

Extensions to the Common Interface Specification

DVB Document DVB TM2088r3, CIT 037r11

May 1999

Page 2
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:22
File: blue_book_ci_front.fr5

Page 3
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:22
File: blue_book_ci_front.fr5

Extensions to the Common Interface SpeciÞcation

DVB Document DVB TM2088r3, CIT 037r11

May 1999

Reproduction of the document in whole or in part without prior permission of the DVB Project OfÞce is forbidden.

Page 4
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:22
File: blue_book_ci_front.fr5

Page 5
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:22
File: dvb_ci_extensionsTOC

1 Introduction and scope ... 7

1.1 From version 1. 8

2 Definitions and Abbreviations.. 9

3 Normative References .. 11

4 Command Interface - Resource Management .. 13

4.1 Extending use of the resource ID type Þeld . 13

4.2 Establishing the Module ID. 14

4.2.1 Resource Manager - Version 2 15

4.3 DeÞning and Using Common Interface Private Resources . 19

4.3.1 Introduction 19
4.3.2 DeÞning Private Resources 19
4.3.3 Using Private Resources 21

5 Command Interface - Application Information.. 23

5.1 Application Information - Version 2 . 23

5.1.1 New application types 23
5.1.2 Unrecognised application type semantics 23

6 Command Interface - Additional Resources .. 23

6.1 Input Modules . 23

6.1.1 Requirements for both input module types 24
6.1.2 Type ÔAÕ Input Modules 25
6.1.3 Type ÔBÕ Input Modules 31

6.2 Status Query Functions . 45

6.2.1 Status Query sessions 45
6.2.2 Generic Status Queries 45
6.2.3 Audience metering 48
6.2.4 Activation status 53

6.3 Power manager . 54

6.3.1 Activation state change request 54
6.3.2 Activation state change acknowledge 55

6.4 Event Management . 57

6.4.1 Event Manager sessions 57
6.4.2 Event Manager resources 57
6.4.3 Time range 58
6.4.4 Resource priorities 58
6.4.5 Power-up timing 58
6.4.6 Energy conservation 58
6.4.7 Event request 58
6.4.8 Event request acknowledge 59
6.4.9 Event notiÞcation 60

Page 6
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: dvb_ci_extensionsTOC

6.5 Application MMI . 61

6.5.1 Resource Contention 61
6.5.2 RequestStart 61
6.5.3 RequestStartAck 62
6.5.4 FileRequest 63
6.5.5 FileAcknowledge 63
6.5.6 AppAbortRequest 64
6.5.7 AppAbortAck 65

6.6 Copy protection . 66

6.6.1 Copy protection system instance management 66
6.6.2 Copy protection system ID management 66
6.6.3 Minimum repetition interval 66
6.6.4 CP_query and CP_reply 66
6.6.5 CP_command and CP_response 68

6.7 Software download . 69

6.7.1 Introduction 69
6.7.2 Life cycle overview 69
6.7.3 Download resource 70
6.7.4 Resource-objects 71
6.7.5 Host-module exchanges 73

6.8 CA pipeline resource . 79

6.8.1 Overview 79
6.8.2 Functionality 79
6.8.3 Message Transfer 80
6.8.4 Alternative implementations 81

7 Definition of profiles .. 82

7.1 ProÞle 1 . 82

7.2 ProÞle 2 . 82

7.3 ProÞle 3 . 82

7.4 Domain speciÞc extensions to proÞles . 82

8 Resource identifiers and application object tags .. 83

8.1 Resource type = 1*. 85

Page 7
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: dvb_ci_intro.fr

1 Introduction and scope

This speciÞcation presents a set of extensions to the command interface protocols of the common interface standardised in
EN 50221. These provide facilities to allow a diverse range of functions to be delivered to receivers through modules
attached to the common interface. In summary the functions supported are:

Module identiÞcation extension

A key technology enhancement introduced here, and required by several of the above functions, is a method for identifying
multiple instances of the same resource. This subdivides the resource_type Þeld in the resource identiÞer into a smaller
resource_type Þeld and a resource_instance Þeld. Accompanying this is a method for hosts to assign locally unique non-vol-
atile IDs to modules (See ÒExtending use of the resource ID type ÞeldÓ on page 13). The protocols that support this module
identiÞcation are provided by version 2 of the resource manger.

The following resources depend on this enhancement. Hosts and modules that provide or use these resources shall support
version 2 of the resource manger:

¥ Input Modules

¥ Status Query Functions

¥ Event Management

¥ Copy protection

¥ CA pipeline resource

Table 1 identiÞes the element that shall provide the Module ID in each case.:

Input Modules page 23 Allows modules to deliver transport streams and services to hosts

Status Query Functions page 45

Allows modules to interrogate the current status/conÞguration of the host.
For example this generic function can be used to implement modules to
provide:
- Audience metering
- Audio description

Power manager page 54
Allows hosts to determine if modules are busy prior to entering a low
power consumption stand-by mode.

Event Management page 57
Allows modules to register timer events with a host to activate a host from a
low power consumption stand by mode.

Application MMI page 61
Allows a module to interact with the user by loading an application on to
the hostÕs application execution environment.

Copy protection page 66
Allows modules (typically those providing CA functions) to control video
copy protection features in a host.

Software download page 69
Allows a CI module to be used as a source of Þrmware updates to a host by
providing a framework within which manufacturer speciÞc Þrmware
loading protocols can be implemented.

CA pipeline resource page 79
Allows private communication between applications on a receiver hosted
API and CA facilities in a module.

Resource
Resource
Provider

Resource
User

Input Modules

✓

Status Query Functions

✓

Event Management

✓

Copy protection

✓

CA pipeline resource

✓

Table 1. Requirement for Module ID

Page 8
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: dvb_ci_intro.fr

1.1 From version 1

A set of standards has been designed to be used in digital video broadcasting. These standards include source coding, chan-
nel coding, service information and decoder interfaces. In addition, a conditional access system is used when there is a need
to control access to a broadcast service. It has been decided that the conditional access system need not be standardised,
although a common scrambling algorithm is provided. It remains for broadcasters to access decoders with different condi-
tional access systems and to ensure that they have choice of supply of such systems. A solution is to use the common scram-
bling algorithm and to execute solutions for access based on commercial agreements between operators. This solution can
operate with single CA systems embedded in decoders.

A second solution is based on a standardised interface between a module and a host where CA and more generally deÞned
proprietary functions may be implemented in the module. This solution also allows broadcasters to use modules containing
solutions from different suppliers in the same broadcast system, thus increasing their choice and anti-piracy options. The
scope of this document is to describe this common interface.

The decoder, referred to in this speciÞcation as the host, includes those functions that are necessary to receive MPEG-2
video, audio and data in the clear. This speciÞcation deÞnes the interface between the host and the scrambling and CA appli-
cations, which will operate on an external module.

Two logical interfaces, to be included on the same physical interface, are deÞned. The Þrst interface is the MPEG-2 Trans-
port Stream. The link and physical layers are deÞned in this speciÞcation and the higher layers are deÞned in the MPEG-2
speciÞcations. The second interface, the command interface, carries commands between the host and the module. Six layers
are deÞned for this interface. An example of a single module in connection with a host is shown in Figure 1.

This speciÞcation only deÞnes those aspects of the host that are required to completely specify the interactions across the
interface. The speciÞcation assumes nothing about the host design except to deÞne a set of services which are required of the
host in order to allow the module to operate.

The speciÞcation does not deÞne the operation or functionality of a conditional access system application on the module.
The applications which may be performed by a module communicating across the interface are not limited to conditional
access or to those described in this speciÞcation. More than one module may be supported concurrently.

Tuner
RF In

Demodulator MPEG Decoder

RGB Out

Audio Out

DemultiplexerMicroprocessorRemote

Host

Microprocessor Descrambler

Module
Smart Card
(optional)

Control
Scrambled
Transport

Stream

Descrambled
Transport

Stream

Figure 1. Example of single module in connection with host

Common Interface

Page 9
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: defs.fr

2 DeÞnitions and Abbreviations

CATV

Community Area TV

Conditional Access

CA

A system to control subscriber access to services, programmes and events e.g. Video-
guard, Eurocrypt.

CENELEC

European Committee for Electrotechnical Standardisation. Central Secretariat: rue de
Stassart 35, B - 1050 Brussels.

CI

Common Interface

DVB

Digital Video Broadcasting

DVB Project OfÞce, c/o European Broadcasting Union, 17 A Ancienne Route, CH-
1218 Grand-Saconnex, Geneva, Switzerland.

Phone: +41 22 717 27 19. Fax: +41 22 717 27 27. Email: dvb@ebu.ch

DVB-C

DVB Cable

DVB-S

DVB Satellite

DVB-T

DVB Terrestrial

EPG

Electronic Program Guide

elementary stream

ES

ISO/IEC 13818-1 A generic term for one of the coded video, coded audio or other
coded bit streams in PES packets. One elementary stream is carried in a sequence of
PES packets with one and only one stream_id.

event

A grouping of elementary broadcast data streams with a deÞned start and end time
belonging to a common service, e.g. Þrst half of a football match, News Flash, Þrst
part of an entertainment show

event_id

DeÞned in ETS 300 468.

Event Information Table

EIT

DeÞned in ETS 300 468.

EIT

pf

Event Information Table, present/following

EIT

pfo

Event Information Table, present/following (other)

LNB

Low Noise Block

Man Machine Interface

MMI

MHEG

Multimedia and Hypermedia Experts Group.

MPEG

Motion Picture Experts Group

MPEG-2

Refers to the standard ISO/IEC 13818. Systems coding is deÞned in part 1. Video
coding is deÞned in part 2. Audio coding is deÞned in part 3.

network

A collection of MPEG-2 Transport Stream multiplexes transmitted on a single deliv-
ery system, e.g. all digital channels on a speciÞc cable system.

network_id

DeÞned in ETS 300 468.

Network Information Table

NIT

DeÞned in ETS 300 468.

PMT

Program Map Table

PSI

Program SpeciÞc Information

Page 10
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: defs.fr

SDT

Service Description Table, deÞned in ETS 300 468.

SDT

o

Service Description Table (other)

SI

Service Information

Digital data describing the delivery system, content and scheduling/timing of broad-
cast data streams etc. It includes MPEG-2 PSI together with independently deÞned
extensions.

SMATV

Satellite Master Antenna TV

TS

Transport Stream

A Transport Stream is a data structure deÞned in ISO/IEC 13818 1 [1] It is the basis

VOD

Video On Demand

Page 11
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: rfrncs.fr

3 Normative References

[1] ETS 300 468

Draft EN 300 468 v1.3.1 (1997-09): “Digital Video Broadcasting (DVB); Specifica-
tion for Service Information (SI) in DVB systems”

[2] ETR 162

Digital broadcasting systems for television, sound and data services; Allocation of
Service Information (SI) codes for Digital Video Broadcasting (DVB) systems.

[3] ETR 211 ETR 211 (Second Edition, August 1997): ÒDigital Video Broadcasting (DVB); Guide-
lines on implementation and usage of Service Information (SI)Ó

[4] EN 50221

Common Interface Specification for Conditional Access and other Digital Video
Broadcasting Decoder Applications

[5] ISO/IEC 13818-6

Information technology - Generic coding of moving pictures and associated audio
information: Extensions for Digital Storage Media Command and Control.

[6] R206-001

Guidelines for Implementation and Use of the Common Interface for DVB Decoder
Applications

[7] ISO/IEC 13522-5

MHEG-5 Information technology - Coding of multimedia and hypermedia informa-
tion: Support for Base-Level Interactive Applications.

Page 12
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: rfrncs.fr

Page 13
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4 Command Interface - Resource Management

4.1 Extending use of the resource ID type Þeld

Some of the additional resources identiÞed in ÒCommand Interface - Additional ResourcesÓ require a method by which
applications can identify a speciÞc instance of a resource amongst several instances of the same resource class. For example,
to allow an EPG to discriminate between several identical input modules each connected to a different network. For these
new resources this is addressed by allocating the 6 least signiÞcant bits of the type Þeld as a resource instance Þeld.

Instances of the same resource are discriminated by the lower 6 bits of what was previously the resource_type Þeld.
Resources discriminated in this way are advertised by modules and the host during the proÞle enquiry/reply dialogues during
initialisation. Later, a speciÞc instance of a resource can be accessed by opening a session to the resource with that resource
ID in the normal way.

In the set of resources developed in this speciÞcation 3 uses of resource discrimination are seen:

1. Discriminating identical resources provided by modules

Here modules use a host allocated Module ID to Þll the resource_instance Þeld of the resources that they declare.

This case applies, for example, to input modules. Instances of identical input modules, providing connection to different
networks by their resource_instance Þeld.

Figure 2. Resource ID coding

resource_id_type !=3 for public resources

resource_class 14 bits

resource_type 4 bits

resource_instance 6 bits

resource_version 6 bits

v2 public resource ID

v1 public resource ID

private_resource_deÞner 10 bits private_resource_identity 20 bits

resource_type10 bits

v1 private resource ID

resource_id_type ==3 for private resources

private_resource_identity 14 bits

resource_id_type ==3 designates a private resource ID

registration_authority 4 bit Þeld

private_resource_deÞner 12 bit Þeld

resource_instance inserted here if
required by a private resource

v2 private resource ID

Page 14
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

2. Discriminating between host and module provided resource instances

After the modules have declared their resources (where appropriate using the Module ID in their resource_instance Þeld)
the host can allocate other resource_instance values to discriminate host provided instances of the same resources.

This case might apply where both the host and modules provide instances of a copy protection resource. The host creates
resource_instance values for its copy protection resources to avoid collision with those provided by modules.

3. Module speciÞc resource interfaces

Where a host resource must provide a speciÞc channel of communication with each module using its services the host
can declare a ÒpersonalÓ instance of the resource for each module by using the moduleÕs Module ID to in the
resource_instance Þeld of the resources it declares.

This case applies, for example, to the event manager. After the host has determined the set of modules supporting a Mod-
ule ID the event manager declares an instance each dedicated to one module.

4.2 Establishing the Module ID

Version 2 of the resource manager protocol, in a backwardly compatible way, manages the assignment of a unique identity -
Module ID - to each transport connection requiring this functionality.

Module IDs are assigned by the host before resource proÞling. They are exhibited by certain resources as part of their
resource type Þeld when they declare their resource proÞle to the resource manager. In this way identical modules presenting
identical resources will present distinct resource identiÞers. Once assigned, it is recommended that the Module ID is retained
by the module in a non-volatile way (i.e. the Module ID is preserved even if power is removed from the module). The host
can update the Module ID if required.

The text that follows updates that in section 8.4.1 of EN 50221 to describe the behaviour of the version 2 resource manager.

The following resources depend on this enhancement. Hosts and modules that provide or use these resources shall support
version 2 of the resource manger:

¥ Input Modules

¥ Status Query Functions

¥ Event Management

¥ Copy protection

¥ CA pipeline resource

Table 2 identiÞes the element that shall provide the Module ID in each case.:

Resource
Resource
Provider

Resource
User

Input Modules ✓

Status Query Functions ✓

Event Management ✓

Copy protection ✓

CA pipeline resource ✓

Table 2. Requirement for Module ID

Page 15
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.2.1 Resource Manager - Version 2
The Resource Manager is a resource provided by the host. There is only one type in the class and it can support any number
of sessions. It controls the acquisition and provision of resources to all applications. A symmetrical communication protocol
is deÞned between the module and the host to determine the resources each can provide. The protocol is used Þrst by the host
to interrogate each transport connection in turn to determine what resources, if any, are presented for use on that transport
connection. Then it is used by applications to Þnd out the total resources available. It is then used periodically when
resources change to update the common view of available resources.

The Resource Manager is provided by the host and cannot be superseded by a resource on a module. Any attempt to provide
a Resource Manager resource by a module shall be ignored by the host.

4.2.1.1 Resource Manager Protocol
This protocol is in two parts - ModuleID establishment and Resource ProÞle establishment and notiÞcation. The second part
is identical to version 1 of the Resource Manager protocol. The Þrst part is a new addition.

When a module is plugged-in, or the host is powered up, one or perhaps two transport connections are created to the module
serving an application and/or a resource provider. The Þrst thing an application or resource provider does is to request a ses-
sion to the Resource Manager resource, using either the version 1 or version 2 variant of the resource ID as appropriate. On
successful establishment of the session the Resource Manager sends a ProÞle Enquiry to the application or resource pro-
vider.

Newer modules in older hosts
If a newer module attempts to open a session to the resource manager using the version 2 resource manager resource ID
(0x00010042) the standard behaviour of a host that only supports version 1 should be to reply with open_session_response
having session_status = 0xF2 (Òsession not opened, resource exists but version lower than requestedÓ). The subsequent
behaviour of the module is implementation dependant for example, the module might open a version 1 session to the host
and then present a reduced set of resources.

Unless the resource manager has version ≥ 2 the module shall:

¥ Omit the Module ID establishment part of the protocol entirely

¥ Not declare resources that depend on the availability of a Module ID

4.2.1.2 Module ID establishment
On receiving ProÞle Enquiry a module respecting version 2 of the protocol shall reply with Module ID Send:

1. If the module already has a previously allocated ModuleID (stored by the module in non-volatile form), it returns this in
the Module ID Send object.

If ModuleID has not been previously allocated then a ModuleID value of 0 is sent.

2. The Resource Manager replies with a Module ID Command object. If the command Þeld in this object is set to Acknowl-
edgement, then it accepts the ModuleID as allocated and the module then continues with the Resource ProÞle establish-
ment phase.

If the command Þeld in the Module ID Command object is set to Set_ModuleID, then the module_id Þeld contains a new
ModuleID. The module responds with a further Module ID Send object with the new ID. The host in turn responds with
a Module ID Command acknowledgement, and the ProÞle protocol can continue as before.

If at some later time the host needs to change a ModuleID, it sends Module ID Command to update the ModuleID, expecting
a Module ID Send in response, and acknowledging that. For simplicity, the Resource ProÞle establishment phase after a Pro-
Þle Change notiÞcation from a module shall be preceded by the Module ID establishment phase, but a ProÞle Enquiry initi-
ated by the module to the Resource Manager never needs it.

Once a Module ID is established for a module by the above procedure, then this ID shall be used in the Resource Type Þeld
of all resources which use the Module ID mechanism for distinguishing resource instances.

