


The PBClone Windows Library

The PBClone Windows Library 

Version 1.1

Copyright (c) 1993-1994    Thomas G. Hanlin III

This is PBCwin, a general-purpose library of 79 routines for use with Visual Basic for Windows

Type Conversion
Swap Values
Maximum and Minimum Values
Bit Twiddling
Character Tests
Integer Tests
Compressed Time/Date Manipulation
Matrix Initialization
Peek and Poke Memory
Input/Output
Miscellaneous



Type Conversion

Binary Integer
Binary Long
Bytes to Integer
High Byte
High Nybble
High Word
Integers to Long
Low Byte
Low Nybble
Low Word
Nybbles to Byte



Swap Values

Swap Currency
Swap Double-precision
Swap Integer
Swap Long
Swap Single-precision



Maximum and Minimum Values

Maximum Double-precision
Maximum Integer
Maximum Long
Maximum Single-precision

Minimum Double-precision
Minimum Integer
Minimum Long
Minimum Single-precision



Bit Twiddling

Left Rotate Integer
Left Rotate Long
Left Shift Integer
Left Shift Long

Power of 2 Integer
Power of 2 Long

Right Rotate Integer
Right Rotate Long
Right Shift Integer
Right Shift Long



Character Tests

Is AlphaNumeric
Is ASCII
Is Alphabetic
Is Control
Is Digit
Is Lowercase
Is Punctuation
Is Space
Is Uppercase
Is heX Digit



Integer Tests

Odd
Odd Long



Compressed Time/Date Manipulation

Date Squeeze
Year Unsqueeze
Month Unsqueeze
Day Unsqueeze

Time Squeeze
Hour Unsqueeze
Minute Unsqueeze
Second Unsqueeze



Array Initialization

Pointer Array Double-precision
Pointer Array Integer
Pointer Array Long
Pointer Array Single-precision
Set Array Currency
Set Array Double-precision
Set Array Integer
Set Array Long
Set Array Single-precision



Peek and Poke Memory

Peek Byte
Peek Integer
Peek Long
Poke Byte
Poke Integer
Poke Long



Input/Output

Checksum
CRC 16-bit
Floppies
Comm Ports
Get Comm Address
Get Port Address
Printer Ports



Miscellaneous

Variable Pointer
Get Clock Tick
PBCwin Version



Binary Integer

Function:    BinI 

This function converts a binary value, passed to it as a string, to an integer.    It stops the conversion on 
reaching the end of the string or at the first character that is not a valid binary digit ("0" or "1").

See also BinL, which returns a long integer value.

Form: 

Result%= BinI(St$)

Arguments: 

St$:
    binary number, in string form

Result: 

Result%: integer equivalent of binary number



Binary Long

Function:    BinL 

This function converts a binary value, passed to it as a string, to a long integer.    It stops the conversion 
on reaching the end of the string or at the first character that is not a valid binary digit ("0" or "1").

See also BinI, which returns an integer value.

Form: 

Result& = BinL(St$)

Arguments: 

St$:
    binary number, in string form

Result: 

Result&: long integer equivalent of binary number



Bytes to Integer

Function:    Bytes2Int 

This function combines two bytes, contained in separate integers, into a single integer value.

See also HiByte and LoByte, which may be used to reverse the process, splitting an integer into two 
bytes.

Form: 

Result% = Bytes2Int(Lo%:, Hi%:)

Arguments: 

Lo%:
    low, or least significant, byte
Hi%:
    high, or most significant, byte

Result: 

Result%: result of combining bytes into an integer



Checksum

Function:    Checksum 

This function calculates an 8-bit checksum for a string.    The result is compatible with Xmodem and 
Ymodem file transfer protocols, and can be used as a fast and simple check of data validity.    For more 
rigorous testing, see CRC16.

Form: 

Result% = Checksum(St$, Bytes%)

Arguments: 

St$:
    string for which to calculate checksum
Bytes%:
    number of characters for which to calculate checksum

Result: 

Result%: checksum of specified part of string 



Comm Ports

Function:    ComPorts 

This function returns the number of communications (serial) ports installed.

