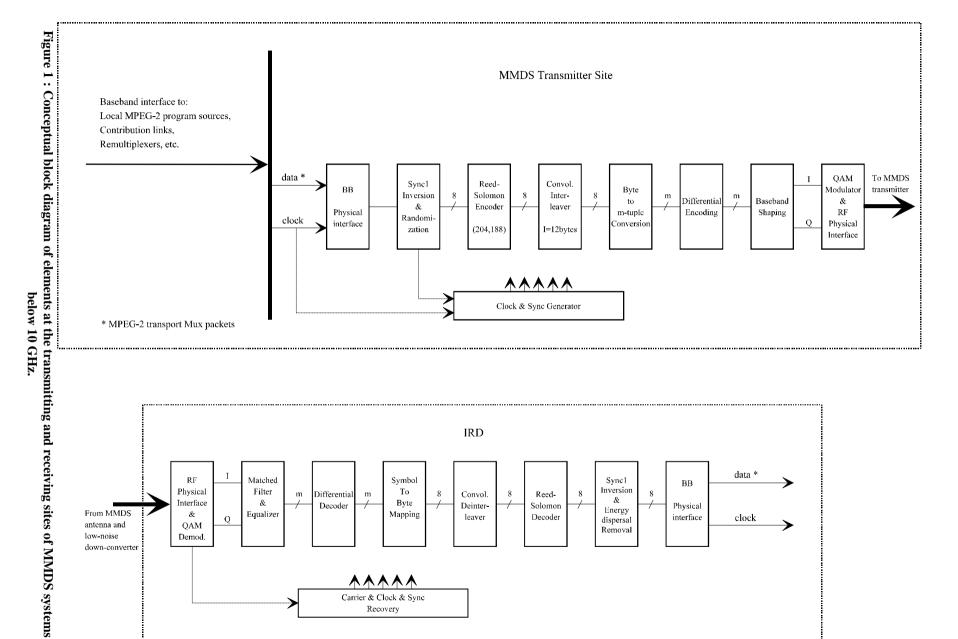
PDH Plesiochronous Digital Hierarchy
PRBS Pseudo-Random Binary Sequence
QAM Quadrature Amplitude Modulation

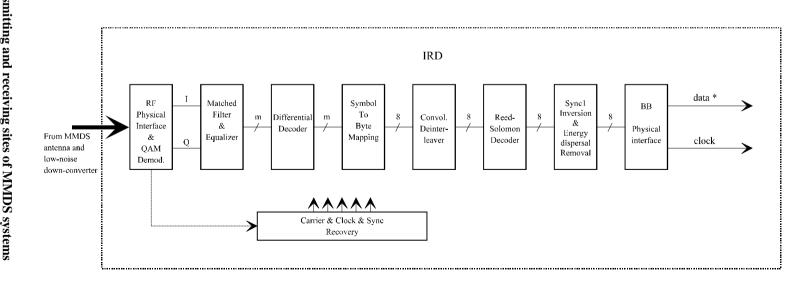
QEF Quasi Error Free RF Radio Frequency RS Reed-Solomon

SMATV Satellite Master Antenna Television

TDM Time Division Multiplex

TV Television


4 MMDS System concept


The MMDS System shall be defined as the functional block of equipment performing the adaptation of the baseband TV signals to the MMDS channel characteristics (see figure 1). At the transmitter site, the following TV baseband signal sources can be considered:

- satellite signal(s);
- cable signal(s);
- contribution link(s);
- local program source(s).

The processes in the following subclauses shall be applied as shown in figure 1.

 \mathcal{S}

4.1 Baseband interfacing 1) and sync

This unit shall adapt the data structure to the format of the signal source. The framing structure shall be in accordance with MPEG-2 transport layer including sync bytes.

4.2 Sync 1 inversion and randomization

This unit shall invert the Sync 1 byte according to the MPEG-2 framing structure, and randomizes the data stream for spectrum shaping purposes.

4.3 Reed-Solomon (RS) encoder

This unit shall apply a shortened Reed-Solomon (RS) code to each randomized transport packet to generate an error-protected packet. This code shall also be applied to the Sync byte itself.

4.4 Convolutional interleaver

This unit shall perform a depth I = 12 convolutional interleaving of the error-protected packets. The periodicity of the sync bytes shall remain unchanged.

4.5 Byte to m-tuple conversion

This unit shall perform a conversion of the bytes generated by the interleaver into QAM symbols.

4.6 Differential encoding

In order to get a rotationally-invariant constellation, this unit shall apply a differential encoding to the two Most Significant Bits (MSBs) of each symbol.