Page 16
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.2.1.3 Resource ProÞle establishment
Directly following ProÞle Enquiry in the case of version 1, or following the Module ID establishment phase in the case of
version 2, the module sends a ProÞle Reply listing the resources it provides (if any). The application or resource provider
must now wait for a ProÞle Change object. Whilst waiting for ProÞle Change it can neither create sessions to other resources
nor can it accept sessions from other applications, returning a reply of Ôresource non-existentÕ or Ôresource exists but una-
vailableÕ as appropriate.

When it has asked for proÞles on all transport connections and received ProÞle Replies the host builds a list of available
resources. Where resources have a version 2 resource identiÞer coding (see Figure 2) multiple instances of the same class &
type of resource are automatically differentiated by their resource_instance.

Those resources which have a version 1 resource identiÞer coding have no discriminating resource_instance. In this case the
following rules from EN 50221 apply:

1. Where two or more resources match in both class and type the host keeps the one with the highest version number in its
list.

2. Where the version numbers match also the host keeps all resources and chooses one at random when a create session
request is received for it.

Once the host has built its resource list it sends a ProÞle Change object on all current Resource Manager sessions, and those
applications that wish to can then ask the host for its list of resources using the ProÞle Enquiry object.

open_session_request v2
[m ➔ h]

open_session_request v1
[m ➔ h]

profile_enq
[h ➔ m]

profile_reply
[m ➔ h]

continue as
version 1

open_session_response
[h ➔ m]

profile_enq
[h ➔ m]

module_id_send
[m ➔ h]

module_id_command
[h ➔ m]

session_status = 0x00 (OK)

command = 0x02 (Set(N))

command = 0x01 (Ack)

session_status = 0xF2
(lower version available)

Fail

open_session_response
[h ➔ m]

Figure 3. Module ID establishment

Page 17
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

When it receives the ProÞle Change notiÞcation for the Þrst time the application or resource provider can interrogate the host
with a ProÞle Enquiry and receive a ProÞle Reply with the hostÕs list of available resources. After this Þrst operation of the
ProÞle Changed protocol the application or resource provider is now free to create or accept other sessions. Its session to the
Resource Manager persists to allow further ProÞle Changed notiÞcation by the host from time to time.

If a resource provider wishes to notify a change in the proÞle of resources it provides, it issues a ProÞle Changed to the host.
The host replies with a ProÞle Enquiry to which the resource provider replies in turn with its updated resource list. The host
processes this and, if this results in any change to the hostÕs own resource list, the host will issue a ProÞle Changed on all
active Resource Manager sessions. The applications can then enquire and receive an updated resource list if they wish.

4.2.1.4 ProÞle Enquiry
The proÞle enquiry object requests the recipient to reply with a list of the resources it provides in a ProÞle Reply object.

4.2.1.5 ProÞle Reply
This is sent in response to a proÞle enquiry and lists the resources that the sender is able to provide.

¥ Resource identiÞers for the minimum set of resources which shall be provided are listed in section 8.8 of EN 50221.

¥ Further, optional resources are be listed in annexes to EN 50221.

¥ A set of additional resources are deÞned in this speciÞcation in ÒCommand Interface - Additional ResourcesÓ.

¥ Service providers and manufacturers can deÞne additional ÒprivateÓ resources (see 4.3, ÒDeÞning and Using Common
Interface Private ResourcesÓ, on page 19).

4.2.1.6 ProÞle Changed
The ProÞle Changed object notiÞes the recipient that a resource has changed. A module would typically use it to notify the
host if the availability status of any of its resources had changed (but not just if a resource was in use). The host would mod-
ify its own resource list if necessary, and if there was any change it would in turn send a ProÞle Changed object on all trans-
port connections.

Syntax No. of bits Mnemonic

profile_enq () {

profile_enq_tag 24 uimsbf

length_field()=0

}

Table 3. ProÞle Enquiry object coding

Syntax No. of bits Mnemonic

profile_reply ()

profile_reply_tag 24 uimsbf

length_field() = N*4

for (i=0; i<N; i++) {

resource_identifier()

}

}

Table 4. ProÞle Reply object coding

Syntax No. of bits Mnemonic

profile_changed () {

profile_changed_tag 24 uimsbf

length_field()=0

}

Table 5. ProÞle Changed object coding

Page 18
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.2.1.7 Module ID Send
Send the current ModuleID in response to either a ProÞle Enquiry, or a Module ID Command updating the ModuleID

module_id
This is the Module ID allocated and managed locally by the host. Only the 6 least signiÞcant bits are used. The two most sig-
niÞcant bits shall be set to zero when assigning this value and shall be ignored when reading it. A Module ID of zero shall be
used by the module if one has not already been allocated by the host in a previous transaction. A value allocated by the host
shall be retained by the module through removal of power.

4.2.1.8 Module ID Command
Sent as an acknowledgement of a Module ID Send object, or to set or update an existing ModuleID.

command

module_id
As deÞned above.

Syntax No. of bits Mnemonic

module_id_send () {

module_id_send_tag 24 uimsbf

length_field()=1

reserved 2 bslbf

module_id 6 uimsbf

}

Table 6. Module ID Send object coding

Syntax No. of bits Mnemonic

module_id_command () {

module_id_command_tag 24 uimsbf

length_field()=2

command 8 uimsbf

reserved 2 bslbf

module_id 6 uimsbf

}

Table 7. Module ID Send object coding

command command value

Acknowledgement 01

Set_ModuleID 02

reserved other values

Page 19
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.3 DeÞning and Using Common Interface Private Resources

4.3.1 Introduction
The Common Interface (EN 50221) speciÞcation provides a capability for deÞning and using private resources. This section:

¥ ModiÞes the private resource coding deÞned in EN 50221.

¥ DeÞnes a registration process for private resource identiÞers.

¥ Describes the technical requirements on private resources.

4.3.2 DeÞning Private Resources

4.3.2.1 Registering the Resource ID
The Resource IdentiÞer is a 32 bit integer. One quarter of the number space is reserved for use by private resources. Table 8
reproduces the resource identiÞer coding used by resource manager versions 1 and 2 for public resources and private
resources (these are also illustrated graphically in Figure 2 on page 13).

resource_id_type
This 2 bit Þeld distinguishes the public 75% of the number space from the private 25%.

Syntax No. of bits Mnemonic

resource_identifier() {

resource_id_type 2 uimsbf

// resource manager v1 public resource coding

if ((resource_id_type != 3) && (manager version == 1)) {

resource_class 14 uimsbf

resource_type 10 uimsbf

resource_version 6 uimsbf

}

// resource manager v2 public resource coding

else if ((resource_id_type != 3) && (manager version >= 2)) {

resource_class 14 uimsbf

resource_type 4 uimsbf

resource_instance 6 uimsbf

resource_version 6 uimsbf

}

// resource manager v1 private resource coding

else if ((resource_id_type == 3) && (manager version ==1)) {

private_resource_definer 10 uimsbf

private_resource_identity 20 uimsbf

}

else if ((resource_id_type == 3) && (manager version >= 2)) {

registration_authority 4 uimsbf

private_resource_definer 12 uimsbf

private_resource_identity 14 uimsbf

}

}

Table 8. resource identiÞer coding format

Page 20
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Public resource identiÞers

resource_class
This 14 bit integer deÞnes the class of a public resource. The set of these identiÞers is recorded in EN 50221 and extended in
subsequent public extensions to the common interface speciÞcation.

resource_type
This Þeld deÞnes related members of a class of a resources. For example, in EN 50221 for the class Òlow speed communica-
tionsÓ different values in this Þeld differentiate types of return channel interface (serial port, PSTN modem etc.).

In version 1 of the resource manager 10 bits were allocated to the resource type. In version 2 this Þeld is sub-divided to
accommodate the resource instance Þeld.

resource_instance
This 6 bit Þeld reßects the module ID of the providing module for certain types of module provided resource.

resource_version
This 6 bit Þeld allows compatibly upgraded versions of public resources to be identiÞed. For example, it identiÞes the
upgraded versions of the resource manager and the application information resource.

Private resource identiÞers

registration_authority
This 4 bit Þeld identiÞes the authority that allocates private_resource_deÞner values to applicants. This Þeld is managed by
ETSI. It allows ETSI to delegate authority for managing parts of the range of private_resource_deÞner values to other regis-
tration authorities.

private_resource_deÞner
This 12 bit Þeld identiÞes an organisation that has obtained registration.

private_resource_identity
This 14 bit Þeld is available for private allocation by organisations that have been allocated a private resource deÞner value.
Organisations are not required to publish their use of this number space. See ÒUse of module IDsÓ.

value organisation

0 ETSI Þrst allocation block, recorded in ETR 162.

1É15
Allocation blocks for future use by ETSI or
delegation to other registration organisations,
recorded in ETR 162.

Table 9. Resource identiÞer registration organisations

registration
authority

value

private
resource
deÞner
value

private resource deÞning organisation

0
0x000 to 0x0FF

Organisations that have a CA_system_id (registered in
ETR 162) are automatically allocated a private deÞner
where the least signiÞcant byte of the deÞner is the
most signiÞcant byte of CA_system_id.

0x100 to 0xFFF Registered by ETSI in ETR 162.

1É15 x
Allocation blocks for future use by ETSI or delegation
to other registration organisations, recorded in
ETR 162.

Table 10. Resource identiÞer registration organisations

Page 21
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.3.2.2 Use of module IDs
As with public resources private resources can use the module ID, allocated to the module by resource manager version 2, to
allow different instances of identical modules to be discriminated by an application.

When used, all 6 bits of the module ID shall be used and it shall be inserted in the same position in the private resource iden-
tiÞer as the resource_instance Þeld in a public resource identiÞer. See Figure 2.

4.3.2.3 Resource object deÞnition
The action of all resources is a protocol based on the exchange of objects. Each object comprises a Tag Þeld, followed by a
Length Þeld, followed by zero or more bytes of object content. The objects themselves must be deÞned, and also the object
exchange protocols that implement the resource functionality. The Length Þeld is deÞned in EN 50221.

For reasons of compatibility with early implementation 3 byte tags shall be used by all resources. The tag values in
EN 50221 are globally unique within the speciÞcation. This is for historical reasons and new tags deÞned do not need to be
globally unique, only locally unique within one resource.

Note: Resource implementors should be aware of this - APDU tags are only unique within a resource. Do not
assume that APDU tags will be globally unique.

Private resource developers are not required to register or publish the tags that their objects use.

4.3.2.4 Resource declaration
The entity offering the resource - host or module - must signal resource availability. This involves notifying the Resource
Manager (which runs on the host) of the availability of the resource.

In the case of a module-provided resource, the module must, on receiving a transport connection from the host, create a ses-
sion to the Resource Manager resource and participate in the resource proÞle establishment protocol.

In the case of a host-provided resource, the mechanism will depend upon the particular host environment. By whatever
means, the Resource Manager must acquire a list of all host-provided resources, including any private ones, during the host
initialisation phase. This could be by static deÞnition of resources at host system build time, or by dynamic means during ini-
tialisation using an internal protocol or an internal operation of the protocol deÞned in EN 50221.

Private resources do not have a version Þeld that is known to the Resource Manager so, the version selection protocol used
by the Resource Manager for public resources and described in EN 50221 does not apply to private resources. In the case of
private Resource IdentiÞer clashes, the Resource Manager will arbitrarily choose one of the conßicting resources to make
available in its list. See ÒUse of module IDsÓ.

Note: the ÒProÞle ChangedÓ mechanism (see 4.2.1.3 on page 16 &4.2.1.6 on page 17) can be used by either mod-
ule or host to declare resources after the initial resource declaration phase is complete.

4.3.2.5 Access to man machine interface
Applications rather than resources use the MMI. If a module provided resource requires access to the MMI (e.g. to allow
user conÞguration) it should respond to an Application Info Enquiry from the host with an Application Info object presenting
an appropriate application type.

4.3.3 Using Private Resources

4.3.3.1 From Modules
Applications running on modules will create a session to the Resource Manager and acquire information about all resources
available, including private resources. In order to use a resource, the application must ÒunderstandÓ the resource protocol.
Therefore the application writer must know both the resource identiÞer and the protocol speciÞcation for the private
resource. Beyond that, use of a private resource is identical to use of a public resource - the application creates a session to
the resource in the normal manner and then operates the protocol.

Page 22
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

4.3.3.2 From Hosts
Hosts may for example provide an API to applications supporting a set of functions such as:

All the functions must return state information about the success or otherwise of the operation. These functions are sufÞcient
to provide communication to all resources, however particular host implementations may add extra functionality for reasons
of performance or application simplicity. For example, there may be additional functions to give direct access to the
Resource ManagerÕs resource database, bypassing the Resource manager protocol deÞned in EN 50221. There may also be
additional functions giving more direct access to host-based resources, or host-based resources may be used entirely inde-
pendently of the Common Interface infrastructure. This is entirely the decision of the host designer.

Open Session Request - Open a session to a resource

Close Session Request - Close a session to a resource

Send Data - Send an APDU on a session

Receive Data - Receive an APDU on a session

Page 23
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

5 Command Interface - Application Information

5.1 Application Information - Version 2

5.1.1 New application types
Version 2 of the application information resource (with resource ID 0x00020042) extends the set of application_type val-
ues that can be coded in the Application Info object. Table 11 deÞnes the extended list.

Software_upgrade
Modules that upload software to the host to upgrade the software in the host. No speciÞc upload protocol is implied by this
application type.

UnclassiÞed
Modules that don't fall into any other category may be ÒunclassiÞedÓ.

A new module application type is not usually allocated unless it is likely that a host will have more than one of a type
installed.

Audience metering modules are in this type.

Network_interface
Any type of input module (including both types ÔAÕ and ÔBÕ described in this speciÞcation) can present an application of
Network_interface type.

Accessibility_aids
Modules that provide a facility to for those with some form of disability or impairment can use this application type.

Audio description modules are in this type.

5.1.2 Unrecognised application type semantics
A host with a version 2 application information resource will understand the full set of application types listed in Table 11.
When presented with an unrecognised application type they shall treat them as UnclassiÞed (type 06).

6 Command Interface - Additional Resources

6.1 Input Modules
Two types of input modules are deÞned ÔAÕ and ÔBÕ. Type ÔAÕ is a simple, potentially low-cost module for delivery of broad-
cast services via DVB-C, DVB-S or DVB-T networks to hosts. Type ÔBÕ (See ÒType ÔBÕ Input ModulesÓ on page 31) sup-
ports these types of service and in addition allows other types of service and network to be delivered.

Application type application_type

Conditional_Access 01

Electronic_Programme_Guide 02

Software_upgrade 03

Network_interface 04

Accessibility_aids 05

UnclassiÞed 06

reserved other values

Table 11. Application type coding

Page 24
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.1.1 Requirements for both input module types

6.1.1.1 TS format
Where the input module delivers a Transport Stream (TS) to the host the TS itself and the data streams within it shall con-
form to the appropriate DVB speciÞcations for a broadcast TS. In particular:

¥ TS, PSI, Audio and Video data shall conform to ETR 154

¥ SI shall conform to ETS 300 468 and ETR 211

6.1.1.2 TS control
Input modules shall continue to pass the host supplied TS from its Transport Stream Input to its Transport Stream Output
until the host opens a session to the control resource (e.g. StreamInput or ServiceGateway) of the module and sends a
command requesting the module to deliver a stream/service (e.g. TuneTSReq or GetServiceReq).

When the host requests the module to stop providing the stream/service or closes the session to the control resource the TS
output by the module shall revert to being that supplied by the host.

This requirement does not preclude the module also including CA functions to descramble some or all of the data passing
through the module.

6.1.1.3 Input module sessions

Module ID derived resource instances
Each input module shall have a Module ID (See ÒExtending use of the resource ID type ÞeldÓ on page 13) and use this ID in
the resource ID of the resources that it provides.

The resource ID for type ÔAÕ input modules is of the form 0000 0000 1000 0000 0001 iiii ii00 0001. The resource

ID of a type ÔBÕ input module1 has the form 0000 0000 1000 0001 0001 iiii ii00 0001. In each case iiiiii is the
Module ID of the input module.

Example
An example is illustrated in Figure 14. Here 3 modules are inserted into a host. Two of these modules are input modules
which present resource IDs derived from their Module ID. Applications (either host or module resident) can open sessions to
each instance of the input module. One module is a CA module which also has a Module ID, but isnÕt an input module, so
doesnÕt present this type of resource.

1. Where its a Broadcast Service Gateway module. Future different types of Service Gateway module will have a different
value in the class Þeld.

Type ÔBÕ Input
Module

module_id = 1

session to resource id = 0x00811041

session to resource id = 0x008110C1

Figure 4. Use of module IDs in input module resource presentation

Navigator
Application

CA Module

module_id = 2

Type ÔBÕ Input
Module

module_id = 3

Page 25
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.1.2 Type ÔAÕ Input Modules

6.1.2.1 Introduction (informative)

Module overview
Figure 5 illustrates a possible type ÔAÕ module. Here a low performance microcontroller provides local intelligence within
the module. The functions this is will support are:

¥ User set-up screens, for example, to allow the user to conÞgure a satellite module with regard to the characteristics of the

LNB & dish to which it is connected.1

¥ The ability to search for transport streams.

¥ The ability to tune to transport streams as directed and then remained locked to them.

Software model overview

Module man machine interface
All input modules shall support host-module communications from the Application Information resource. In particu-
lar if a module provides set-up screens these shall be accessible at least in response to Enter Menu message from the host.

Hosts supporting input modules shall provide the user with a method to access the top level menu of each module.

Input Set-up
Depending on the delivery system connected to the module it may be appropriate for the module to provide set-up screens,
using the normal CI MMI methods, to assist installers set-up the input to the host. For example, these screens might provide
display of signal strength to assist antenna pointing etc.

Autoscan set-up
Depending on the delivery system connected to the module it may be appropriate for the module to provide set-up screens to
conÞgure its autoscan process. See below.

Host responsibility
The host has no responsibility in these area other than providing a method for the user to activate the top-level user interface
screens of the module.

Scanning for TS
The host is responsible for initiating the frequency scanning process. This applies whether module autoscan feature is
used or whether the host directs the scanning in a more hands-on way.

Messages are based on delivery system descriptors
The dialogues between the host and the input module are in terms of the payload of DVB SI delivery system descrip-
tors. For all currently deÞned DVB delivery systems (DVB-C, DVB-S & DVB-T) this payload is the same size (11 byte) but
the internal coding varies.