Form: 
Result% = ComPorts()

Result: 

Result%: comm ports (0-3) 



CRC 16-bit

Function:    CRC 

This function calculates a 16-bit "cyclical redundancy check" checksum, or CRC, for a string.    The result 
is compatible with Xmodem and Ymodem file transfer protocols, and can be used as a check of data 
validity.

Note that the Xmodem and Ymodem file transfer protocols use a different byte ordering method than 
typical of Intel machines. If you intend to use this function in writing file transfer protocols, you will need to 
reverse the byte order to MSB first, LSB second. This can be accomplished with either LRotateI or 
RRotateI with a shift count of 8 (eight), or by splitting the integer into bytes with LoByte and HiByte, and 
swapping the results.

Form: 

Result% = CRC16(St$, Bytes%)

Arguments: 

St$:
    string for which to calculate CRC
Bytes%:
    number of characters for which to calculate CRC

Result: 

Result%: CRC of specified part of string 



Date Squeeze

Function:    DateSq 

This function compresses a date into a single integer.    This provides a very efficient storage format for 
dates ranging from January 1, 1900 to December 31, 2028.
Uncompression is done with DayUnsq, MonthUnsq, and YearUnsq. See also TimeSq, which allows you to
compress a time value similarly.

Note that compressed dates are not in a format that may be readily used for comparison or date math 
purposes.    If you need such capabilities, convert the date to a BASIC time/date serial number first-- see 
your BASIC manual for details.

If you pass a year of 0-99, it will be translated to 1900-1999 before the compression is done.    Depending 
on your application, you may wish to assume 0-28 is the same as 2000-2028 instead. If so, make sure 
you do an explicit conversion before this function is called.

Form: 

Result% = DateSq(MonthNr%, DayNr%, YearNr%)

Arguments: 

MonthNr%:
    month number (1-12)
DayNr%:
    day number (1-31)
YearNr%:
    year number (1900-2028)

Result: 

Result%: compressed date 



Day Unsqueeze

Function:    DayUnsq 

This function returns the day from a compressed date.    It works in conjunction with the DateSq date 
compression function.

Form:    

DayNr% = DayUnsq(Number%)

Arguments: 

Number%:
    compressed date

Result: 

DayNr%:    day number 



Floppies

Function:    Floppies 

This function returns the number of floppy disk drives installed, up to two.    Although it is possible to have 
up to four floppy drives, the PC was designed to expect a maximum of two, and this routine can't tell if 
there are more than that.

Form:

Result% = Floppies()

Arguments:

none

Result:

Result%:
    floppy drives (0-2) 



Get Comm Address

Function:    GetComAddr 

This function returns the I/O base port address for a specified communications (serial) port.    If there is no
such serial port, or if the port is in use, a zero will be returned.

Form:

Address% = GetComAddr(PortNr%)

Arguments:

PortNr%:
    communications port number (0-3)

Result:

Address%:
    I/O base port address for comm port 



Get Port Address

Function:    GetPortAddr 

This function returns the I/O base port address for a specified printer (parallel) port.    If there is no such 
parallel port, a zero will be returned.

Form:

Address% = GetPrtAddr(PortNr%)

Arguments:

PortNr%:
    printer port number (0-3)

Result:

Address%:
    I/O base port address for printer port 



Get Clock Tick

Function:    GetTick 

This function returns the current system time count.    The count is the amount of time after midnight, in 
(approximately) 1/18th seconds.    This can be used as a fairly high- resolution timer.

DO NOT use this function to write a delay routine!    That would eat precious system time that could be 
more profitably used by other programs while your program is idle-- remember, Windows is a multitasking 
environment.    If you need a delay, use the SLEEP statement provided by BASIC.

Form:

Result& = GetTick()

Arguments:

none

Result:

Result&:
    system timer tick 



High Byte

Function:    HiByte 

This function returns the high, or most significant, byte of an integer.
See also Bytes2Int, which can be used to reverse the process.

Form:

Byte% = HiByte(Number%)

Arguments:

Number%:
    number from which to pick high byte

Result:

Byte%:
    high byte of number 



High Nybble

Function:    HiNybble 

This function returns the high, or most significant, nybble of a byte.
See also Nybs2Byte, which can be used to reverse the process.