4.7 Baseband shaping

This unit performs mapping from differentially encoded m-tuples to I and Q signals and a square-root raised cosine filtering of the I and Q signals prior to QAM modulation.

4.8 QAM modulation and physical interface

This unit performs QAM modulation. It is followed by interfacing the QAM modulated signal to the Radio Frequency (RF) MMDS channel.

4.9 MMDS receiver

A System receiver shall perform the inverse signal processing, as described for the modulation process above, in order to recover the baseband signal.

5 MPEG-2 transport layer

The MPEG-2 Transport Layer is defined in ISO/IEC DIS 13818-1 [1]. The Transport Layer for MPEG-2 data is comprised of packets having 188 bytes, with one byte for synchronization purposes, three bytes of header containing service identification, scrambling and control information, followed by 184 bytes of MPEG-2 or auxiliary data.

6 Framing structure

The framing organization shall be based on the MPEG-2 transport packet structure. The System framing structure is shown in figure 2.

¹⁾ Interfaces are not part of this doc.

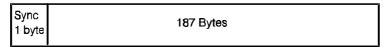


Figure 2a) MPEG-2 transport MUX packet

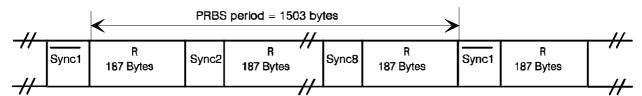


Figure 2b) Randomized transport packets: Sync bytes and Randomized Sequence R

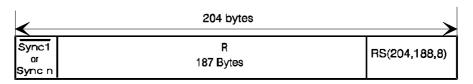


Figure 2c) Reed-Solomon RS(204,188, T=8) error protected packet

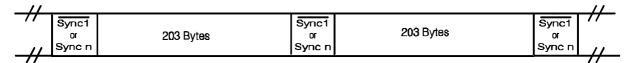


Figure 2d) Interleaved Frames; Interleaving depth I=12 bytes

 $\overline{\text{Sync1}}$ = nonrandomized complemented sync byte $\overline{\text{Sync n}}$ = nonrandomized sync byte, $\overline{\text{n}}$ = 2, 3, ..., 8

Figure 2: Framing structure

7 Channel coding

To achieve the appropriate level of error protection required for MMDS transmission of digital data, a FEC based on Reed-Solomon encoding shall be used. In contrast to the Baseline System for satellite described in ETS 300 421 (see bibliography), no convolutional coding shall be applied for MMDS transmission. Protection against burst errors shall be achieved by the use of byte interleaving.

7.1 Randomization for spectrum shaping

The System input stream shall be organized in fixed length packets (see figure 2), following the MPEG-2 transport multiplexer. The total packet length of the MPEG-2 transport MUX packet is 188 bytes. This includes 1 sync-word byte (i.e. $47_{\rm HEX}$). The processing order at the transmitting side shall always start from the MSB (i.e. 0) of the sync word-byte (i.e. 01000111).

In order to comply with the Systems for satellite and cable, see ETS 300 421 and ETS 300 429 (bibliography) and to ensure adequate binary transitions for clock recovery, the data at the output of the MPEG-2 transport multiplex shall be randomized in accordance with the configuration depicted in figure 3.

The polynomial for the Pseudo Random Binary Sequence (PRBS) generator shall be:

$$1 + X^{14} + X^{15}$$

Loading of the sequence "100101010000000" into the PRBS registers, as indicated in figure 3, shall be initiated at the start of every eight transport packets. To provide an initialization signal for the descrambler, the MPEG-2 sync byte of the first transport packet in a group of eight packets shall be bitwise inverted from $47_{\rm HEX}$ to $88_{\rm HEX}$.

Initialization sequence

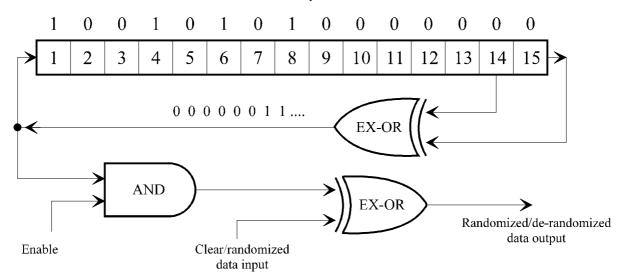


Figure 3: Scrambler/descrambler schematic diagram

The first bit at the output of the PRBS generator shall be applied to the first bit of the first byte following the inverted MPEG-2 sync byte (i.e.B8_{HEX}). To aid other synchronization functions, during the MPEG-2 sync bytes of the subsequent 7 transport packets, the PRBS generation continues, but its output shall be disabled, leaving these bytes unrandomized. The period of the PRBS sequence shall therefore be 1 503 bytes.