1. This feature is optional but is likely to be a practical requirement of all real modules.

Figure 5. Illustrative type ÔAÕ module

<- Module Host ->

Tuner Demod Demux

CPUµC

Page 26
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

The host is not required to understand this structure to be able to use the module. However, at the host designerÕs option,
enhanced behaviour may be possible where the host does understand it.

Modules must provide autoscan facilities
All low level input modules shall provide an autoscan function that allows them to search for transmissions.

The module is completely responsible for this process. This speciÞcation does not limit how this is done. Various approaches
can be illustrated that might Þt different circumstances:

¥ The module is initialised by the supplier with a list of frequencies and the attributes of the dish/LNB with which it works.

This might be appropriate where a service provider or retailer delivers a Òshrink wrapÓ package of module and dish
intended to access a particular service provider.

¥ The module might be supplied pre-initialised with data on the characteristics of various network operators (e.g. Astra and
Eutelsat) and various LNB/dishes. The module must then ask the user to tell it about the circumstances in which it is
deployed (e.g. an Acme steerable dish with a Bloggs Inc. ÒMark IIIÓ LNB)

¥ The module might provide an Òadvanced userÓ set-up. For example, this might provide the user with the ability to conÞg-
ure the method the module should use to select polarization on an LNB (e.g. LNB voltage, 22 kHz tone, DiSEqC etc.)

Module controlled scanning
The host instructs the module to autoscan. Each time the module ÒÞndsÓ a TS it stops scanning and delivers TuningInforma-
tionMessage (in data equivalent to a DVB SI delivery system descriptor) to the host. TuneTSReq can be used by the host to
request that the TS is delivered to the host. So, the host has an opportunity to store the TuningInformationMessage and to
analyse the SI in the TS allowing it to extract service lists etc. Alternatively, the host might just store the TuningInformation-
Message and return later to analyse the SI in more detail. The host can tell the module to continue the search. Eventually the
module will report Òsearch doneÓ.

When the module performs a search for TS the host should not assume that the module has access to the SI within each TS.
The host is responsible for analysing the SI in each TS found. For example, in a terrestrial environment the host may be able

to get the same TS on more than one frequency. The host is responsible for deciding which set(s1) of tuning information to
store for each TS.

Host controlled scanning
The host can also construct tuning information to instruct the module to tune. In this way the host can control the search
strategy. This gives the host an opportunity to take advantage of any special knowledge it might have. For example, it might
ÒknowÓ about a Òbarker channelÓ which provides reliable tuning information. This might allow the host to accelerate tuning.

Features of this type are enabled but not required by this speciÞcation. They are therefore an area for product differentiation.

Hosts should be aware that the tuning information provided by the NITs on some delivery systems (e.g. SMATV and Terres-
trial) can be unreliable.

Storing tuning information
During the TS scanning process the host will potentially discover many TS and services. It is a host implementation choice
to decide how many to remember, and the facilities provided to the user for selecting services.

The minimum information that host needs to retain to be able to return to a TS is the tuning information provided by the
module and a reference to the module (to identify it in the case that there is more than one input module in the host). To be
able to return to a service the host must at least store the original network ID, the service ID and a reference to the TS hold-
ing that service. The quantity of information involved here is likely to be quite modest.

Optionally hosts might store additional information associated with each service such as the service name.

1. It might be useful to store more than one set of tuning information for a TS to accommodate variable reception condi-
tions!

Page 27
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

TS & Service selection

Tuning to TS
The host can command the input module to tune to a TS. The TS is speciÞed with the standard 11 byte TuningInforma-
tionMessage.

Service Selection
The host is responsible for accessing services within each TS. A type ÔAÕ input module is not required to have visibility of
the services within a TS.

CA features
Independent of their type ÔAÕ input module functionality, input modules can also provide a Conditional Access Support
resource to manage CA access to services within TS. In this case the host communicates independently to the tuning support
and the CA support features. Here the host behaviour is almost identical to the case where CA is provided by a separate
module down stream of the input module.

6.1.2.2 Type ÔAÕ module command interface

StreamInput
Type ÔAÕ input modules shall present a StreamInput resource to the host. The resource identiÞer for this resource is
0x00801ii1. This resource shall support a single session.

After a session is opened to its StreamInput resource the module shall continue to pass the host supplied TS from its Trans-
port Stream Input to its Transport Stream Output until TuneTSReq is used to tune to a speciÞed TS when the selected TS
replaces the one from the host as the output of the module. The TS output of the module reverts to the TS from the host
either when the session to the StreamInput is closed or TuneTSReq is used without a TuningInformationMessage.

Table 12 summarises the set of stream level module control calls presented by the StreamInput resource.

DeliverySystemInfoReq
Requests the module to report on the delivery system it connects to.

DeliverySystemInfoReqTag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

Call Direction Description

DeliverySystemInfoReq h->m
Requests the module to provide information on its
delivery system.

DeliverySystemInfoAck m->h
Reply describing the type of delivery system
connected e.g. (DVB-S, -C, -T)

ScanStartReq h->m Instructs the module to start scanning for TS

ScanNextReq h->m Instructs the module to continue scanning for TS

ScanAck m->h Reply describing the TS found

TuneTSReq h->m Instructs the module to tune to a TS

TuneTSAck m->h Reports the success or otherwise of the tune

Table 12. Overview of the StreamInput objects

Syntax No. of bits Mnemonic

DeliverySystemInfoReq () {

DeliverySystemInfoReqTag 24 bslbf

length_field()

}

Table 13. DeliverySystemInfoReq syntax

Page 28
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

DeliverySystemInfoAck
Reply to DeliverySystemInfoReq describing the type of delivery system connected to the module.

DeliverySystemInfoAckTag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

SystemIdentiÞer
This 8 bit Þeld identiÞes the delivery system(s) connected by the module. The values deÞned for this Þeld deÞned in
Table 15.

The TuningInformationMessage format is in all cases 11 bytes long. In cases 1 to 3 the message is the last 11 bytes of the
corresponding DVB SI delivery system descriptor (i.e. all bytes after the descriptor tag and length Þelds). All other delivery
systems shall use the same 11 byte format.

Hosts supporting input modules shall be able to work with all delivery systems (even those not yet deÞned) as there is no
requirement for hosts to understand the tuning information message. The purpose in revealing the type of the delivery sys-
tem is to enable hosts to provide enhanced facilities for delivery systems with which they are ÒfamiliarÓ.

ÒAbstractÓ delivery systems
The ÒabstractÓ delivery system uses a standard size 11 byte tuning information message. However, the coding of this mes-
sage is not publicly deÞned.

Example cases where modules may declare their network as ÒabstractÓ include:

¥ SMATV or small CATV networks where the tuning information delivered by the NIT is not reliable following remodula-
tion of signals from a different delivery system.

¥ New delivery systems with different modulation parameters

Syntax No. of bits Mnemonic

DeliverySystemInfoReq () {

DeliverySystemInfoAckTag 24 bslbf

length_field()

for(i=0; i<N; i++) {

SystemIdentifier 8 bslbf

}

}

Table 14. DeliverySystemInfoReq syntax

SystemIdentiÞer
value

Delivery system Tuning information message format

0 ÒAbstractÓ Module speciÞc

1 DVB-C As DVB SI cable delivery system descriptor

2 DVB-S As DVB SI satellite delivery system descriptor

3 DVB-T As DVB SI terrestrial delivery system descriptor

> 3 Reserved for future use

Table 15. Delivery system identiÞcation

Page 29
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

ScanStartReq
Instructs the module to start scanning for TS from some Òstart pointÓ of its own choosing.

On receiving this the module may open a MMI session to request the user to conÞgure parameters affecting the scope of the
search. The host shall be able to let the module open a session to the MMI resource.

ScanStartReqTag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

ScanNextReq
Instructs the module to continue scanning for TS from the ÒpointÓ achieved when ScanAck last returned.

ScanNextReqTag
This 24 bit Þeld with value 0x9F8003 identiÞes this message.

ScanAck
Reply from the module to the host when a broadcast signal is found, or the search is completed. The TS found is not deliv-
ered to the host unless a TuneTSReq is sent.

ScanAckTag
This 24 bit Þeld with value 0x9F8004 identiÞes this message.

TSState
This 8 bit Þeld delivers an unsigned integer indicating the availability of the TS. The coding of this Þeld is as follows:

¥ 0 indicates no signal found.

When auto-scanning for TS Ô0Õ indicates that the auto-scan process has searched all possible frequencies.

¥ 1 to 255 provide a normalised representation of the signal quality (bigger is better).

Syntax No. of bits Mnemonic

ScanStartReq () {

ScanStartReqTag 24 bslbf

length_field()

}

Table 16. ScanStartReq syntax

Syntax No. of bits Mnemonic

ScanNextReq () {

ScanNextReqTag 24 bslbf

length_field()

}

Table 17. ScanNextReq syntax

Syntax No. of bits Mnemonic

ScanAck () {

ScanAckTag 24 bslbf

length_field()

TSState 8 uimsbf

TuningInformationMessage 11x8 bslbf

ScanProgress 8 uimsbf

}

Table 18. ScanAck syntax

Page 30
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

TuningInformationMessage
This 11 byte Þeld carries a delivery system dependent coding of the tuning information to re-acquire the TS found by the
module.

The value of this Þeld is not deÞned if the TSState is Ô0Õ.

ScanProgress
This 8 bit unsigned integer provides an approximate proportional indication of how far through the auto-scanning process
the module is. The range of allowed values is 0 to 255. The value increases as the scan progresses.

TuneTSReq
This call requests the module to tune to the TS using the tuning information supplied. If the TuningInformationMessage Þeld
is missing (i.e. the length Þeld indicates zero following bytes) then the request is for the module to disconnect from the net-
work.

TuneTSReqTag
This 24 bit Þeld with value 0x9F8005 identiÞes this message.

TuningInformationMessage
This 11 byte Þeld carries a delivery system dependent coding of the tuning information to acquire the TS found by the mod-
ule. The coding is identical to the TuningInformationMessage returned by ScanAck.

TuneTSAck
This reply indicates that the module has tuned to the requested frequency in response to a TuneTSReq. The message is sent
when the module is delivering a stable TS.

TuneTSAckTag
This 24 bit Þeld with value 0x9F8006 identiÞes this message.

TSState
This 8 bit Þeld has identical coding to the TSState returned value returned by ScanAck.

In the case that TuneTSReq has no TuningInformationMessage (i.e. the message is Ònetwork disconnectÓ) then this Þeld
shall have the value Ô0Õ (i.e. no signal).

Syntax No. of bits Mnemonic

TuneTSReq () {

TuneTSReqTag 24 bslbf

length_field()

TuningInformationMessage 11x8 bslbf

}

Table 19. TuneTSReq syntax

Syntax No. of bits Mnemonic

TuneTSAck () {

TuneTSAckTag 24 bslbf

length_field()

TSState 8 uimsbf

}

Table 20. ScanAck syntax

Page 31
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.1.3 Type ÔBÕ Input Modules

6.1.3.1 Introduction (informative)

Module Overview
Figure 6 illustrates a possible type ÔBÕ module. This example might be suitable for connections to a broadcast network. In
this case the module has a demux and a CPU and hence is able to analyse information about the network (in this case DVB
SI) and provide service level access (compared to the TS level access provided by the type ÔAÕ module - See ÒType ÔAÕ Input
ModulesÓ on page 25).

Input modules might also integrate CA functions, in which case Figure 7 might be representative of the module functions
required.

Software Model Overview
This section illustrates possible relationships between the type ÔBÕ module and a navigation application.

Navigation model
The model assumes that the basic navigation model for hosts with DVB CI is DVB SI. Hence DVB SI service naming con-
cepts are used by the CI to present the list of available services to the host.

This approach can be used to give generic hosts access to a wide range of TV and other services. However, it is envisaged
that in the future this module-host API may evolve and provide new methods that allow ÒawareÓ hosts to work more directly
with novel service types.

Figure 6. Illustrative type ÔBÕ module for broadcast networks

<- Module Host ->

Tuner Demod Demux

CPUCPU Demux

Figure 7. Type ÔBÕ input Module with CA

Tuner Demod

CPU Demux

Descrambler

Page 32
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Simple TV access
In Figure 8 a basic host accesses normal TV services provided by a module. In this case the module provides a list of the
services it can provide. The application presents this list to the user. When the user selects a service the module delivers the
service to the host where it is decoded.

The hostÕs ÒNavigation ApplicationÓ can be designed to seamlessly integrate the list of module delivered services with the
list of Òits ownÓ services.

Basic access to new service types
In Figure 9 the same basic host is connected to a module that can provide access to new types of service. The module pro-
vides a decoder for the service and thus insulates the host from having to ÒunderstandÓ the service. For example, the module
might be providing access to a wired VOD service. Here, the module resident ÒType SpeciÞc DecoderÓ (TSD) is a ÒbrowserÓ
which allows the user to navigate the VOD server. The ÒbrowserÓ is presented to the user via the module-to-host Man
Machine Interface routines.

In Figure 9 the list of services presented by the module includes a service with a new type ÒService GatewayÓ. If the user
selects this ÒService GatewayÓ service the module activates the TSD. In some cases (e.g. VOD) the TSD allows the user to
browse a catalogue. A catalogue selection may result in an MPEG AV stream being sent from the module to the host. In other
cases (e.g. home shopping) catalogue browsing may be the end purpose of the TSD.

Aware hosts
In Figure 10 a more advanced host is connected to the module (possibly the same module as in Figure 9). Here the host Òrec-
ognisesÓ new resource types presented by the module and is able to directly take advantage of them.

Figure 8. The basic host application / gateway resource relationship

Navigation
Application

Service
Gateway
Resource

Host Module

TV Service
Decoder

TV Service Stream

Service
Gateway
Resource

Type
SpeciÞc
Decoder

Host Module

Figure 9. A basic host accessing more advanced services

Navigation
Application

Host MMI

service
request

service
delivery

Service Gateway Resource +
Type SpeciÞc Extensions

Type Aware
Application

Host Module

Figure 10. An advanced host application accessing advanced services

Type SpeciÞc
Decoder

Page 33
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

An example might be where the module provides access to a network Þle system (implemented using DSM-CC protocols).
The Type SpeciÞc Extensions in the module could present the Þle system by means of the DSM-CC U-U API. The TSD in
the host might simple be an MHEG-5/6 engine implemented on top of the DSM-CC U-U API.

Broadcast Type SpeciÞc Resource
In this initial proposal the facilities of the basic Service Gateway Resource are outlined (See ÒService presentationÓ on
page 34). In addition a set of Type SpeciÞc Extensions appropriate to broadcast TV services are outlined (See ÒEvent Presen-
tationÓ on page 42). These extensions provide information describing the broadcast events which might be of use to host
based TV guide.

Evolution of extensions

Typically1 Service Gateway Modules will present the Generic Service Gateway Resource on a well known resource ID. In
addition, the module can also present a Network SpeciÞc Service Gateway Resource which inherits the facilities of the
generic resource but extends them with facilities speciÞc to the network.

For example, a module providing access to DVB-T broadcasts might also present the variant of the Service Gateway
Resource with Broadcast Extensions, allowing it to present event information in addition to service lists.

1. This might not be possible where the types of service accessed are not suitable for presentation via a module resident
Type SpeciÞc Decoder. In this case the module might only present its more specialist resource.

Service
Gateway
Resource

Generic Service
Gateway Resource

Figure 11. Modules presenting Type SpeciÞc APIs

Generic
Service

Gateway

Broadcast
Extensions

Broadcast Service
Gateway Resource

Generic
Service

Gateway

DSM-CC
Extensions

Wired Network
Service Gateway

Page 34
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.1.3.2 Service presentation

ServiceGateway
Table 21 summarises the set of ÒService GatewayÓ calls presented by the Generic Service Gateway Resource. These facili-
ties are also inherited by ALL other Network SpeciÞc Service Gateway Resources.

After a session is opened to its ServiceGateway resource the module shall continue to pass the host supplied TS from its
Transport Stream Input to its Transport Stream Output until GetServiceReq is used to request access to a speciÞed service
when a new TS may replace the one from the host as the output of the module. The TS output of the module reverts to the TS
from the host either when the session to the ServiceGateway is closed or GetServiceReq is used with no service reference.

ServiceListReq
The ServiceListReq can be issued by the host to request the list of service references that the module can provide. Typically
this is done when a module is Þrst conÞgured or each time the host observes that the version number of the service list has
changed, but it might also be done in response to a ÒServiceListChangedÓ message from a module.

ServiceListReqTag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

ServiceListAck
In response to ÒServiceListReqÓ a module returns a service list version number followed by a list of the service references
that the module can support. These references are persistent as they are either the ÒrealÓ DVB SI reference to DVB broadcast
service or represent a ÒlogicalÓ service that the module can provide.

Call Direction[a]

a] A=host resident application, R=module resident resource. A->R means from application to resource.

Description

ServiceListReq A->R Application requests the resource to provide a list of the services that it can supply.

ServiceListAck R->A The resource gives the application a list of the IDs of the services that it can provide.

ServiceListVersionReq A->R The application request the version number of the resourceÕs service list

ServiceListVersionAck R->A The resource provides the version number of its service list

ServiceListChanged R->A The resource notiÞes the application that its service list has changed.

ServiceDescReq A->R The application requests further information on a particular service.

ServiceDescAck R->A The resource supplies further information on a particular service.

GetServiceReq A->R The application requests the resource to provide a service.

GetServiceAck R->A The resource replies regarding the availability of a service.

Table 21. Overview of Application<->Resource service interface calls

Syntax No. of bits Mnemonic

ServiceListReq () {

ServiceListReqTag 24 bslbf

length_field()

}

Table 22. ServiceListReq syntax

Page 35
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Changes in the service list presented should represent ÒsigniÞcant changesÓ in the service offering as the host is encouraged
to respond by drawing the userÕs attention to the change.

ServiceListAckTag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

VersionNumber
This 8 bit integer increments each time the service list is updated.

NumberOfServices
This 16 bit integer giving the number of service references (the value may be 0 if there are no service references).

OriginalNetworkID
This 16 bit Þeld is an original network ID allocated within ETR 162 [2].

ServiceID
This 16 bit Þeld uniquely identiÞes the service within the original network.

A transport stream ID is NOT required to uniquely identify a service as is indicated in this extract from section 4.1.1 of
ETR 211 [3]:

A service can be uniquely referenced through the path original_network_id / transport_stream_id / service_id.
The network_id, thus, is not part of this path. In addition each service_id shall be unique within each
original_network_id.