Form:

Nybble% = HiNybble(Number%)

Arguments:

Number%:
    byte from which to pick high nybble

Result:

Nybble%:
    high nybble of byte 



High Word

Function:    HiWord 

This function returns the high, or most significant, word of a long integer.
See also Ints2Long, which can be used to reverse the process.

Form:

Word% = HiWord(Number&)

Arguments:

Number&:
    long integer from which to pick high word

Result:

Word%:
    high word of long integer 



Hour Unsqueeze

Function:    HourUnsq 

This function returns the hour from a compressed time.    It works in conjunction with the TimeSq time 
compression function.

Form:

HourNr% = HourUnsq(Number%)

Arguments:

Number%:
    compressed time

Result:

HourNr%:
    hour number 



Integers to Long

Function:    Ints2Long 

This function combines two integers into a single long integer value.

See also HiWord and LoWord, which may be used to reverse the process, splitting a long integer into two 
integers.

Form:

Result& = Ints2Long(Lo%, Hi%)

Arguments:

Lo%:
    low, or least significant, word
Hi%:
    high, or most significant, word

Result:

Result& Result of combining integers into a long 



Is AlphaNumeric

Function:    IsAlNum 

This function tells you whether a character is alphanumeric, that is, either a letter of the alphabet or a 
digit.    It operates on the first character of a string you pass it.

Form:

Result% = IsAlNum(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is alphanumeric (-1 yes, 0 no) 



Is ASCII

Function:    IsASCII 

This function tells you whether a character is a member of the ASCII character set.    It operates on the 
first character of a string you pass it.

Form:

Result% = IsASCII(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is ASCII (-1 yes, 0 no) 



Is Alphabetic

Function:    IsAlpha 

This function tells you whether a character is alphabetic.    It operates on the first character of a string you 
pass it.

Form:

Result% = IsAlpha(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is alphabetic (-1 yes, 0 no) 



Is Control

Function:    IsControl 

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is a control code (-1 yes, 0 no) 



Is Digit

Function:    IsDigit 

This function tells you whether a character is a digit. It operates on the first character of a string you pass 
it.

Form:

Result% = IsDigit(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is a digit (-1 yes, 0 no) 



Is Lowercase

Function:    IsLower 

This function tells you whether a character is a lowercase letter ("a" through "z").    It operates on the first 
character of a string you pass it.

Form:

Result% = IsLower(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is lowercase (-1 yes, 0 no) 



Is Punctuation

Function:    IsPunct 

This function tells you whether a character may be construed as punctuation.    This includes the space 
and most symbols. This function operates on the first character of a string you pass it.

Form:

Result% = IsPunct(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is punctuation (-1 yes, 0 no) 



Is Space

Function:    IsSpace 

This function tells you whether a character is "white space" (ASCII 9-13 and 32, including tab, linefeed, 
formfeed, carriage return, and space).    It operates on the first character of a string you pass it.

Form:

Result% = IsSpace(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is white space (-1 yes, 0 no) 



Is Uppercase

Function:    IsUpper 

This function tells you whether a character is an uppercase letter ("A" through "Z").    It operates on the 
first character of a string you pass it.

Form:

Result% = IsUpper(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is uppercase (-1 yes, 0 no) 



Is heX Digit

Function:    IsXDigit 

This function tells you whether a character is a hexadecimal digit.    This includes 0-9, a-z, and A-Z.    This 
function operates on the first character of a string you pass it.

Form:

Result% = IsXDigit(St$)

Arguments:

St$:
    character to test

Result:

Result%:
    whether char is a hex digit (-1 yes, 0 no) 



Low Byte

Function:    LoByte 

This function returns the low, or least significant, byte of an integer.
See also Bytes2Int, which can be used to reverse the process.

Form:

Byte% = LoByte(Number%)

Arguments:

Number%:
    number from which to pick low byte

Result:

Byte%:
    low byte of number 



Low Nybble

Function:    LoNybble 

This function returns the low, or least significant, nybble of a byte.
See also Nybs2Byte, which can be used to reverse the process.