The randomization process shall be active also when the modulator input bit-stream is non-existant, or when it is non-compliant with the MPEG-2 transport stream format (i.e. 1 sync byte + 187 packet bytes). This is to avoid the emission of an unmodulated carrier from the modulator.

7.2 Reed-Solomon encoding

Following the energy dispersal randomization process, systematic shortened Reed-Solomon encoding shall be performed on each randomized MPEG-2 transport packet, with T=8. This means that 8 erroneous bytes per transport packet can be corrected. This process adds 16 parity bytes to the MPEG-2 transport packet to give a codeword (204,188).

NOTE: RS encoding shall also be applied to the packet sync byte, either non-inverted (i.e. 47_{HEX}) or inverted (i.e. 88_{HEX}).

Code Generator Polynomial : $g(x) = (x+\lambda^0)(x+\lambda^1)(x+\lambda^2) \dots (x+\lambda^{15})$, where $\lambda = 02_{HEX}$

Field Generator Polynomial : $p(x) = x^8 + x^4 + x^3 + x^2 + 1$

The shortened Reed-Solomon code shall be implemented by appending 51 bytes, all set to zero, before the information bytes at the input of a (255,239) encoder. After the coding procedure these bytes are discarded.

7.3 Convolutional interleaving

Following the block diagram of figure 4, convolutional interleaving with depth I = 12 shall be applied to the error protected packets (see figure 2c). This results in an interleaved frame (see figure 2d).

The convolutional interleaving process shall be based on the Forney approach (see Burst-correcting codes for the classic bursty channel [2]) which is compatible with the Ramsey type III approach, with I = 12. The Interleaved Frame shall be composed of overlapping error protected packets and shall be delimited by MPEG-2 sync bytes (preserving the periodicity of 204 bytes).

The interleaver may be composed of I = 12 branches, cyclically connected to the input byte-stream by the input switch. Each branch shall be a First In First Out (FIFO) shift register, with depth (Mj) cells (where M = 17 = N/I, N = 204 = error protected frame length, I = 12 = interleaving depth, I = 12 = branch index). The cells of the FIFO shall contain 1 byte, and the input and output switches shall be synchronized.

For synchronization purposes, the sync bytes and the inverted sync bytes shall be always routed into the branch "0" of the interleaver (corresponding to a zero delay).

NOTE: The deinterleaver is similar, in principle, to the interleaver, but the branch indexes are reversed (i.e. j=0 corresponds to the largest delay). The deinterleaver synchronization can be carried out by routing the first recognized sync byte into the "0" branch.

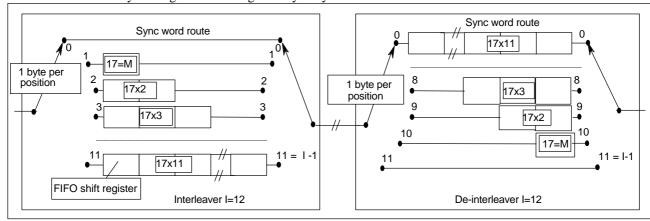
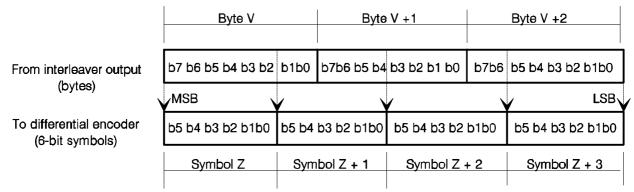


Figure 4: Conceptual diagram of the convolutional interleaver and de-interleaver


8 Byte to symbol mapping

After convolutional interleaving, an exact mapping of bytes into symbols shall be performed. The mapping shall rely on the use of byte boundaries in the modulation system.

In each case, the MSB of symbol Z shall be taken from the MSB of byte V. Correspondingly, the next significant bit of the symbol shall be taken from the next significant bit of the byte. For the case of 2^m -QAM modulation, the process shall map ${\bf k}$ bytes into ${\bf n}$ symbols, such that :

8 k = n . m

The process is illustrated for the case of 64-QAM (where m = 6, k = 3 and n = 4) in figure 5:

NOTE 1: b0 shall be understood as being the Least Significant Bit (LSB) of each byte or m-tuple.

NOTE 2: In this conversion, each byte results in more than one m-tuple, labelled Z, Z+1, etc. with Z being transmitted before Z+1.