Host use of service references (informative)
The host use of the Òservice referenceÓ is not prescribed. However, it is likely that a host that implements concepts such as
Òfavourite channelsÓ will store the Òservice referenceÓ in non-volatile memory. This allows the host to bind the Òservice ref-
erenceÓ to RCU keys or to organise it into navigator lists according to the user preference.

Hosts might also store other characteristics of the service (e.g. its name) in non-volatile memory. However, this is a optional
as the additional data can be requested from the module when required once the host has the Òservice referenceÓ as an index.

ServiceListVersionReq
The host requests the version number of the service list held by the module. If the version number returned by the module is
different from that which the host remembers the host should normally request the service list to investigate the service
changes.

Syntax No. of bits Mnemonic

ServiceListReq () {

ServiceListAckTag 24 bslbf

length_field()

VersionNumber 8 uimsbf

NumberOfServices 16 uimsbf

for(i=0; i<NumberOfServices; i++) {

OriginalNetworkID 16 bslbf

ServiceID 16 bslbf

}

}

Table 23. ServiceListAck syntax

Original Network ID Service ID

Figure 12. service reference

Page 36
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

This method is provided to give the host an alternative to requesting the full service list each time it is activated.

ServiceListVersionReqTag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

ServiceListVersionAck
Returns the current version number of the moduleÕs list of services in response to ServiceListVersionReq.

ServiceListVersionAckTag
This 24 bit Þeld with value 0x9F8003 identiÞes this message.

VersionNumber
This 8 bit integer increments each time the service list is updated.

ServiceListChanged
Typically the service list presented by a module will be static. A host may scan the list on each activation, this will generally
be invisible to the user. The ServiceListChanged message enables the module to inform the host of changes while activated.

For example, this enables module-side service book marks established by the user while interacting with a service gateway
to propagate rapidly to the hostÕs navigator service lists (See ÒBook marks (informative)Ó on page 40).

ServiceListChangedTag
This 24 bit Þeld with value 0x9F8004 identiÞes this message.

VersionNumber
This 8 bit integer increments each time the service list is updated.

Syntax No. of bits Mnemonic

ServiceListVersionReq () {

ServiceListVersionReqTag 24 bslbf

length_field()

}

Table 24. ServiceListVersionReq syntax

Syntax No. of bits Mnemonic

ServiceListVersionAck () {

ServiceListVersionAckTag 24 bslbf

length_field()

VersionNumber 8 uimsbf

}

Table 25. ServiceListVersionAck syntax

Syntax No. of bits Mnemonic

ServiceListChanged () {

ServiceListChangedTag 24 bslbf

length_field()

VersionNumber 8 uimsbf

}

Table 26. ServiceListChanged syntax

Page 37
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

ServiceDescReq
The ServiceDescReq allows the host to request the module to provide more detailed information describing a particular serv-
ice.

ServiceDescReqTag
This 24 bit Þeld with value 0x9F8005 identiÞes this message.

ServiceDescAck
This message carries the moduleÕs reply to ServiceDescReq. The payload is modelled on the parameters of the SDT and the
descriptors from the descriptor loop of the SDT of a DVB broadcast service.

ServiceDescAckTag
This 24 bit Þeld with value 0x9F8006 identiÞes this message.

reserved_future_use
This 6 bit Þeld has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

EIT_schedule_ßag
This 1 bit Þeld has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

EIT_present_following_ßag
This 1 bit Þeld has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

running_status
This 6 bit Þeld has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

Syntax No. of bits Mnemonic

ServiceDescReq () {

ServiceDescReqTag 24 bslbf

length_field()

OriginalNetworkID 16 bslbf

ServiceID 16 bslbf

}

Table 27. ServiceDescReq syntax

Syntax No. of bits Mnemonic

ServiceDescAck () {

ServiceDescAckTag 24 bslbf

length_field()

OriginalNetworkID 16 bslbf

ServiceID 16 bslbf

reserved_future_use 6 bslbf

EIT_schedule_flag 1 bslbf

EIT_present_following_flag 1 bslbf

running_status 3 bslbf

free_CA_mode 1 bslbf

descriptors_loop_length 12 uimsbf

for(j<0; j<descriptors_loop_length; j++)
{

descriptor()

}

}

Table 28. ServiceDescReq syntax

Page 38
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

free_CA_mode
This 1 bit Þeld has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

descriptors_loop_length
This 12 bit integer has identical meaning to that within the SDT deÞned in ETS 300 468 [1].

descriptor()
A descriptor deÞned for use in the SDT in ETS 300 468 [1] or a private descriptor in the scope of a
private_data_speciÞer_descriptor.

Where the service is a DVB broadcast service the payload shall be the descriptors from its SDT. The minimum requirements
for this are described in ETR 211 [3] and ETS 300 468 [1]. OperatorÕs private descriptors may be included using the normal
DVB SI methods.

Where the service is not a DVB broadcast service at least the mandatory minimum set of SI descriptors shall be used to pro-
vide a description of the service. SpeciÞcally, these shall convey at least the following:

¥ CA identiÞer descriptor (if some part of the service is scrambled)

¥ Data broadcast descriptor (when required by ETR 211 [3])

¥ service name (and optionally service provider name) within the service descriptor

Service gateway type
The service type indicated in the service descriptor shall reßect the service type of the broadcast. The service type value
0x0D designates a service of Òservice gateway typeÓ. This will be recorded in ETS 300 468 [1].

Presenting service choices (informative)
As the service description is provided in the same terms as a DVB broadcast service a DVB host should be able to integrate
its presentation of the list of service provided by the module with the list of services that the host can provide from its own
RF inputs. Hosts can choose whether to cache the moduleÕs set of service descriptions into its own RAM (which will make
sorting the service lists easier) or whether to request service descriptions from the module as it needs them (which offers a
different RAM/processing balance).

Hosts can use the Òservice gatewayÓ service type information to provide a visual indication that a service gateway is pro-
vided. However, it is not essential for hosts to do this.

GetServiceReq
The GetServiceReq requests a module to provide a service. The message payload is service reference. If the service refer-
ence is missing (i.e. the length Þeld indicates zero following bytes) then the request is for the module to disconnect from the
network.

GetServiceReqTag
This 24 bit Þeld with value 0x9F8007 identiÞes this message.

Syntax No. of bits Mnemonic

GetServiceReq () {

GetServiceReqTag 24 bslbf

length_field()

OriginalNetworkID 16 bslbf

ServiceID 16 bslbf

}

Table 29. GetServiceReq syntax

Page 39
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

GetServiceAck
The GetServiceAck message is a response from the module to the host. It informs the host of the progress towards delivering
the service and may provide information on which to act.

GetServiceAckTag
This 24 bit Þeld with value 0x9F8008 identiÞes this message.

Reserved
These 5 bits are reserved for future use and shall be set to Ô0Õ.

ServiceTerminated
This 1 bit Þeld, when set to Ô1Õ informs the host that the service has Þnished (e.g. a VOD Þlm has Þnished or the user has Þn-
ished with navigating an information service).

Responsibility for service navigation reverts to the host after this message.

In the case that GetServiceReq has no service reference (i.e. the message is Ònetwork disconnectÓ) then GetServiceAck shall
return with this Þeld set to Ô1Õ.

ServiceNotAvailable
This 1 bit Þeld, when set to Ô1Õ informs the host that the service requested is not available. Responsibility for service naviga-
tion reverts to the host after this message.

The non-availability of the service may be short-term (i.e. the service is not a full time service and just is not running at the
present time) or it may indicate that the service has been deleted. It is the moduleÕs responsibility to delete services from its
service list if it determines that the service is permanently unavailable.

Depending on the network there may be a concept of ÒreplacementÓ services. The module is responsible for replacing the
requested service with a ÒreplacementÓ service if this is appropriate for the network.

CAServiceFlag
This 1 bit Þeld, when set to Ô1Õ informs the host that conditional access restrictions apply to the service that is being deliv-
ered. The host is responsible for using calls such as CA_PMT to obtain access to the service.

This approach will work whether the CA facilities are built into the host, provided in a second CI module (downstream of
the input module) or provided by the input module itself. However, in the last case the module may provide a purchasing
interface as well as a navigation interface. So, the service may already have been ÒpurchasedÓ by the time it reaches the host.
Here the module will NOT indicate that it is delivering a CA service and thus the host wonÕt have to have a CA_PMT dia-
logue with the module

Syntax No. of bits Mnemonic

GetServiceAck () {

GetServiceAckTag 24 bslbf

length_field()

OriginalNetworkID 16 bslbf

ServiceID 16 bslbf

Reserved 5 bslbf

ServiceTerminated 1 bslbf

ServiceNotAvailable 1 bslbf

CAServiceFlag 1 bslbf

ActualService 16 bslbf

}

Table 30. GetServiceAck syntax

Page 40
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Allowed ßag combinations

ActualService
This 16 bit Þeld carries the actual service id of the service being delivered. This allows the module to map ÒlogicalÓ to
ÒactualÓ services. The value also indicates if the module is delivering a TS/service that the host should decode.

The purpose of the ÒlogicalÓ to ÒactualÓ mapping is network dependant, possible uses include:

¥ Delivering a replacement service when the requested service is not running

¥ Delivering a replacement service when entitlements for the requested service are not available (CA replacement)

¥ Translation of a logical ÒbookmarkÓ service to an actual service (see ÒBook marks (informative)Ó)

¥ Indicating the ÒactualÓ service selected from a ÒnavigatorÓ service

Where no TS (or an incorrect TS) is being delivered to the host (e.g. when the service has terminated, the service is not avail-
able or the user is still interacting with a navigator provided by the module) the value of actual service shall be zero. This
informs the host that it should not attempt to decode a service from the TS.

A non-zero value of actual service indicates that a valid TS is being delivered AND the service ID (MPEG program number)
of the service that the host should decode from the TS.

Multiple acknowledges
An input module may generate more than one GetServiceAck in response to a single GetServiceReq. For example, there
may be a response with ActualService=0 as the user starts to navigate a service gateway followed by a series of messages
with ActualService≠0 as the user selects different service offerings.

The host should assume that the user is interacting with the module until a GetServiceAck message carrying ServiceNotA-
vailable or ServiceTerminated are set to Ô1Õ or the user uses the ÔESCÕ function on the RCU to terminate interaction with the
module.

Book marks (informative)
Service lists may exist in several forms, including:

¥ The list presented by the host navigator to the user

¥ The list presented by the module to the host

¥ The list presented by a moduleÕs service gateway to the user while they navigate the service gateway.

Bookmarking (or other methods of identifying a favourite service) are an optional feature of a host service navigator. This
document does not seek to comment on how these might be implemented. However, the method by which these might be
connected to a module delivered service is described.

The module service gateway may present the user with a service list (as is illustrated in (A) of Figure 13). Alternatively (e.g.
in the case of accessing a service server such as VOD) the user may navigate a catalogue of services. In either case the mod-
ule can provide facilities (such as bookmarks) to allow favourite services to be recalled easily. The set of services presented
by the module to the host might be the service gateway and the set of favourite services (as is illustrated in (B) of Figure 13).
The host service navigator can then integrate the module service list with its own service list (as is illustrated in (C) of
Figure 13).

Attribute
Allowed

combinations

ServiceTerminated 1 0 0

ServiceNotAvailable 0 1 0

CAServiceFlag 0 0 x

ActualService 0 0 >0

Table 31. Allowed combinations

Page 41
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

The module can issue ServiceListChanged to inform the host of the addition to its service list. The host on discovering this
new service should add it to its service lists and could provide the user with a method to Òbook markÓ the service, such as
associating it with a key on the RCU.

Peripheral access
(informative)
The service access metaphor has a wide range of application. For example, it could be used to provide access to peripherals
connected to the host by a digital network such as 1394. The Òservice gatewayÓ in this case might provide an interface to
control devices such as DVD or DVC. The approach described for Book marks (informative) could be used to allow direct
access to DVD discs held in a changer (or Òjuke boxÓ).

ChildrenÕs news
Maim & Slash
World Travel
Crypt TV
Asian Business
Farming channel

✓

✓

✓

✓

Module TV
ChildrenÕs news
World Travel
Asian Business
Farming today

(A) Full module service list with
internal bookmarks

(B) Service list presented
by module to host

(C) Service list presented
to user by hostÕs navigator
shows local and module
sourced services sorted by
name and indicating
favourite channel
assignments.

Figure 13. Propagation of module service Òbook marksÓ to host lists

SG

ABB TV
ABC TV
Asian Business
ChildrenÕs news
Farming today
Free Sport TV
Module TV
Pay Sport TV
World Travel

1

2
3
5
7
6

SG

(D) The module service
gateway presented in the
hostÕs service list

Page 42
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.1.3.3 Event Presentation
In the previous section (ÒService presentationÓ on page 34) the protocols for presenting information on services from a mod-
ule were described. This approach was generic and so can be applied to many different types of network. This section
describes the protocols for presenting information on broadcast events from a module. Events are not a concept that Þts all
types of network or service. For example, VOD services may have no concept of Ònext eventÓ or ÒscheduleÓ. Also, even for
simple TV services, there may be signiÞcant variations in the use of SI between service providers. These will inevitably be
reßected in the data that the module can provide to the host.

EITSectionReq
The EITSectionReq requests the module to deliver a speciÞed DVB SI EIT section.

EITSectionReqTag
This 24 bit Þeld with value 0x9F8010 identiÞes this message.

TableID
This 16 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1]. The set of allowed values, and
their deÞnition, are those deÞned for the EIT (i.e. 0x4E to 0x6F).

ServiceID
This 16 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

SectionNumber
This 8 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

OriginalNetworkID
This 16 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

Reserved
These 7 bits shall be set to Ô0Õ.

OKToDisruptService
This 1 bit Þeld, when set to Ô1Õ, indicates to the module that it is acceptable to disrupt delivery of a current service to obtain
the requested event information. If this bit is set to Ô0Õ service delivery shall not be disrupted (but the module may not be
able to deliver the requested information with this constraint).

Syntax No. of bits Mnemonic

EITSectionReq () {

EITSectionReqTag 24 bslbf

length_field()

TableID 16 uimsbf

ServiceID 16 uimsbf

SectionNumber 8 uimsbf

OriginalNetworkID 16 uimsbf

Reserved 7 bslbf

OKToDisruptService 1 bslbf

}

Table 32. EITSectionReq syntax

Page 43
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

EITSectionAck
This returns the parameters of the EIT section requested by EITSectionReq (or an explanation of why it hasnÕt been pro-
vided).

EITSectionAckTag
This 24 bit Þeld with value 0x9F8011 identiÞes this message.

Reserved
These reserved bits shall be set to Ô0Õ.

ResponseCode
This 2 bit Þeld identiÞes the status of the response:

Length
This 12 bit integer speciÞes the number of bytes following it. This may be zero, see ETR 211 [3].

event_id
This 16 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

start_time
This 40 bit Þeld has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

duration
This 24 bit Þeld has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

Syntax No. of bits Mnemonic

EITSectionAck () {

EITSectionAckTag 24 bslbf

length_field()

Reserved 2 bslbf

ResponseCode 2 bslbf

Length 12 uimsbf

for(i=0; i<Length; i++) {

event_id 16 uimsbf

start_time 40 bslbf

duration 24 uimsbf

running_status 3 uimsbf

free_CA_mode 1 bslbf

descriptors_loop_length 12 uimsbf

for(j=0; j<descriptors_loop_length; j++)
{

descriptor()

}

}

}

Table 33. EITSectionAck syntax

value meaning

00 Section not on this TS (but might be available on another TS)

01 Section not available

10 Section found

11 reserved

Table 34. EIT Section response codes

Page 44
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

running_status
This 3 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

free_CA_mode
This 1 bit ßag has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

descriptors_loop_length
This 12 bit integer has identical meaning to that within the EIT deÞned in ETS 300 468 [1].

descriptor()
Bytes of zero or more descriptors associated with this event.

Page 45
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.2 Status Query Functions

Status Query
The Status Query Resource allows modules to interrogate the status of the host.

6.2.1 Status Query sessions

Module ID derived resource instances
The Status Query resource deÞnes the set of resource instances it shall present after the host has determined the set of mod-
ules (and Module IDs) present. One resource instance is created for each Module ID and with the Module ID in its
resource_instance Þeld.

Authorised sessions
Some of the information that can be collected by the Status Query resource is potentially private to the user (See ÒAudience
meteringÓ on page 48). The host shall determine that the user is aware of and authorises the data collection. By using a mod-
ule speciÞc session for each module (which can be authenticated against the modulesÕ ID when the session is opened) the
Status Query resource can reserve sensitive information for authorised modules.

Module Connection
Modules requiring the services of the Status Query resource shall open a session to ÒitsÓ instance of the Status Query
resource. I.e. the module derives the resource ID for the instance of the Status Query resource dedicated to serving it using
the resource_class deÞned for the Status Query resource; resource_type =1; resource_instance = Module_ID and
resource_version = 1.

Through this module speciÞc session the Status Query resource can send module speciÞc messages (such as StatusAck) to
the module.

Example
An example is illustrated in Figure 14 (also compare with Figure 16 on page 57). Here 3 modules are inserted into a host.
Two of these modules are CA modules, one implements a module ID and the version 2 resource manager protocols (See
ÒExtending use of the resource ID type ÞeldÓ on page 13). The third module is an audience metering module (See ÒSelection
informationÓ on page 49) and requires the Status Query resource. In this system 2 module IDs are consumed. The host cre-
ates 2 instances of the Status Query resource populating the instance Þeld of the resource ID with the module IDs. The mod-
ule that uses the services of the Status Query resource can open sessions to the appropriate instance of the Status Query
resource. The Þrst instance of the Status Query resource remains un-used.

6.2.2 Generic Status Queries
Described here is a facility provided by hosts to provide status information to modules. A generic approach has been taken as
it is expected that the set of status items available for interrogation will grow with time.

CA Module

module_id = 1

CA module

No module_id

Audience
metering

module_id = 2

session to resource id = 0x00211041

session to resource id = 0x00211081

Figure 14. Use of module IDs in Status Query resource presentation

Status Query
resource

Page 46
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

The host provides a StatusQuery resource which is able to support a session on each of the host-module transport connec-
tions. The set of messages for this resource is listed in Table 35.

The set of status items that can be interrogated are listed in Table 36.