Form:

Nybble% = LoNybble(Number%)

Arguments:

Number%:
    byte from which to pick low nybble

Result:

Nybble%:
    low nybble of byte 



Low Word

Function:    LoWord 

This function returns the low, or least significant, word of a long integer.
See also Ints2Long, which can be used to reverse the process.

Form:

Word% = LoWord(Number&)

Arguments:

Number&:
    long integer from which to pick low word

Result:

Word%:
    low word of long integer 



Left Rotate Integer

Function:    LRotateI 

This function returns the result of rotating an integer left by a specified number of bits.

Form:

Result% = LRotateI(Number%, Count%)

Arguments:

Number%:
    number to rotate
Count%:
    number of bits by which to rotate

Result:

Result%:
    rotated number 



Left Rotate Long

Function:    LRotateL 

This function returns the result of rotating a long integer left by a specified number of bits.

Form:

Result& = LRotateL(Number&, Count%)

Arguments:

Number&:
    number to rotate
Count%:
    number of bits by which to rotate

Result:

Result&:
    rotated number 



Left Shift Integer

Function:    LShiftI 

This function returns the result of shifting an integer left by a specified number of bits.

Form:

Result% = LShiftI(Number%, Count%)

Arguments:

Number%:
    number to shift
Count%:
    number of bits by which to shift

Result:

Result%:
    shifted number 



Left Shift Long

Function:    LShiftL 

This function returns the result of shifting a long integer left by a specified number of bits.

Form:

Result& = LShiftL(Number&, Count%)

Arguments:

Number&:
    number to shift
Count%:
    number of bits by which to shift

Result:

Result&:
    shifted number 



Maximum Double-precision

Function:    MaxD 

This function returns the larger of two double-precision numbers.

Form:

Result# = MaxD(Nr1#, Nr2#)

Arguments:

Nr1#:
    first number
Nr2#:
    second number

Result:

Result#:
    larger of the two numbers 



Maximum Integer

Function:    MaxI 

This function returns the larger of two integers.

Form:

Result% = MaxI(Nr1%, Nr2%)

Arguments:

Nr1%:
    first number
Nr2%:
    second number

Result:

Result%:
    larger of the two numbers 



Maximum Long

Function:    MaxL 

This function returns the larger of two long integers.

Form:

Result& = MaxL(Nr1&, Nr2&)

Arguments:

Nr1&:
    first number
Nr2&:
    second number

Result:

Result&:
    larger of the two numbers 



Maximum Single-precision

Function:    MaxS 

This function returns the larger of two single-precision numbers.

Form:

Result! = MaxS(Nr1!, Nr2!) 
Arguments:

Nr1#:
    first number
Nr2#:
    second number

Result:

Result#:
    smaller of the two numbers 



Minimum Double-precision

Function:    MinD 

This function returns the smaller of two double-precision numbers.

Form:

Result# = MinD(Nr1#, Nr2#)

Arguments:

Nr1#:
    first number
Nr2#:
    second number

Result:

Result#:
    larger of the two numbers 



Minimum Integer

MinI    (Minimum Integer) 

This function returns the smaller of two integers.

Form:

Result% = MinI(Nr1%, Nr2%)

Arguments:

Nr1%:
    first number
Nr2%:
    second number

Result:

Result%:
    smaller of the two numbers 



Minimum Long

Function:    MinL 

This function returns the smaller of two long integers.

Form:

Result& = MinL(Nr1&, Nr2&)

Arguments:

Nr1&:
    first number
Nr2&:
    second number

Result:

Result&:
    smaller of the two numbers 



Minimum Single-precision

Function:    MinS 

This function returns the larger of two single-precision numbers.

Form:

Result! = MinS(Nr1!, Nr2!) 
Arguments:

Nr1#:
    first number
Nr2#:
    second number

Result:

Result#:
    smaller of the two numbers 



Minute Unsqueeze

Function:    MinuteUnsq 

This function returns the minute from a compressed time.    It works in conjunction with the TimeSq time 
compression function.

Form:

MinuteNr% = MinuteUnsq(Number%)

Arguments:

Number%:
    compressed time

Result:

MinuteNr%:
    minute number 



Month Unsqueeze

Function:    MonthUnsq 

This function returns the month from a compressed date.    It works in conjunction with the DateSq date 
compression function.