Figure 5: Byte to m-tuple conversion for 64-QAM

The two most significant bits of each symbol shall then be differentially encoded in order to obtain a $\pi/2$ -rotation-invariant QAM constellation. The differential encoding of the two MSBs shall be given by the following boolean expression :

$$I_{k} = \overline{(A_{k} \oplus B_{k})}.(A_{k} \oplus I_{k-1}) + (A_{k} \oplus B_{k}).(A_{k} \oplus Q_{k-1})$$

$$Q_k = \overline{(A_k \oplus B_k)}.(B_k \oplus Q_{k-1}) + (A_k \oplus B_k).(B_k \oplus I_{k-1})$$

NOTE: For the above boolean expression " \oplus " denotes the EXOR function, "+" denotes the logical OR function, "." denotes the logical AND function and the overbar denotes inversion.

Figure 6 gives an example of implementation of byte-to-symbol conversion.

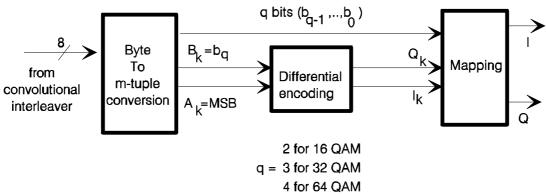
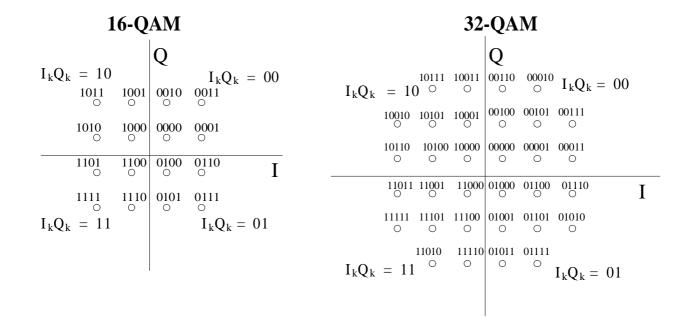


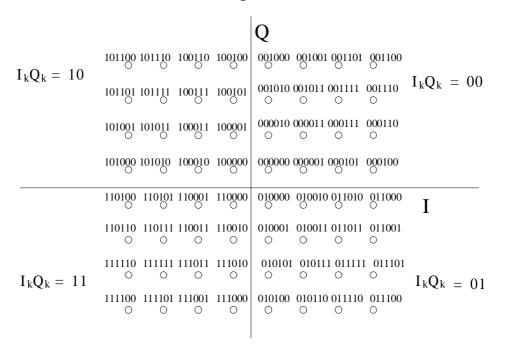
Figure 6 : Example implementation of the byte to m-tuple conversion and the differential encoding of the two MSBs

9 Modulation

The modulation of the System shall be Quadrature Amplitude Modulation (QAM) with 16, 32, or 64 points in the constellation diagram.


The System constellation diagrams for 16-QAM, 32-QAM and 64-QAM are given for the RF MMDS channel in figure 7.

As shown in figure 7, the constellation points in Quadrant 1 shall be converted to Quadrants 2, 3 and 4 by changing the two MSB (i.e. I_k and Q_k) and by rotating the q LSBs according to the following rule given in table 1:


Table1 : Conversion of constellation points of quadrant 1 to other quadrants of the constellation diagram given in figure 7

Quadrant	MSBs	LSBs rotation					
1	00						
2	10	$+\pi/2$					
3	11	+ π					
4	01	$+ 3\pi/2$					

Receivers shall support at least 64-QAM modulation.

64-QAM

 I_kQ_k are the two MSBs in each quadrant Figure 7: Constellation diagrams for 16-QAM, 32-QAM and 64-QAM

Prior to modulation, the I and Q signals shall be square-root raised cosine filtered. The roll-off factor shall be 0.15. Examples of transparent MMDS transmissions are given in annex B, table B.1.

The square-root raised cosine filter shall have a theoretical function defined by the following expression:

$$H(f) = 1_{\text{for}} |f| < f_N(1-\alpha)$$

$$H(f) = \left\{ \frac{1}{2} + \frac{1}{2} \sin \frac{\pi}{2f_N} \left[\frac{f_N - |f|}{\alpha} \right] \right\}^{\frac{1}{2}} \quad \text{for } f_N (1 - \alpha) \le |f| \le f_N (1 + \alpha)$$

$$H(f) = 0 \text{ for } |f| > f_N(1+\alpha),$$

where

$$f_N = \frac{1}{2T_s} = \frac{R_s}{2}$$
 is the Nyquist frequency and roll-off factor $\alpha = 0.15$.