6.2.2.1 StatusQuery
Requests the host to report on an item of its status.

StatusQueryReqTag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

StatusItem
This 32 bit unsigned integer identiÞes the status item queried. The allowed values, and their deÞnitions are listed in Table 36.

Message Direction[a]

a] M=module resident process, H=host’s status query resource. M->H means from module to
host.

Description

StatusQuery(N) M->H Requests the host to return the status of status item N.

Trap(N) M->H
Requests the host to return the status of status item N
whenever its value changes.

GetNextItemReq M->H The dialogue supported by these calls can be used by the
module to explore the set of status items that the host
supports.GetNextItemAck H->M

StatusAck H->M
Returns the status of requested status item as a variable
length array of bytes. The format of these bytes will depend
on the status item.

Table 35. Messages of the status query resource

Status Item
Number

Name Description

0 Reserved

1 Selection Information
Used to provide Audience Metering Information by
describing the inputs and outputs of the host. See
ÒSelection informationÓ on page 49.

2 Port ProÞle
Also used in Audience Metering, provides a
description of the various host ports. See ÒPort
proÞleÓ on page 52.

3 Viewed Service
Used to allow an auxiliary decoder (e.g. Audio
Description) to track the service being viewed on
the host. See ÒPort proÞleÓ on page 52.

4 Activation Status
Describes the power status of the host to the
module. See ÒActivation statusÓ on page 53.

Table 36. List of status items that can be interrogated

Syntax No. of bits Mnemonic

StatusQueryReq() {

StatusQueryReqTag 24 bslbf

length_field()

StatusItem 32 uimsbf

}

Table 37. StatusQueryReq syntax

Page 47
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.2.2.2 Trap
Requests the host to report on changes to the value of a particular status item until the moduleÕs session to the StatusQuery
resource is closed.

TrapReqTag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

StatusItem
This 32 bit unsigned integer identiÞes the status item to be monitored. The allowed values, and their deÞnitions are listed in
Table 36.

6.2.2.3 GetNextItemReq
Requests the host to return the StatusItem number of the next status item supported by the host after the speciÞed StartSta-
tusItem.

GetNextItemReqTag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

StartStatusItem
This 32 bit unsigned integer identiÞes a start point for a search through the set of supported status items. This value is not
required to be one of the status items supported by the host. Typically a module will use the value zero will be used when
starting a search.

6.2.2.4 GetNextItemAck
Reply from the host to the module in response to a GetNextItemReq.

GetNextItemAckTag
This 24 bit Þeld with value 0x9F8003 identiÞes this message.

Syntax No. of bits Mnemonic

TrapReq() {

TrapReqTag 24 bslbf

length_field()

StatusItem 32 uimsbf

}

Table 38. TrapReq syntax

Syntax No. of bits Mnemonic

GetNextItemReq() {

GetNextItemReqTag 24 bslbf

length_field()

StartStatusItem 32 uimsbf

}

Table 39. GetNextItemReq syntax

Syntax No. of bits Mnemonic

GetNextItemAck() {

GetNextItemAckTag 24 bslbf

length_field()

NextStatusItem 32 uimsbf

}

Table 40. GetNextItemAck syntax

Page 48
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

NextStatusItem
This 32 bit unsigned integer identiÞes status item number of the Þrst supported status item greater than the StartStatusItem
speciÞed in the request.

The value 0 is returned if StartStatusItem is greater than or equal to the status item number of the highest numbered item
supported by the host.

6.2.2.5 StatusAck
Reply (from host to module) resulting from a StatusQuery or Trap request from a module. There shall be exactly one Sta-
tusAck in response to each StatusQuery. Following a Trap request there shall be a StatusAck in response delivering the
current value of the status item, there shall also be a further StatusAck each time the value of the status item changes until
the moduleÕs session to the StatusQuery resource is closed.

StatusAckTag
This 24 bit Þeld with value 0x9F8004 identiÞes this message.

StatusItem
This 32 bit unsigned integer is the StatusItem value from the a StatusQuery or Trap request that lead to this reply.

StatusBytes
This set of bytes conveys the status information corresponding to the StatusItem. The coding of this information will
depend on the status item interrogated.

If the host does not support the status item requested in the StatusQuery or Trap request there shall be an immediate reply
with no status byte information.

Table 42 identiÞes the set of formats for status information deÞned at the time of writing.

6.2.3 Audience metering
To support Audience Metering for the purpose of market analysis hosts support the following status items:

¥ Selection information

¥ Port proÞle

Syntax No. of bits Mnemonic

StatusAck () {

StatusAckTag 24 bslbf

length_field()

StatusItem 32 uimsbf

for(i=0; i<N; i++) {

StatusBytes 8 bslbf

}

}

Table 41. DeliverySystemInfoReq syntax

Status Item Number DeÞnition of status bytes

0 None allowed

1 See Table 43, ÒSelection information status data,Ó on page 49

2 See Table 48, ÒPort proÞle status data,Ó on page 52

3 See Table 49, ÒViewed service status data,Ó on page 53

4 See Table 50, ÒActivation status data,Ó on page 53

Table 42. List of status items that can be interrogated

Page 49
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.2.3.1 Protecting consumer privacy
Some of the data provided by this status enquiry is private to the consumer. As in normal operation it will not be apparent to
the consumer that this data is being collected the host shall ensure that the consumer is aware of, authorises and can discon-
tinue the data collection. The exact method employed is outside the scope of this speciÞcation. The method described here is
presented as an informative example.

Authorising a module (informative)
The host maintains in non-volatile memory a list of authorised modules. The module identiÞcation can be the non-volatile
Module ID allocated to the module by the host.

When a module not previously authorised Þrst attempts to perform StatusQuery or Trap on the Selection Information sta-
tus item the host initiates a dialogue with the consumer to establish their willingness for data to be collected before allowing
responses to the StatusQuery or Trap to be sent to the module. Once a particular module is authorised the host does not
interrogate the consumer again. If the consumer does not authorise the module the host shall close the session thus indicating
to the module its rejection.

Consumer control (informative)
A user interface method should be provided by the host which identiÞes the modules that are authorised and allows the user
to deauthorise them.

6.2.3.2 Selection information
The Selection Information status data is a list of descriptions of signal sources with their associated destinations. Each input
may go to zero or more destinations. The set of input ports shall be complete and shall list each input port only once. If an
input port is not connected to an output zero destinations shall be speciÞed.

If Trap() is used to interrogate the selection information a reply will be issued each time the user alters the conÞguration of
the host. The host should only report conÞguration changes that last for at least 1 second.

time
time encoded as in the UTC_time Þeld of the DVB SI Time and Data Table.

Syntax No. of bits Mnemonic

time 40 bslbf

while(there is data in the object) {

in_port_id 8 bslbf

length_in_signal_desc 8 uimsbf

for(i=0; i<length_in_signal_desc; i++) {

in_signal_desc 8 bslbf

}

reserved 4 bslbf

length_outputs 12 uimsbf

for(i=0; i<length_outputs; i++) {

out_port_id 8 bslbf

length_out_signal_desc 8 uimsbf

for(i=0; i<length_out_signal_desc; i++) {

out_signal_desc 8 bslbf

}

}

}

Table 43. Selection information status data

Page 50
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

in_port_id
identiÞer of the source of a signal.

length_in_signal_desc
the number of bytes in the description of the input signal.

in_signal_desc
a block of bytes describing the input signal. The format of this block depends on the input port.

reserved
this 4 bit Þeld should be set to Ô0Õ.

length_outputs
the number of bytes in the description of the output signal(s).

in_port_id description

0 - 7 RF Modulated digital source 0 to 7

8 - 15 IEEE 1394 port 0 to 7

16 - 23 SCART port 0 to 7

24 - 31 CI input module sources 0 to 7

32 - 126 Reserved for future use

127 No source

128 - 255 Manufacturer speciÞc ports

Table 44. In port values

in_port_id
signal source description

no bits mnemonic

0 - 7

DVB SI style delivery system description:
original_network_id
network_id
transport_stream_id
service_id
Video component tag (0xFF if not found)
Audio component tag (0xFF if not found)

16
16
16
16
8
8

uimsbf
uimsbf
uimsbf
uimsbf
uimsbf
uimsbf

8 - 15 <TBD>

16 - 23 Empty

24 - 31

CI input module sources 0 to 7.

When type ÔAÕ:
TuningInformationMessage
service_id
Video component tag (0xFF if not found)
Audio component tag (0xFF if not found)

11x8
16
8
8

bslbf
uimsbf
uimsbf
uimsbf

When type ÔBÕ:
original_network_id
service_id
Video component tag (0xFF if not found)
Audio component tag (0xFF if not found)

16
16
8
8

uimsbf
uimsbf
uimsbf
uimsbf

32 - 126 Reserved for future use

127

128 - 255 Manufacturer speciÞc string of bytes

Table 45. In signal description blocks

Page 51
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

out_port_id
identiÞer of the destination of the signal.

length_out_signal_desc
the number of bytes in the description of the input signal.

out_signal_desc
a block of bytes describing the output signal. The format of this block depends on the output port.

out_port_id description

0 - 7 Display 0 to 7

8 - 15 IEEE 1394 port 0 to 7

16 - 23 SCART port 0 to 7

24 - 31 RF Modulator 0 to 7

32 - 126 Reserved for future use

127 No output

128 - 255 Manufacturer speciÞc ports

Table 46. Out port values

out_port_id
signal destination description

no bits mnemonic

0 - 7

Visibility measure
0 -> obscured
1 -> partially obscured
2 -> fully visible
>2 reserved

8 bslbf

8 - 15 <TBD>

16 - 23 Empty

24 - 127 Reserved for future use

128 - 255 Manufacturer speciÞc string of bytes

Table 47. Out signal description blocks

Page 52
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.2.3.3 Port proÞle
The Port ProÞle status data provides a textual deÞnition of the host and each input and output port.

receiver_identiÞcation_length
length of the following string in bytes.

receiver_identiÞcation_char
a string of characters (coded according to annex A of DVB SI) uniquely describing the receiver manufacturer, model and
version.

in_port_id
see above.

length_in_port_desc
length of the following string in bytes.

in_port_desc
a string of characters (coded according to annex A of DVB SI) describing the input port.

Note: if an input port type deÞnes more than one form of coding of the signal description in table 45 then the port description
shall identify the particular form of the encoding used. So, for example, where the signal source is a CI input module the in
port description shall at least distinguish if the port is being used as a type ÔAÕ input or a type ÔBÕ input.

out_port_id
see above.

length_out_port_desc
length of the following string in bytes.

out_signal_desc
a string of characters (coded according to annex A of DVB SI) describing the output port.

Note: if an output port type deÞnes more than one form of coding of the signal description in table 47 then the port descrip-
tion shall identify the particular form of the encoding used.

Syntax
No. of
bits

Mnemoni
c

receiver_identification_length 8 uimsbf

for(i=0; i< receiver_identification_length;
i++){

receiver_identification_char 8 uimsbf

}

for(j=0; j<N; j++){

in_port_id 8 bslbf

length_in_port_desc 8 uimsbf

for(i=0; i< length_in_port_desc; i++) {

in_port_desc 8 bslbf

}

out_port_id 8 bslbf

length_out_port_desc 8 uimsbf

for(i=0; i< length_out_port_desc; i++) {

out_signal_desc 8 bslbf

}

}

Table 48. Port proÞle status data

Page 53
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.2.3.4 Auxiliary decoder
The Viewed Service status item allows a module to implement a decoder in addition to those provided by the host. Typically
this might allow modules to implement additional audio decoders to allow the decoding of an audio description stream con-
currently with the main programme audio.

Ensuring consumer permission
See ÒProtecting consumer privacyÓ on page 49.

Viewed Service
The Viewed Service status data indicates the program or components selected by the consumer to be most signiÞcant on the

display of the host1.

If Trap() is used to interrogate the viewed service a reply will be issued each time the user changes channel.

service_id
corresponds to the service_id/program_number of the program currently selected for display by the host. The program
number 0x0000 should be used to indicate that the source of the signal applied to the display is not in the Transport Stream
available to the module (e.g. the signal source is an analogue VCR connected to a SCART interface).

number_components
number of components tags that follow.

component_tag
the component tag of the component currently selected for decoding by the consumer if a component tag is provided for this
component in the PMT by a stream identiÞer descriptor.

Informative note
Auxiliary decoder modules are expected to be able to parse the PMT of the currently selected service and possibly also cer-
tain SI tables. For example, if a service provides soundtracks in more than one language the component tag will identify the
audio component currently selected by the consumer. By examining the PMT a module should be able to identify the lan-
guage of the selected audio stream. An audio description module could then analyse the ISO 639 Language descriptors in the
PMT to determine the stream (if any) providing audio description in that language.

6.2.4 Activation status
The Activation status data describes the power status of the host.

1. I.e. the host implements picture-in-picture the dominant window should be considered. If an information service conceals
most of the display area the service ID of the information service should be indicated.

Syntax No. of bits Mnemonic

service_id 16 bslbf

number_components 8 uimsbf

for(i=0; i<number_components; i++) {

component_tag 8 uimsbf

}

}

Table 49. Viewed service status data

Syntax No. of bits Mnemonic

reserved 4 bslbf

event_activated 1 bslbf

activation_state 3 bslbf

Table 50. Activation status data

Page 54
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

reserved
These 4 bits are reserved for future use and shall be set to Ô0Õ.

event_activated
This 1 bit Þeld, when set to Ô1Õ indicates that the host was activated by an event from the event manager (See ÒEvent Man-
agementÓ on page 57) rather than by user action (which is indicated when this bit is set to Ô0Õ).

When the host has been event activated it is likely that a user is available to respond to dialogues generated by the module.

activation_state
this value identiÞes the power-up state of the host.

6.3 Power manager
The Power manager resource, with ID 0x00220041, is a module provided resource that allows a module to indicate to the
host that it is engaged in a task that should be allowed to complete.

When one or more modules present the Power manager resource, the host may interrogate each instance of this resource
before deactivating the power supply to the modules. If any module is busy the deactivation shall be postponed.

Modules shall continue to operate
Modules shall continue to operate after they have indicated that it is OK for the host to shutdown. For example, a CA module
shall continue to descramble data, an input module shall continue to deliver data etc. This operation continues until explicitly
stopped by the host (e.g. by the host closing sessions).

Modules can reassert ÒbusyÓ
If, after a module has indicated that it is OK for the host to shutdown, there is session trafÞc between the module and the host
(either module or host initiated) the host shall ignore any previous indication from the module that it is ready to shutdown.
The host should therefore re-interrogate the module before shutting down.

6.3.1 Activation state change request
The Activation state change request object from the host to the module ÒasksÓ the module if it is ÒoccupiedÓ with a task that
should be allowed to complete before powering-down the host.

activation state current power mode

0 Reserved

1 Standby-active[a]

a] Corresponds to the EACEM defined power mode “Standby-active”

2 On[b]

b] Corresponds to the EACEM defined power modes “On (play)” and “On (record)”

2 - 7 Reserved for future use

Table 51. Activation state status values

Syntax No. of bits Mnemonic

activation_state_change_request() {

activation_status_change_request_tag 24 uimsbf

length_field()

reserved 4 bslbf

activation_state 4 bslbf

}

Table 52. Activation status state change request object

Page 55
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

activation_status_change_request_tag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

reserved
These 4 bits are reserved for future use and shall be set to Ô0Õ.

activation_state
this value identiÞes the requested new activation state.

Minimum repetition interval
Hosts should not send Activation state change requests to a module more often than once each minute.

6.3.2 Activation state change acknowledge
The Activation state change acknowledge object is sent in response to a Activation state change request object. It provides
an opportunity for the module to indicate that it is performing a task. If any module provides this indication the host shall
defer the process of changing the activation state (i.e. it should defer the shutdown). However, modules should not delay the
removal of power without good reason.

If a module does not reply within 1 second of an Activation state change request the host can assume that the module assents
to the state change.

activation_status_change_ack_tag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

reply_code
this value identiÞes the modules response to the requested state change.

activation state requested power mode

0 Standby-passive[a]

a] Corresponds to the EACEM defined power mode “Standby-passive”

1 - 15 Reserved for future use

Table 53. Activation state request values

Syntax No. of bits Mnemonic

activation_state_change_ack() {

activation_status_change_ack_tag 24 uimsbf

length_field()

reply_code 8 bslbf

}

Table 54. Activation status change reply object

reply_code description

0 OK to change state

1 Module busy, don't change state

2 - 255 Reserved for future use

Table 55. Activation status change acknowledge values

Page 56
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.3.2.1 Overview of dialogues (informative)
Figure 15 illustrates a possible host/module dialogue sequence to show the use of some of the power management resource
calls.

First some event, possibly a timer event, activates the host. This is followed by the hostÕs normal initialisation of its CI. All
installed modules can then start work. In this example we focus on module ÔAÕ, but module ÔBÕ could also perform some
tasks.

As the host was ÒwokenÓ by a timer event it is Òtrying to get back to sleepÓ so, periodically (See ÒMinimum repetition inter-
valÓ on page 55) the host polls all modules to see if it can shut down. While module ÔAÕ performs its task(s) it replies ÒMod-
ule busyÓ when asked, module ÔBÕ replies ÒOK to change stateÓ. As one or more of the modules is busy the host defers going
to sleep.

After a period module ÔAÕ completes its work and, like ÔBÕ, replies ÒOK to change stateÓ. At this point the host can shut
down.

Figure 15. Module to host dialogues illustrated

Module A Host Module B
Event activates

host

Normal CI initialisation of
modules A & B

Module
performs task

Normal CI shutdown of
modules A & B

activation status enquiry

activation status response
= standby-active

activation state change request
= standby-passive

activation state change ack
= Module busy

activation state change request
= standby-passive

activation state change ack
= Module busy

activation state change request
= standby-passive

activation state change ack =
OK to change state

activation state change request
= standby-passive

activation state change ack =
OK to change state

Page 57
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.4 Event Management

Event Manager
The Event Manager Resource allows modules to deÞne events which should be signalled to the module. If the host is in
standby-passive mode when the event is detected the activation state will be raised to standby-active and the module will be
notiÞed of the event.

6.4.1 Event Manager sessions

Module ID derived resource instances
The Event Manager deÞnes the set of resource instances it shall present after the host has determined the set of modules (and
Module IDs) present. One resource instance is created for each Module ID and with the Module ID in its resource_instance
Þeld.

Module Connection
If a module has an event pending it shall open a session to ÒitsÓ instance of the Event Manager each time it is activated. I.e.
the module derives the resource ID for the instance of the Event Manager dedicated to serving it using the resource_class
deÞned for the Event Manager; resource_type =1; resource_instance = Module_ID and resource_version = 1.

Through this module speciÞc session the Event Manager can send module speciÞc messages (such as Event notiÞcation) to
the module.

Example
An example is illustrated in Figure 16. Here 4 modules are inserted into a host. Two of these modules are CA modules, but
only one requires timer events and as a consequence implements a module ID and the version 2 resource manager protocols
(See ÒExtending use of the resource ID type ÞeldÓ on page 13). A third module also requires timer events, the fourth module
has a module ID but doesnÕt require timer events. In this system 3 module IDs are consumed. The host creates 3 instances of
the event manager populating the instance Þeld of the resource ID with the 3 module IDs. The two modules that needs the
services of the event manager then can open sessions to the appropriate instance of the event manager. The third instance of
the event manager remains un-used.

6.4.2 Event Manager resources

Number of events
The Event Manager shall provide sufÞcient resources to retain one timer event for each transport connection provided by the
host.

CA Module

module_id = 1

CA module

No module_id

Off line reader
module

module_id = 2

session to resource id = 0x00231041

session to resource id = 0x00231081

Figure 16. Use of module IDs in Event Manager resource presentation

Input module

module_id = 3

un-used resource id = 0x002310C1

Event Manager

Page 58
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Retention of events
The host shall associate each timer event with the identity of the module. The scheduled event shall be retained until one of
the following conditions:

¥ the scheduled event occurs

¥ the same module requests a new event (which replaces the current one)

HostÕs should also handle unusual conditions such as when a module reserves a timer event a long time in the future and is
then removed.

6.4.3 Time range
The host shall be able to accept timer events scheduled anywhere in the future time range that can be encoded by the event
request message.

6.4.4 Resource priorities
When the event is requested resource contentions at the time the event occurs cannot be predicted. The host is responsible

for arbitrating the resource requirements of the module over other demands on the host. Direct1 or indirect2 use of the hostÕs
resources by the consumer shall have priority over demands from a module.

The system design of the module and any services associated with it are responsible for tolerating the non-availability of
resources.

6.4.5 Power-up timing
The time speciÞed by a module is the time at which it requires the host to be functioning. The host design is responsible for
starting the activation process suitably before the scheduled time.

6.4.6 Energy conservation
The host Power manager may interrogate a module to determine if the host can revert to a low power consumption mode.
While the module is performing the task for which it booked the timer event it may reply ÒModule busy, donÕt change stateÓ
in response to Activation state change request. When a module completes the task for which it booked the timer event it shall
reply ÒOK to change stateÓ when interrogated. See 6.3 on page 54.

If the user starts using the host during execution of, or shortly after completion of, the moduleÕs task then the host is respon-
sible for determining whether to attempt to shut down the host.

6.4.7 Event request
The event request is a message sent by a module to the host to request activation of the host in response to a speciÞed event.

1. E.g. the consumer has directly selected a service or is interacting with a host resident application such as a programme
guide.

2. E.g. the host is recording an event ÒbookedÓ by the consumer via a programme guide

Syntax No. of bits Mnemonic

event_request () {

event_request_tag 24 uimsbf

length_field()

event_type 8 bslbf

for(i=0; i<N; i++) {

event_desc 8 bslbf

}

}

Table 56. Event request object

Page 59
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

event_request_tag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

event_type
identiÞer of the type of event.

event_desc
a block of bytes deÞning the event. The format of this block depends on the event type. If there are no event_desc bytes this
cancels any event of this event type previously booked by this module.

6.4.8 Event request acknowledge
The event request reply message is sent by the host to the module in response to ÒEvent requestÓ.

event_request_ack_tag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

event_type
identiÞer of the type of event as described in Table 57.

reply
identiÞer of the type of the reply.

event_type description

0 Timer

1 - 255 Reserved for future use

Table 57. Coding of event types

event_type
Event description bytes

no bits mnemonic

0
Start time (like DVB SI EIT start_time) 40 bslbf

Duration (like DVB SI EIT duration) 24 bslbf

1 - 255 Reserved for future use

Table 58. Coding of the event description bytes for each event type

Syntax No. of bits Mnemonic

event_request_ack() {

event_request_ack_tag 24 uimsbf

length_field()

event_type 8 bslbf

reply 8 bslbf

}

Table 59. Event

event_type description

0 Event booked OK

1 Event type not supported

2 Event resources consumed

3 - 255 Reserved for future use

Table 60. DeÞnition of event request reply codes

Page 60
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.4.9 Event notiÞcation
The event notiÞcation message is sent by the host to the module when an event requested by the module occurs.

event_notiÞcation_tag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

event_type
identiÞer of the type of event as described in Table 57 on page 59.

Syntax No. of bits Mnemonic

event_notification() {

event_notification_tag 24 uimsbf

length_field()

event_type 8 bslbf

}

Table 61. Event notiÞcation object

Page 61
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.5 Application MMI

Application MMI
The host provides an Application MMI resource with resource identiÞer 0x00410041. This allows a module to interact with
the user by launching an application on the hostÕs application execution environment. This is potentially much more ßexible
than the interaction provided by the low and high level MMIs deÞned in EN 50221.

The RequestStart object from the module to the host speciÞes the application domain required to execute the application and
the reference to the initial object of the application. If the host is able to support this application domain it requests the spec-
iÞed initial object from the CI application using FileRequest and launches it. The module delivers this Þle using FileAc-
knowledge. Subsequent execution of the application on the host is likely to lead to further FileRequest and FileAcknowledge
exchanges between the host and module as execution draws content and further executables from the module.

File Naming
The Þle naming convention in particular the convention for representing the parent module application as a server is applica-
tion domain speciÞc.

Application domains can specify methods for applications launched by a module onto the host to also refer to Þles delivered
via other means (such as a broadcast stream)

6.5.1 Resource Contention
The module is not guaranteed access to the Application MMI resource. For example, if the user is interacting with a broad-
cast application this application has priority. Therefore there are cases (e.g. associated to a CA_PMT dialogue) where the
module cannot rely on the use of this MMI method and shall be able to provide its function using another MMI method.

Cases that can be identiÞed where a module can rely on opening a session to the Application MMI resource are:

¥ When responding to an EnterMenu from the host.

(the host may need to kill an executing broadcast application - but the user focus is not on the application at the time)

¥ When responding to a GetServiceReq

(as this is part of a channel change which will kill any broadcast application associated with the service selected by the
user)

6.5.2 RequestStart
This message from the CI application to the host speciÞes both the application domain deÞnition required by the CI applica-
tion and the reference to the initial object of the application to be launched. If the host supports the requested application
domain it shall in sequence:

1. Kill any application currently executing on the application execution platform requested by the RequestStart

2. Use FileRequest to request the initial object of the new application

3. Launch the new application

Module Host

Process
using MMI

Application
MMI

Resource

Figure 17. Overview of the operation of a Application MMI resource

Þles

Þle requests

Application
presentation

engine

display

user
action

Page 62
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

If the host does not support the requested application domain it shall reply with RequestStartAck.

RequestStartTag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

AppDomainIdentiÞerLength
This 8 bit Þeld speciÞes the length of the string of bytes that speciÞes the application domain.

InitialObjectLength
This 8 bit Þeld speciÞes the length of the string of bytes that speciÞes the initial object.

AppDomainIdentiÞer
These bytes specify the required application domain in an application domain speciÞc way.

InitialObject
These bytes specify the initial object in an application domain speciÞc way.

The source of the initial object may be the module (in which case FileRequest will be used to request it) or it may be another
Þle source. The encoding of the Þle source within the InitialObject is a subject for application domain speciÞcation.

6.5.3 RequestStartAck
This message is sent by the host to the CI application if the requested application domain is not supported by the host.

RequestStartAckTag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

Syntax No. of bits Mnemonic

RequestStart() {

RequestStartTag 24 uimsbf

length_field()

AppDomainIdentifierLength 8 uimsbf

InitialObjectLength 8 uimsbf

for(i=0; i<AppDomainIdentifierLength; i++) {

AppDomainIdentifier 8 bslbf

}

for(i=0; i<InitialObjectLength; i++) {

InitialObject 8 bslbf

}

}

Table 62. RequestStart message

Syntax No. of bits Mnemonic

RequestStartAck () {

RequestStartAckTag 24 uimsbf

length_field()

AckCode 8 bslbf

}

Table 63. Request start fail message

Page 63
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

AckCode
This 8 bit Þeld communicates the response to the RequestStart:

6.5.4 FileRequest
This message from the host requests the application to deliver the named Þle.

FileReqTag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

FileNameByte
A byte of the Þlename requested.

6.5.5 FileAcknowledge
This message delivers the Þle requested by FileRequest to the host or indicates an error if the Þle cannot be delivered.

AckCode Meaning

0x00 Reserved for future use.

0x01
OK
The application execution environment will attempt to load an execute the
initial object speciÞed in the RequestStart message.

0x02
Wrong API
Application domain not supported.

0x03
API busy
Application domain supported but not currently available.

0x04 to 0x7F Reserved for future use.

0x80 to 0xFF

Domain speciÞc API busy
Application domain speciÞc responses equivalent to response 0x03 but
providing application domain speciÞc information on why the execution
environment is busy, (or not available for some other reason such as resource
contention), when it will become available etc.

Table 64. AckCode values

Syntax No. of bits Mnemonic

FileReq () {

FileReqTag 24 uimsbf

length_field()

for(i=0; i<N; i++) {

FileNameByte 8 bslbf

}

}

Table 65. File request message

Syntax No. of bits Mnemonic

FileAck () {

FileAckTag 24 uimsbf

length_field()

Reserved 7 bslbf

FileOK 1 bslbf

Table 66. File request object

Page 64
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

FileAckTag
This 24 bit Þeld with value 0x9F8003 identiÞes this message.

Reserved
These 7 bits are reserved for future use and shall be set to Ô0Õ

FileOK
This 1 bit Þeld is set to Ô1Õ if the Þle is available and Ô0Õ otherwise.

FileByte
A byte of the Þle requested.

6.5.6 AppAbortRequest
This message can be sent by either host or module to request termination of the executing application process. The exact
semantics are deÞned by the application domain. For example, the use of this call allows a process to killed without releasing
the associated MMI session.

AppAbortReqTag
This 24 bit Þeld with value 0x9F8004 identiÞes this message.

AbortReqCode
This octet string provides and application domain speciÞc qualiÞcation of the kill request.

for(i=0; i<N; i++) {

FileByte 8 bslbf

}

}

Syntax No. of bits Mnemonic

AppAbortReq () {

AppAbortReqTag 24 uimsbf

length_field()

for(i=0; i<N; i++) {

AbortReqCode 8 bslbf

}

}

Table 67. File request message

Syntax No. of bits Mnemonic

Table 66. File request object

Page 65
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.5.7 AppAbortAck
This message is sent in response to AppAbortRequest. It allows an application domain speciÞc response to the request for
the application abort.

AppAbortAckTag
This 24 bit Þeld with value 0x9F8005 identiÞes this message.

AbortAckCode
This octet string provides and application domain speciÞc response to the kill request.

Syntax No. of bits Mnemonic

AppAbortAck () {

AppAbortAckTag 24 uimsbf

length_field()

for(i=0; i<N; i++) {

AbortAckCode 8 bslbf

}

}

Table 68. File request object

Page 66
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.6 Copy protection
This resource (with resource identiÞer 0x00041ii1) is included in hosts which support copy protection, that is, a means of
controlling the content outputs from a host - audio, video and/or data - to allow or disallow recording or copying of the con-
tent. The resource provides a generic means of communicating with the copy protection function with a generalised set of
objects, but the detailed content of the object will be speciÞc to the particular copy protection system(s) implemented.

The resource consists of four objects, CP_query, CP_reply, CP_command, and CP_response. CP_query queries information
and status of the resource, with the reply returned in CP_reply. CP_command sends data to the resource and CP_response
sends data from the resource. The Þrst pair of objects are speciÞed with standard queries and replies. The second pair just
pass data opaquely between application and resource, with the speciÞc format and semantics of the data deÞned by the par-
ticular copy control mechanism implemented in the host.

6.6.1 Copy protection system instance management
A host may contain more than one copy protection system. For example, a host could have more than one technology to pro-
tect its output, additionally optional interfaces (for example, a digital recording interface implemented as a module) could
provide copy protection features. The instance Þeld of the resource ID (see Figure 2 on page 13) is used to differentiate each
copy protection system.

6.6.1.1 Module provided systems
Where a module provides a copy protection system the moduleÕs Module ID shall be used when generating its copy protec-
tion resource ID. For example, if its Module ID is 3 then the resource ID presented is 0x000410C1.

6.6.1.2 Host provided systems
Where a host provides one or more copy protection systems it shall generate resource IDs for each system setting the
instance Þeld of the resource ID to avoid contention with any module provided systems.

6.6.1.3 Application use of copy protection systems
The set of copy protection resources apparent to an application is the combination of the host and module provided systems.
An application (e.g. a CA system) that requires to control copy protection will open a session to each resource (either con-
currently or sequential) and interrogate the resource to determine the system that it provides.

Applications shall only open sessions to one or more copy protection systems when its is controlling delivery of a service.

6.6.2 Copy protection system ID management
The CopyProtectionID Þeld contains a value unique to a particular type of copy control mechanism used. This shall be a
company_id allocated by the IEEE.

6.6.3 Minimum repetition interval
Copy protection systems shall not require communication between the module and the host more than once per second.

6.6.4 CP_query and CP_reply

CP_query
CP_query asks for the current status of the copy protection resource.

Syntax No. of bits Mnemonic

cp_query() {

CopyProtectionQueryTag 24 uimsbf

length_field()

CopyProtectionID 24 uimsbf

}

Table 69. Copy protection query syntax

Page 67
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

CopyProtectionQueryTag
This 24 bit integer with value 0x9F8000 identiÞes this message.

CopyProtectionID
This 24 bit value identiÞes the copy protection system that is to be interrogated.

CP_reply

CPReplyTag
This 24 bit integer with value 0x9F8001 identiÞes this message.

CopyProtectionID
As above. This Þeld contains the true ID value for the copy protection mechanism implemented by the resource, even when
the status reply is ID mismatch.

Status

Syntax No. of bits Mnemonic

cp_reply() {

CPReplyTag 24 uimsbf

length_field()

CopyProtectionID 24 uimsbf

Status 8 uimsbf

}

Table 70. Copy protection reply syntax

status status value

Copy Protection Inactive 01

Copy Protection Active 02

ID mismatch FF

reserved other values

Table 71.

Page 68
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.6.5 CP_command and CP_response
These objects are identical except for the tag value.

CP_command

CPCommandTag
This 24 bit integer with value 0x9F8002 identiÞes this message.

CopyProtectionID
As deÞned above.

CPCommandByte
Bytes forming a command message from the application to the resource. The coding of this message is speciÞc to the copy
control technology.

CP_response

CPResponseTag
This 24 bit integer with value 0x9F8003 identiÞes this message.

CopyProtectionID
As deÞned above. If CP_command is sent to the resource with an invalid ID then the response is a CP_reply message with a
status of ID mismatch.

CPResponseByte
Bytes forming a response message from the resource to the application. The coding of this message is speciÞc to the copy
control technology.

Syntax No. of bits Mnemonic

cp_command () {

CPCommandTag 24 uimsbf

length_field()

CopyProtectionID 24 uimsbf

for (i=0; i<n; i++) {

CPCommandByte 8 uimsbf

}

}

Table 72. Copy protection command syntax

Syntax No. of bits Mnemonic

cp_response () {

CPResponseTag 24 uimsbf

length_field()

CopyProtectionID 24 uimsbf

for (i=0; i<n; i++) {

cp_response_byte 8 uimsbf

}

}

Table 73. Copy protection response syntax

Page 69
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7 Software download

6.7.1 Introduction
The protocols described here provide a framework within which manufacturer speciÞc Þrmware loading protocols can be
implemented. They allow a CI module to be used as a source of Þrmware updates to a host.

6.7.2 Life cycle overview
Below is illustrated the typical life cycle of host-code download module interactions.

There are 4 distinct phases:

1. Determine if the update is required

Unless the update provided by the module is more recent than the Þrmware already loaded in the host then the host can
reasonably ignore the module. Host manufacturers can, at their discretion, provide methods to force the host to load an
update that is already loaded or older than the one loaded. However, such actions are probably for technicians rather than
users.

ModuleHost

Request description
of download

Reply

Host interrogates module to see if the
module has a new update to download.

Òtalk to userÓ

Reply

If the update is useful the host asks the module to
talk about it with the user to see if the user wants to
accept the upgrade.

As the update is host speciÞc the host implementer
can design a combination of host-user and module-
user interactions to meet their requirement. For
example, the host might ÒtalkÓ to the user before
and/or after the module.

MMI session

Request start
download

Send data

The host requests the start of a handshaken data
transfer. The handshake intervals etc. are manufac-
turer speciÞc.

On completion of the transfer (or a portion of a trans-
fer) the host veriÞes the data before writing it to non-
volatile storage. This process is manufacturer spe-
ciÞc, but is likely to include verifying a cryptographic
signature.

Figure 18. Life cycle overview

Page 70
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

2. Get user authorisation

Depending on local and manufacturer requirements a level of user authorisation will be required before the download
starts. The design of this interaction is entirely in the hands of the host implementer as ultimately they are responsible for
both the module and the host.

The module contributed part of the interaction is well placed to communicate the reason for the download, for example
describing the bugs Þxed or features added.

3. Download the Þle from the module to the host

4. VeriÞcation of code before use

The protocol described here allows transfer of data from module to host. This speciÞcation does not describe the encod-
ing of this data. The format for conveying signatures, linking information etc. is a matter for manufacturer development.

6.7.3 Download resource
The download module provides a Download resource with resource ID 0x000510041. The Þle transfer between the module
and the host is based on the DSM-CC (ISO/IEC 13818-6) User-Network Download protocol using the non-ßow-controlled
scenario (or optionally the ßow controlled scenario). The host is the DSM-CC client and the module is the download server.

Four messages are deÞned for communication between the host and the module: Download Enquiry and Download Reply
which encapsulate certain DSM-CC User-to-Network messages (ISO/IEC 13818-6, section 7) and User Authorisation Initi-
ate and User Authorisation Result which help the host to determine that user authorisation has been given.