The transmitter filter characteristic is given in annex A.

Annex A (normative): Baseband filter characteristics

The template given in figure A.1 shall be used as a minimum requirement for hardware implementation of the Nyquist filter. This template takes into account not only the design limitations of the digital filter, but also the artefacts coming from the analog processing components of the System (e.g. D/A conversion, analog filtering, etc.).

The value of in-band ripple r_m in the pass-band up to 0.85 f_N as well as at the Nyquist frequency f_N shall be lower than 0.4 dB. The out-of-band rejection shall be greater than 43 dB.

The filter shall be phase linear with the group delay ripple $\leq 0.1~\rm T_s$ (ns) up to $\rm f_N$ where, $\rm T_s = 1/R_s$ is the symbol period.

NOTE: The values for in-band ripple and out-of-band rejection given in this annex are subject to further study.

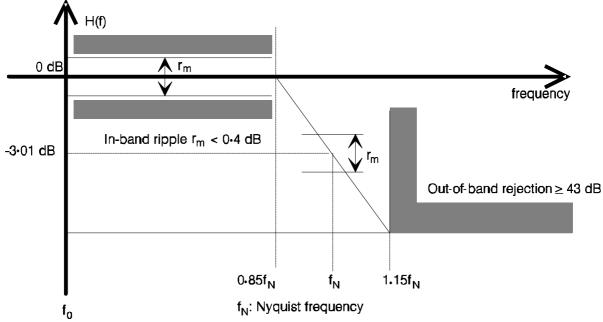


Figure A.1: Half-Nyquist baseband filter amplitude characteristics

Annex B (informative): Transparency of MMDS networks

In order to achieve a transparent retransmission of different services on MMDS systems, the limitations imposed by the System for MMDS transmission in 8 MHz channel bandwidth should be taken into account. With a roll-off factor of 0.15, the theoretical maximum symbol rate in an 8 MHz channel is 6.96 MBaud.

Table B.1 of this annex gives examples of the wide range of possible MMDS symbol rates and occupied bandwidths for different useful bit rates considering 16-QAM, 32-QAM and 64-QAM constellations.

For full transparency, the same useful bit rate (**excluding** RS coding) should be used on the contributing system and the MMDS network for secondary distribution.

In the upper part of table B.1, an example of a transparent transmission of the satellite rate of 38.1 Mbit/s, which may be potentially used by many existing satellites (see ETS 300 421 in bibliography) is given. This bit rate can be retransmitted very efficiently in an 8 MHz MMDS channel by using 64-QAM. A bit rate compatible with terrestrial Plesiochronous Digital Hierarchy (PDH) networks can be retransmitted in an 8 MHz channel by using 32-QAM.

As shown in the lower part of table B.1, network performance limitations, service requirements (e.g. additional data/audio services), characteristics of the primary distribution system (e.g. satellite, fiber) or other constraints may lead to different usages of the System to appropriately suit various applications.

NOTE: Examples of satellite useful bit rates R_u are taken from ETS 300 421 (bibliography).

Table B.1 : Examples of useful bit rates R_u and total bit rates $R_{u'}$ for transparent retransmission and spectrum efficient use on MMDS networks

Useful bit rate R ₁₁ (MPEG-2 transport layer)	Total bit rate R ₁₁ , incl. RS(204,188)	MMDS symbol rate	Occupied bandwidth	Modulation scheme
[Mbit/s]	[Mbit/s]			
		[MBaud]	[MHz]	
38.1	41.34	6.89	7.92	64-QAM
31.9	34.61	6.92	7.96	32-QAM
25.2	27.34	6.84	7.86	16-QAM
31.672 PDH	34.367	6.87	7.90	32-QAM
18.9	20.52	3.42	3.93	64-QAM
16.0	17.40	3.48	4.00	32-QAM
12.8	13.92	3.48	4.00	16-QAM
9.6	10.44	1.74	2.00	64-QAM
8.0	8.70	1.74	2.00	32-QAM
6.4	6.96	1.74	2.00	16-QAM

15

Annex C (informative): Bibliography

For the purposes of this ETS, the following informative references apply:

- 1) ETS 300 421 : "Digital broadcasting systems for television, sound and data services ; Framing structure, channel coding and modulation for 11/12 GHz satellite services", ETSI, December 1994.
- 2) ETS 300 429: "Digital broadcasting systems for television, sound and data services; Framing structure, channel coding and modulation for cable systems", ETSI, December 1994.