Client
(host)

Server
(module)

Download Info Request

Download Info Response

Download Data Block

Download Data Block

Figure 19. DSM-CC Client - Server messages

Module and host negotiate transfer

Download Data Request Host requests start of transfer

Module sends one or more data blocks

Download Data Request Host acknowledges data blocks

User authorisation happens here - but is
not described by DSM-CC messages

Page 71
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7.3.1 IdentiÞcation of manufacturer binaries
The description of binaries is encoded on 7 bytes. In DSM-CC messages these values are carried in the corresponding Þelds
of the compatibility descriptor:

speciÞer
This 24 bit value is an IEEE OUI obtained by the manufacturer from the IEEE.

model
This 16 bit value has semantics which are speciÞed by the organization identiÞed by the speciÞer. The use of this Þeld is
intended to distinguish between various models deÞned by the organization.

version
This 16 bit value has semantics which are speciÞed by the organization identiÞed by the speciÞer. The use of this Þeld is
intended to distinguish between different versions of a model deÞned by the organization.

6.7.4 Resource-objects

6.7.4.1 Download Enquiry
Download Enquiry is used by the host to send DSM-CC messages to the module. The messages supported are:

¥ Download Info Request

¥ Download Data Request

¥ Download Cancel

download_enq_tag
This 24 bit Þeld with value 0x9F8000 identiÞes this message.

speciÞer 24 bit bslbf

model 16 bit bslbf

version 16 bit bslbf

Table 74.

Syntax No. of bits Mnemonic

download_enq() {

download_enq_tag 24 uimsbf

length_field()

for(i=0; i < n; i++) {

DSMCC_descriptor() 8 uimsbf

}

}

Table 75. Download Enquiry syntax

Page 72
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7.4.2 Download Reply
Download Reply is used by the module to send DSM-CC messages to the host. The messages supported are:

¥ Download Info Response

¥ Download Data Block

¥ Download Cancel

download_rep_tag
This 24 bit Þeld with value 0x9F8001 identiÞes this message.

6.7.4.3 User Authorisation Initiate
User Authorisation Initiate is sent from the host to the module requesting that the module obtain user authorisation to initiate
a Þrmware download to the host of a speciÞed binary (see ÒIdentiÞcation of manufacturer binariesÓ on page 71). The method
by which the module communicates with the user is not speciÞed. However, after sending this object the host shall enable
the module to open an MMI session.

user_authorisation_initiate_tag
This 24 bit Þeld with value 0x9F8002 identiÞes this message.

data_byte
These data bytes are an optional Þeld with meaning deÞned by the speciÞer.

Syntax No. of bits Mnemonic

download_reply() {

download_rep_tag 24 uimsbf

length_field()

for(i=0; i < n; i++) {

DSMCC_descriptor() 8 uimsbf

}

}

Table 76. Download Reply syntax

Syntax No. of bits Mnemonic

user_authorisation_initiate() {

user_authorisation_initiate_tag 24 uimsbf

length_field()

specifier 24 bslbf

model 16 bslbf

version 16 bslbf

for(i=0; i < n; i++) {

data_byte 8 bslbf

}

Table 77. User Authorisation Initiate syntax

Page 73
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7.4.4 User Authorisation Result
User Authorisation Result is sent from the module to the host. It indicates if the user has agreed to the download of the spec-
iÞed binary.

user_authorisation_result_tag
This 24 bit Þeld with value 0x9F8003 identiÞes this message.

result_byte
These result bytes convey the user response and have meaning deÞned by the speciÞer.

6.7.5 Host-module exchanges
The following DSM-CC messages are reproduced from ISO/IEC 13818-6.

6.7.5.1 Initial host-module negotiation

Download Info Request
When a host that supports Þrmware download from a module detects a module providing the download resource it opens a
session to that resource and sends a Download Enquiry object encapsulating a Download Info Request message. This mes-
sage communicates to the module:

¥ The Þrmware version(s) currently loaded in the host (conveyed in one or more compatibility descriptors)

The speciÞer deÞnes the meaning if more than one compatibility descriptor is conveyed.

The speciÞer deÞnes the meaning of any subdescriptor information carried within the compatibility descriptor.

¥ The buffer size / maximum block size that can be accommodated by the host

The Download Info Request may also carry other data deÞned by the speciÞer in the adaptation data bytes, additional infor-
mation and private data bytes.

The transactionID is a value assigned by the client (host), in accordance with DSM-CC the 2 most signiÞcant bits must be
set to zero, the other bits are determined by the client.

Syntax No. of bits Mnemonic

user_authorisation_result() {

user_authorisation_result_tag 24 uimsbf

length_field()

specifier 24 bslbf

model 16 bslbf

version 16 bslbf

for(i=0; i < n; i++) {

result_byte 8 uimsbf

}

}

Table 78. User Authorisation Result syntax

Page 74
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Syntax DSM-CC element
Size

(bytes)
Value

DownloadInfoRequest() {

protocolDiscriminator dsmccMessage-
Header

1 0x11 MPEG-2 DSM-CC

dsmccType 1 0x03 U-N Download message

messageId 2 0x1001 DownloadInfoRequest

transactionId 4 Client assigned

reserved 1 0xFF

adaptationLength 1

messageLength 2

if(adaptationLength>0) {

adaptationType dsmccAdapta-
tionHeader

1

Optional CA or private
information

for(i=0; i < (adaptationLength-1);
i++) {

adaptationDataByte 1

}

}

bufferSize 4

maximumBlockSize 2

compatibilityDescriptorLength compatibility-
Descriptor

2

descriptorCount 2

for (i=0; i < descriptorCount; i++) {

descriptorType 1 0x02 System Software

descriptorLength 1

specifierType 1 0x01 IEEE OUI

specifierData 3 OUI

model 2

version 2

subDescriptorCount 1

for (j=0; j < subDescriptorCount; j++) {

subDescriptorType subDescriptor 1

subDescriptorLength 1

for (k=0; k < subDescriptorLength; k++)

additionalInformation 1

}

}

}

privateDataLength 2

for(i=0; i < privateDataLength; i++) {

privateDataByte 1

}

}

Table 79. Download Info Request

Page 75
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Download Info Response
The server (module) replies to the Download Info Request with a Download Reply object which encapsulates either a
Download Info Response or a Download Cancel message. A Download Info Response communicates to the host:

¥ Relevant Þrmware version(s) that can be updated by the module (conveyed in one or more compatibility descriptors)

The speciÞer deÞnes the meaning if more than one compatibility descriptor is conveyed. If the module is not compatible
with the host then zero compatibility descriptors shall be returned.

¥ The downloadId that shall be used to identify the download.

¥ The buffer size, windowSize, ackPeriod etc. that characterise the dynamics of the download.

The Download Info Response may also carry other data deÞned by the speciÞer in the adaptation data bytes, additional
information, moduleInfo and private data bytes.

The transactionID matches that in the Download Info Request.

Syntax DSM-CC element
Size

(bytes)
Value

DownloadInfoResponse() {

protocolDiscriminator dsmccMessage-
Header

1 0x11 MPEG-2 DSM-CC

dsmccType 1 0x03 U-N Download message

messageId 2 0x1002 DownloadInfoResponse

transactionId 4 Client assigned

reserved 1 0xFF

adaptationLength 1

messageLength 2

if(adaptationLength>0) {

adaptationType dsmccAdapta-
tionHeader

1

Optional CA or private
information

for(i=0; i < (adaptationLength-1); i++) {

adaptationDataByte 1

}

}

downloadId 4

blockSize 2

windowSize 1

ackPeriod 1

tCDownloadWindow 4

tCDownloadScenario 4

compatibilityDescriptorLength compatibility-
Descriptor

2

descriptorCount 2

for (i=0; i < descriptorCount; i++) {

descriptorType 1 0x02 System Software

descriptorLength 1

specifierType 1 0x01 IEEE OUI

specifierData 3 OUI

model 2

version 2

subDescriptorCount 1

for (j=0; j < subDescriptorCount; j++) {

subDescriptorType subDescriptor 1

subDescriptorLength 1

for (k=0; k<subDescriptorLength; k++)

additionalInformation 1

Table 80. Download Info Response (Sheet 1 of 2)

Page 76
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7.5.2 User Authorisation
If the client (host) is satisÞed that the download is technically appropriate it has the option to seek user authorisation prior to
initiating the download. Seeking user authorisation may be a requirement in some markets and is in all case strongly recom-
mended. The User Authorisation Initiate and User Authorisation Result objects described on page 72 support this.

If the client (host) determines not to proceed with the download it shall send a Download Cancel to the server (module) with
the downloadCancelReason rsnAbort (or a speciÞer private reason).

}

}

}

numberOfModules 2

for(i=0; i < numberOfModules; i++) {

moduleId 2

moduleSize 4

moduleVersion 1

moduleInfoLength 1

for(i=0; i < moduleInfoLength; i++) {

moduleInfoByte 1

}

}

privateDataLength 2

for(i=0; i < privateDataLength; i++) {

privateDataByte 1

}

}

Syntax DSM-CC element
Size

(bytes)
Value

DownloadCancel() {

protocolDiscriminator dsmccMessage-
Header

1 0x11 MPEG-2 DSM-CC

dsmccType 1 0x03 U-N Download message

messageId 2 0x1005 DownloadCancel

transactionId 4 Server assigned

reserved 1 0xFF

adaptationLength 1

messageLength 2

if(adaptationLength>0) {

adaptationType dsmccAdapta-
tionHeader

1

Optional CA or private
information

for(i=0; i < (adaptationLength-1); i++) {

adaptationDataByte 1

}

}

downloadId 4

moduleId 2

blockNumber 2

downloadCancelReason 1

privateDataLength 2

for(i=0; i < privateDataLength; i++) {

Table 81. Download Cancel (Sheet 1 of 2)

Syntax DSM-CC element
Size

(bytes)
Value

Table 80. Download Info Response (Sheet 2 of 2)

Page 77
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.7.5.3 Data Download

Download Data Request
A Download Data Request message (encapsulated in a Download Enquiry object) is sent by the client (host) to the server to
initiate the download using the DownloadID provided by the Download Info Response using downloadReason rsnStart.
Alternatively, Download Cancel can be issued to terminate the transfer.

Subsequently further Download Data Request messages are sent to acknowledge transfer of blocks and ultimately comple-
tion of the transfer as described by DSM-CC or Download Cancel can be issued to terminate the transfer.

privateDataByte 1

}

}

Syntax DSM-CC element
Size

(bytes)
Value

DownloadDataRequest() {

protocolDiscriminator dsmccDownloadD-
ataHeader

1 0x11 MPEG-2 DSM-CC

dsmccType 1 0x03 U-N Download message

messageId 2 0x1004 DownloadDataRequest

DownloadId 4

reserved 1 0xFF

adaptationLength 1

messageLength 2

if(adaptationLength>0) {

adaptationType dsmccAdapta-
tionHeader

1

Optional CA or private
information

for(i=0; i < (adaptationLength-1); i++) {

adaptationDataByte 1

}

}

moduleId 2

blockNumber 2

downloadReason 1

}

Table 82. Download Data Request

Syntax DSM-CC element
Size

(bytes)
Value

Table 81. Download Cancel (Sheet 2 of 2)

Page 78
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

Download Data Block
In response to Download Data Request messages the server (module) shall transmit portions of the data to be downloaded in
Download Data Block messages as described by DSM-CC.

6.7.5.4 Private Data Fields in DSM-CC messages

dsmccAdaptationHeader
This Þeld shall either be empty or shall carry one or more DSM-CC conditional access adaptation Þelds. If used to carry con-
ditional access adaptation Þelds the caSystemId Þeld shall carry a CA_system_id value registered in ETR 162.

CompatibilityDescriptor SubDescriptor
This Þeld shall either be empty or shall carry information deÞned by the speciÞer of the enclosing CompatibilityDescriptor.

PrivateData
This Þeld shall be empty.

6.7.5.5 Minimum compatibility

Modules
Modules providing a download resource shall tolerate insertion into hosts with which they are not compatible and not disturb
such hosts. For example, if the module does not recognise the host from the one or more Download Info Request messages it
should respond with Download Cancel and then close the session.

Hosts
Hosts recognising the download resource shall tolerate insertion of modules with which they are not compatible. For exam-
ple, if the host does not recognise the module from the one or more Download Info Response messages it should respond
with Download Cancel and then close the session.

Syntax DSM-CC element
Size

(bytes)
Value

DownloadDataBlock() {

protocolDiscriminator dsmccDownloadD-
ataHeader

1 0x11 MPEG-2 DSM-CC

dsmccType 1 0x03 U-N Download message

messageId 2 0x1003 DownloadDataBlock

DownloadId 4

reserved 1 0xFF

adaptationLength 1

messageLength 2

if(adaptationLength>0) {

adaptationType dsmccAdapta-
tionHeader

1

Optional CA or private
information

for(i=0; i < (adaptationLength-1); i++) {

adaptationDataByte 1

}

}

moduleId 2

moduleVersion 1

reserved 1

blockNumber 2

for(i=0; i < N; i++) {

blockDataByte 1

}

}

Table 83. Download Data Block

Page 79
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

6.8 CA pipeline resource

6.8.1 Overview
The CA-pipeline resource, with resource identiÞer 0x00061ii1, is a module provided resource that provides a framework
that can be referenced by application domains when implementing API and CA system speciÞc interfaces between receiver

hosted applications and CA systems1.

A set of three messages is deÞned. Two messages provide a transfer protocol that allows sets of bytes to be transferred
between the host and the module. The encoding of these messages may be evident from the CA_System_ID identifying the
CA system, or it may be negotiated in a private way within the messages. This is a subject for the application domain speci-
Þcation that invokes this interface. Additionally, a module to host message is deÞned to allow modules to send an event to an
application.

Typically the following layers will apply:

¥ CA system speciÞc functions

¥ API speciÞc presentation of functions

¥ API speciÞc (or possibly standardised) encoding of functions into messages

¥ This DVB speciÞed message transfer

6.8.2 Functionality
CA modules supporting the CA-pipeline shall present a CAP resource during proÞle enquiry phase. Each presents a resource
ID modiÞed by the module ID to allow multiple modules to be discriminated (see 4.1, ÒExtending use of the resource ID
type ÞeldÓ, on page 13) as illustrated in Figure 21.

The API will allow applications to request a connection to speciÞc CA system in an API speciÞc way. The receiver is respon-
sible for resolving this CA system connection request to the creation of CI session to the CAP resource on the appropriate
module. The number of sessions supported by a CAP resource is API and CA system speciÞc. Authors developing applica-
tions for an environment are responsible for designing within its limitations. The API & CA speciÞcation is responsible for

1. Although the speciÞcation is in terms of the common interface the same interface could be presented to applications by
embedded CA systems. The details of this are outside of the scope of this speciÞcation.

CAPipelineRequest

CAPipelineResponse

CAPipelineNotiÞcation

Message transfer

Figure 20. CA Pipeline communications

CA Module

module_id = 1

CA module

No module_id

CA module

module_id = 2

session to resource id = 0x00061041 not yet established

session to resource id = 0x00061081

Figure 21. Use of module IDs to discriminate CAP resource instances

Application

Page 80
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

providing sufÞcient resources or accommodating the possible failure of a connection request. Another possibility is that the
API manages the multiplexing of requests from a number of requesting tasks into a single CI session. The API is responsible
for presenting failure of the CI session and other errors to the application. All of these issues are outside of the scope of the
CI speciÞcation.

This CA-pipeline support is located on the Module, and will offer an additional resource to the hosts resource manager dur-
ing proÞle enquiry phase. This resource can now be used by the host to fulÞl requests from the API to communicate with the
CA-system in the CAM in the same way as if it communicates with an embedded CA-system. Depending on the CA-system
ID requested by the API the hosts resource manager decides whether a session between the API and the CA-pipeline
resource is opened or not.

6.8.3 Message Transfer

CAPipelineRequest
The CA pipeline request sends a message from the host application to the module.

CAPRequestTag
This 24 bit integer with value 0x9F8000 identiÞes this message.

CASpeciÞcData
These bytes carry a CA system speciÞc function invocation encoded in an API speciÞc way.

CAPipelineResponse
The CA pipeline reply sends a message from the module to the application.

CAPRequestTag
This 24 bit integer with value 0x9F8001 identiÞes this message.

CASpeciÞcData
These bytes carry the result of the CA system speciÞc function encoded in an API speciÞc way.

Syntax No.of bits Mnemonic

CAPRequest() {

CAPRequestTag 24 uimsbf

length_field()

for (i=0; i < length; i++) {

CASpecificData 8 uimsbf

}

}

Table 84. CA pipeline request syntax

Syntax No.of bits Mnemonic

CAPResponse() {

CAP_response_tag 24 uimsbf

length_field()

for (i=0; i < length; i++) {

CA_specific_Data 8 uimsbf

}

}

Table 85. CA pipeline response syntax

Page 81
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

CAPipelineNotiÞcation
The CA pipeline notiÞcation sends an asynchronous message from the module to the application. Typically this is used to
create an event in an API speciÞc way. The encoding of the data in the possible CASpeciÞcData is API speciÞc.

CAPNotiÞcationTag
This 24 bit integer with value 0x9F8002 identiÞes this message.

CASpeciÞcData
These bytes carry optional event data encoded in an API speciÞc way.

6.8.4 Alternative implementations
This proposal does not preclude similar application to module communications using a private resource. Additionally, the
use of a private resource ID as an addressing mechanism allows the interface to operate to any type of CI module, not just
CA modules.

Syntax No.of bits Mnemonic

CAPNotification() {

CAPNotificationTag 24 uimsbf

length_field()

for (i=0; i < length; i++) {

CASpecificData 8 uimsbf

}

}

Table 86. CA pipeline event notiÞcation syntax

Page 82
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: com_intf.fr

7 DeÞnition of proÞles
Three Common Interface compliance proÞles are speciÞed for receivers (hosts).

It is recommended that new hosts support at least ÒproÞle 2Ó rather than ÒproÞle 1Ó.

All receivers should conform to one of the 3 proÞles and may also implement one or more domain speciÞc extensions.

7.1 ProÞle 1
In ÒproÞle 1Ó the mandatory sections of EN 50221 (but not the annexes), with applicable amendments and corrigenda, are
normative.

Support for a Òlow-speed communication resource classÓ in hosts is mandatory, but its implementation (e.g. a modem) may
reside outside the host. It is not mandatory for the host to include the modem as a package in the sale of an IRD.

No object cache has to be guaranteed by the host for Low-level MMI sessions (size of the object cache can be 0).

The recommendations made in CENELEC report R206-001, ÒGuidelines for Implementation and Use of the Common Inter-
face for DVB Decoder ApplicationsÓ are mandatory as far as applicable to the mandatory features of EN 50221 and as far as
they provide further precision to the norm EN 50221 (including errata). In case there is a contradiction with the norm
EN 50221, the norm will take precedence over the guidelines.

7.2 ProÞle 2
In ÒproÞle 2Ó support for ÒproÞle 1Ó augmented by the following features (deÞned in this document) is normative:

¥ Resource Manager Version 2

¥ Application Information version 2.

¥ Status Query resource

¥ Power manager resource

¥ Event Management resource

During a full-screen Low-level MMI session an object cache of at least 128 kbyte shall be supported by the host.

7.3 ProÞle 3
In ÒproÞle 3Ó support for ÒproÞle 2Ó augmented by the following feature is normative:

¥ Input module support (both type-A and type-B) through a suitable application on the host, offering access to the services
made available through the input module.

7.4 Domain speciÞc extensions to proÞles
A domain speciÞc proÞle shall specify which base proÞle it is based on (1, 2 or 3) and any extensions to this proÞle.

These extensions can include optional features of either EN 50221 or of this speciÞcation, for example the optional features
described in the annexes of EN 50221. These are fully speciÞed and can be introduced by reference alone. The use of
embedded modems may also be considered in a domain speciÞc proÞle.

In addition, a domain speciÞc proÞle can introduce one or more of the Òframe workÓ features of this speciÞcation, speciÞ-
cally: ÒCopy protectionÓ, ÒApplication MMIÓ and ÒCA pipeline resourceÓ. In this case, in addition to referencing the feature
the domain speciÞc proÞle must provide a technical speciÞcation of the implementation of the feature for that application
domain.

It is envisaged that hosts supporting the DVB-MHP API will provide access to the CA pipeline resource in CA modules. It is
an option for other APIs to use the CA pipeline resource for accessing the CA system in modules.

P
age 83

D
V

B
 T

M
2088r3, C

IT
 037r11

V
ersion:

D
V

B
 T

M
2088r3, C

IT
 037r11

L
ast U

pdated:
20 M

ay 1999 16:22
D

ate Printed:
20 M

ay 1999 16:23
File:

ci_resources.fm

8 Resource identiÞers and application object tags

Resource
Application Objects

T
o

R
es

ou
rc

e

F
ro

m
R

es
ou

rc
e

Name

IdentiÞer Value

cl
as

s

ty
pe

ve
rs

.

identiÞer (hex then binary) APDU Name Tag Value

ResourceManager 1 1 2
0x00010042

0000 0000 0000 0001 0000 0000 0100 0010

ProÞle Enquiry 0x9F8010 ✓ ✓

ProÞle Reply 0x9F8011 ✓ ✓

ProÞle Changed 0x9F8012 ✓ ✓

Module ID Send 0x9F8013 ✓

Module ID Command 0x9F8014 ✓

ApplicationIformation 2 1 2
0x00020042

0000 0000 0000 0010 0000 0000 0100 0010

Application Info Enquiry 0x9F8020 ✓

Application Info Info 0x9F8021 ✓

Enter Menu 0x9F8022 ✓

StreamInput 128 1* 1
0x00801ii1

0000 0000 1000 0000 0001 iiii ii00 0001

DeliverySystemInfoReq 0x9F8000 ✓

DeliverySystemInfoAck 0x9F8001 ✓

ScanStartReq 0x9F8002 ✓

ScanNextReq 0x9F8003 ✓

ScanAck 0x9F8004 ✓

TuneTSReq 0x9F8005 ✓

TuneTSAck 0x9F8006 ✓

Table 87. Common interface resources (Sheet 1 of 3)

P
age 84

D
V

B
 T

M
2088r3, C

IT
 037r11

V
ersion:

D
V

B
 T

M
2088r3, C

IT
 037r11

L
ast U

pdated:
20 M

ay 1999 16:22
D

ate Printed:
20 M

ay 1999 16:23
File:

ci_resources.fm

ServiceGateway

(Generic Service

Gateway)[a]

ServiceListReq 0x9F8000 ✓

ServiceListAck 0x9F8001 ✓

ServiceListVersionReq 0x9F8002 ✓

ServiceListVersionAck 0x9F8003 ✓

ServiceListChanged 0x9F8004 ✓

ServiceDescReq 0x9F8005 ✓

ServiceDescAck 0x9F8006 ✓

GetServiceReq 0x9F8007 ✓

GetServiceAck 0x9F8008 ✓

Broadcast Service
Gateway

129 1* 1
0x00811ii1

0000 0000 1000 0001 0001 iiii ii00 0001

EITSectionReq 0x9F8010 ✓

EITSectionAck 0x9F8011 ✓

Status Query 33 1* 1
0x00211ii1

0000 0000 0010 0001 0001 iiii ii00 0001

StatusQuery 0x9F8000 ✓

Trap 0x9F8001 ✓

GetNextItemReq 0x9F8002 ✓

GetNextItemAck 0x9F8003 ✓

StatusAck 0x9F8004 ✓

Power manager 34 1 1
0x00220041

0000 0000 0010 0010 0000 0000 0100 0001

Activation state change request 0x9F8000 ✓

Activation state change acknowledge 0x9F8001 ✓

Event Manager 35 1* 1
0x00231ii1

0000 0000 0010 0011 0001 iiii ii00 0001

Event request 0x9F8000 ✓

Event request acknowledge 0x9F8001 ✓

Event notiÞcation 0x9F8002 ✓

Resource
Application Objects

T
o

R
es

ou
rc

e

F
ro

m
R

es
ou

rc
e

Name

IdentiÞer Value

cl
as

s

ty
pe

ve
rs

.

identiÞer (hex then binary) APDU Name Tag Value

Table 87. Common interface resources (Sheet 2 of 3)

P
age 85

D
V

B
 T

M
2088r3, C

IT
 037r11

V
ersion:

D
V

B
 T

M
2088r3, C

IT
 037r11

L
ast U

pdated:
20 M

ay 1999 16:22
D

ate Printed:
20 M

ay 1999 16:23
File:

ci_resources.fm

8.1 Resource type = 1*
Where the type Þeld of the resource ID is shown as 1* in Table 87 the 10 bit type Þeld is 00 01ii iiii the most signiÞcant nibble of the type Þeld indicates Òtype = 1Ó and the
lower 6 bits specify a Module ID. See ÒExtending use of the resource ID type ÞeldÓ on page 13.

Application MMI 65 1 1
0x00410041

0000 0000 0100 0001 0000 0000 0100 0001

RequestStart 0x9F8000 ✓

RequestStartAck 0x9F8001 ✓

FileRequest 0x9F8002 ✓

FileAcknowledge 0x9F8003 ✓

AppAbortRequest 0x9F8004 ✓ ✓

AppAbortAck 0x9F8005 ✓ ✓

Copy protection 4 1* 1
0x00041ii1

0000 0000 0000 0100 0001 iiii ii00 0001

CP_query 0x9F8000 ✓

CP_reply 0x9F8001 ✓

CP_command 0x9F8002 ✓

CP_response 0x9F8003 ✓

Download resource 5 1 1
0x000510041

0000 0000 0000 0101 0001 0000 0100 0001

Download Enquiry 0x9F8000 ✓

Download Reply 0x9F8001 ✓

User Authorisation Initiate 0x9F8002 ✓

User Authorisation Result 0x9F8003 ✓

CA pipeline resource 6 1 1
0x00061ii1

0000 0000 0000 0110 0001 iiii ii00 0001

CAPipelineRequest 0x9F8000 ✓

CAPipelineResponse 0x9F8001 ✓

CAPipelineNotiÞcation 0x9F8002 ✓

a] The generic service gateway is the basis for other service gateway resource. It never exists on its own. In this release the only resource based on the generic service gateway is the
Broadcast service gateway.

Resource
Application Objects

T
o

R
es

ou
rc

e

F
ro

m
R

es
ou

rc
e

Name

IdentiÞer Value

cl
as

s

ty
pe

ve
rs

.

identiÞer (hex then binary) APDU Name Tag Value

Table 87. Common interface resources (Sheet 3 of 3)

Page 86
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: ci_resources.fm

Page 87
DVB TM2088r3, CIT 037r11

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: blue_book_ci_back.fr5

Version: DVB TM2088r3, CIT 037r11
Last Updated: 20 May 1999 16:22
Date Printed: 20 May 1999 16:23
File: blue_book_ci_back.fr5

EUROPEAN STANDARD DVB TM2088r3, CIT 037r11
NORME EUROP�ENNE
EUROP�ISCHE NORM 20 May 1999

DVB Project OfÞce

c/o European Broadcasting Union

17A Ancienne Route

CH-1218 Grand-Saconnex / Geneva

Switzerland

ph: +41 22 717 27 19

fax: + 41 22 717 27 27

e-mail: dvb@pax.eunet.ch

	1 Introduction and scope
	Module identification extension
	1.1 From version 1

	2 Definitions and Abbreviations
	3 Normative References
	4 Command Interface - Resource Management
	4.1 Extending use of the resource ID type field
	4.2 Establishing the Module ID
	4.2.1 Resource Manager - Version 2
	4.2.1.1 Resource Manager Protocol
	Newer modules in older hosts

	4.2.1.2 Module ID establishment
	4.2.1.3 Resource Profile establishment
	4.2.1.4 Profile Enquiry
	4.2.1.5 Profile Reply
	4.2.1.6 Profile Changed
	4.2.1.7 Module ID Send
	module_id

	4.2.1.8 Module ID Command
	command
	module_id

	4.3 Defining and Using Common Interface Private Resources
	4.3.1 Introduction
	4.3.2 Defining Private Resources
	4.3.2.1 Registering the Resource ID
	resource_id_type
	Public resource identifiers
	resource_class
	resource_type
	resource_instance
	resource_version

	Private resource identifiers
	registration_authority
	private_resource_definer
	private_resource_identity

	4.3.2.2 Use of module IDs
	4.3.2.3 Resource object definition
	4.3.2.4 Resource declaration
	4.3.2.5 Access to man machine interface

	4.3.3 Using Private Resources
	4.3.3.1 From Modules
	4.3.3.2 From Hosts

	5 Command Interface - Application Information
	5.1 Application Information - Version 2
	5.1.1 New application types
	Software_upgrade
	Unclassified
	Network_interface
	Accessibility_aids

	5.1.2 Unrecognised application type semantics

	6 Command Interface - Additional Resources
	6.1 Input Modules
	6.1.1 Requirements for both input module types
	6.1.1.1 TS format
	6.1.1.2 TS control
	6.1.1.3 Input module sessions
	Module ID derived resource instances
	Example

	6.1.2 Type ‘A’ Input Modules
	6.1.2.1 Introduction (informative)
	Module overview
	Software model overview
	Module man machine interface
	Scanning for TS
	TS & Service selection

	6.1.2.2 Type ‘A’ module command interface
	StreamInput
	DeliverySystemInfoReq
	DeliverySystemInfoReqTag

	DeliverySystemInfoAck
	DeliverySystemInfoAckTag
	SystemIdentifier

	ScanStartReq
	ScanStartReqTag

	ScanNextReq
	ScanNextReqTag

	ScanAck
	ScanAckTag
	TSState
	TuningInformationMessage
	ScanProgress

	TuneTSReq
	TuneTSReqTag
	TuningInformationMessage

	TuneTSAck
	TuneTSAckTag
	TSState

	6.1.3 Type ‘B’ Input Modules
	6.1.3.1 Introduction (informative)
	Module Overview
	Software Model Overview
	Navigation model
	Simple TV access
	Basic access to new service types
	Aware hosts
	Broadcast Type Specific Resource
	Evolution of extensions

	6.1.3.2 Service presentation
	ServiceGateway
	ServiceListReq
	ServiceListReqTag

	ServiceListAck
	ServiceListAckTag
	VersionNumber
	NumberOfServices
	OriginalNetworkID
	ServiceID

	ServiceListVersionReq
	ServiceListVersionReqTag

	ServiceListVersionAck
	ServiceListVersionAckTag
	VersionNumber

	ServiceListChanged
	ServiceListChangedTag
	VersionNumber

	ServiceDescReq
	ServiceDescReqTag

	ServiceDescAck
	ServiceDescAckTag
	reserved_future_use
	EIT_schedule_flag
	EIT_present_following_flag
	running_status
	free_CA_mode
	descriptors_loop_length
	descriptor()

	GetServiceReq
	GetServiceReqTag

	GetServiceAck
	GetServiceAckTag
	Reserved
	ServiceTerminated
	ServiceNotAvailable
	CAServiceFlag
	ActualService

	6.1.3.3 Event Presentation
	EITSectionReq
	EITSectionReqTag
	TableID
	ServiceID
	SectionNumber
	OriginalNetworkID
	Reserved
	OKToDisruptService

	EITSectionAck
	EITSectionAckTag
	Reserved
	ResponseCode
	Length
	event_id
	start_time
	duration
	running_status
	free_CA_mode
	descriptors_loop_length
	descriptor()

	6.2 Status Query Functions
	Status Query
	6.2.1 Status Query sessions
	Module ID derived resource instances
	Authorised sessions
	Module Connection
	Example

	6.2.2 Generic Status Queries
	6.2.2.1 StatusQuery
	StatusQueryReqTag
	StatusItem

	6.2.2.2 Trap
	TrapReqTag
	StatusItem

	6.2.2.3 GetNextItemReq
	GetNextItemReqTag
	StartStatusItem

	6.2.2.4 GetNextItemAck
	GetNextItemAckTag
	NextStatusItem

	6.2.2.5 StatusAck
	StatusAckTag
	StatusItem
	StatusBytes

	6.2.3 Audience metering
	6.2.3.1 Protecting consumer privacy
	Authorising a module (informative)
	Consumer control (informative)

	6.2.3.2 Selection information
	time
	in_port_id
	length_in_signal_desc
	in_signal_desc
	reserved
	length_outputs
	out_port_id
	length_out_signal_desc
	out_signal_desc

	6.2.3.3 Port profile
	receiver_identification_length
	receiver_identification_char
	in_port_id
	length_in_port_desc
	in_port_desc
	out_port_id
	length_out_port_desc
	out_signal_desc

	6.2.3.4 Auxiliary decoder
	Ensuring consumer permission
	Viewed Service
	service_id
	number_components
	component_tag

	Informative note

	6.2.4 Activation status
	reserved
	event_activated
	activation_state

	6.3 Power manager
	Modules shall continue to operate
	Modules can reassert “busy”
	6.3.1 Activation state change request
	activation_status_change_request_tag
	reserved
	activation_state
	Minimum repetition interval

	6.3.2 Activation state change acknowledge
	activation_status_change_ack_tag
	reply_code
	6.3.2.1 Overview of dialogues (informative)

	6.4 Event Management
	Event Manager
	6.4.1 Event Manager sessions
	Module ID derived resource instances
	Module Connection
	Example

	6.4.2 Event Manager resources
	Number of events
	Retention of events

	6.4.3 Time range
	6.4.4 Resource priorities
	6.4.5 Power-up timing
	6.4.6 Energy conservation
	6.4.7 Event request
	event_request_tag
	event_type
	event_desc

	6.4.8 Event request acknowledge
	event_request_ack_tag
	event_type
	reply

	6.4.9 Event notification
	event_notification_tag
	event_type

	6.5 Application MMI
	Application MMI
	File Naming
	6.5.1 Resource Contention
	6.5.2 RequestStart
	RequestStartTag
	AppDomainIdentifierLength
	InitialObjectLength
	AppDomainIdentifier
	InitialObject

	6.5.3 RequestStartAck
	RequestStartAckTag
	AckCode

	6.5.4 FileRequest
	FileReqTag
	FileNameByte

	6.5.5 FileAcknowledge
	FileAckTag
	Reserved
	FileOK
	FileByte

	6.5.6 AppAbortRequest
	AppAbortReqTag
	AbortReqCode

	6.5.7 AppAbortAck
	AppAbortAckTag
	AbortAckCode

	6.6 Copy protection
	6.6.1 Copy protection system instance management
	6.6.1.1 Module provided systems
	6.6.1.2 Host provided systems
	6.6.1.3 Application use of copy protection systems

	6.6.2 Copy protection system ID management
	6.6.3 Minimum repetition interval
	6.6.4 CP_query and CP_reply
	CP_query
	CopyProtectionQueryTag
	CopyProtectionID

	CP_reply
	CPReplyTag
	CopyProtectionID
	Status

	6.6.5 CP_command and CP_response
	CP_command
	CPCommandTag
	CopyProtectionID
	CPCommandByte

	CP_response
	CPResponseTag
	CopyProtectionID
	CPResponseByte

	6.7 Software download
	6.7.1 Introduction
	6.7.2 Life cycle overview
	6.7.3 Download resource
	6.7.3.1 Identification of manufacturer binaries
	specifier
	model
	version

	6.7.4 Resource-objects
	6.7.4.1 Download Enquiry
	download_enq_tag

	6.7.4.2 Download Reply
	download_rep_tag

	6.7.4.3 User Authorisation Initiate
	user_authorisation_initiate_tag
	data_byte

	6.7.4.4 User Authorisation Result
	user_authorisation_result_tag
	result_byte

	6.7.5 Host-module exchanges
	6.7.5.1 Initial host-module negotiation
	Download Info Request
	Download Info Response

	6.7.5.2 User Authorisation
	6.7.5.3 Data Download
	Download Data Request
	Download Data Block

	6.7.5.4 Private Data Fields in DSM-CC messages
	dsmccAdaptationHeader
	CompatibilityDescriptor SubDescriptor
	PrivateData

	6.7.5.5 Minimum compatibility
	Modules
	Hosts

	6.8 CA pipeline resource
	6.8.1 Overview
	6.8.2 Functionality
	6.8.3 Message Transfer
	CAPipelineRequest
	CAPRequestTag
	CASpecificData

	CAPipelineResponse
	CAPRequestTag
	CASpecificData

	CAPipelineNotification
	CAPNotificationTag
	CASpecificData

	6.8.4 Alternative implementations

	7 Definition of profiles
	7.1 Profile 1
	7.2 Profile 2
	7.3 Profile 3
	7.4 Domain specific extensions to profiles

	8 Resource identifiers and application object tags
	8.1 Resource type = 1*