Form:

MonthNr% = MonthUnsq(Number%)

Arguments:

Number%:
    compressed date

Result:

MonthNr%:
    month number 



Nybbles to Byte

Function:    Nybs2Byte 

This function combines two nybbles into a single byte value. Since BASIC supports neither byte nor 
nybble data types, the values are all kept in integers.
See also HiNybble and LoNybble, which may be used to reverse the process, splitting a byte into two 
nybbles.

Form:

Result% = Nybs2Byte(Lo%, Hi%)

Arguments:

Lo%:
    low, or least significant, nybble
Hi%:
    high, or most significant, nybble

Result:

Result%:
    Result of combining nybbles into a byte 



Odd

Function:    Odd 

This function tells you whether an integer is an odd number.

Form:

Result% = Odd(Number%)

Arguments:

Number%:
    number to test

Result:

Result%:
    whether number is odd (-1 yes, 0 no) 



Odd Long

Function:    OddL 

This function tells you whether a long integer is an odd number.

Form:

Result% = OddL(Number&)

Arguments:

Number&:
    number to test

Result:

Result%:
    whether number is odd (-1 yes, 0 no) 



PBCwin Version

Function:    PBCwinVer 

This function returns the version of PBCwin available.    You can use this to make sure the PBCWIN.DLL 
being used is sufficiently current to handle the routines you need. Don't check the exact version number, 
since it should be ok for the user to have a newer version of PBCwin than your program expects.    
Instead, make sure that the returned version number is greater than or equal to the version you expect.

The version number is multiplied by 100 so it can be returned as an integer.    For example, PBCwin v1.0 
returns a result of 100 here.    PBCwin v1.1 will return 110, and so on.

Form:

Version% = PBCwinVer()

Arguments:

none

Result:

Version%:
    PBCWIN.DLL version times 100 



Peek Byte

Function:    PeekB 

This routine gets a byte from a specified memory location. The memory location is specified as a pointer, 
which is a combined segment and offset value.    The VarPtr function can be used to get a pointer to a 
variable.    If you want to create a pointer to an address for which you know the segment and offset, you 
can use the Ints2Long function to do so, by loading the segment into the high word and offset into the low 
word.

Form:

Nr% = PeekB(Ptr&)

Arguments:

Ptr&:
    far pointer

Result:

Nr%:
    byte retrieved from memory 



Peek Integer

Function:    PeekI 

This routine gets an integer from a specified memory location. The memory location is specified as a 
pointer, which is a combined segment and offset value.    The VarPtr function can be used to get a pointer 
to a variable.    If you want to create a pointer to an address for which you know the segment and offset, 
you can use the Ints2Long function to do so, by loading the segment into the high word and offset into the
low word.

Form:

Nr% = PeekI(Ptr&)

Arguments:

Ptr&:
    far pointer

Result:

Nr%:
    integer retrieved from memory 



Peek Long

Function:    PeekL 

This routine gets a long integer from a specified memory location. The memory location is specified as a 
pointer, which is a combined segment and offset value.    The VarPtr function can be used to get a pointer 
to a variable.    If you want to create a pointer to an address for which you know the segment and offset, 
you can use the Ints2Long function to do so, by loading the segment into the high word and offset into the
low word.

Form:

Nr& = PeekL(Ptr&)

Arguments:

Ptr&:
    far pointer

Result:

Nr&:
    long integer retrieved from memory 



Poke Byte

Function:    PokeB 

This routine pokes a byte into a specified memory location. The memory location is specified as a pointer,
which is a combined segment and offset value.    The VarPtr function can be used to get a pointer to a 
variable.    If you want to create a pointer to an address for which you know the segment and offset, you 
can use the Ints2Long function to do so, by loading the segment into the high word and offset into the low 
word.

Form:

PokeB Ptr&, Nr%

Arguments:

Ptr&:
    far pointer
Nr%:
    byte to place in memory at the pointer location

Result:

see above



Poke Integer

Function:    PokeI 

This routine pokes an integer into a specified memory location. The memory location is specified as a 
pointer, which is a combined segment and offset value.    The VarPtr function can be used to get a pointer 
to a variable.    If you want to create a pointer to an address for which you know the segment and offset, 
you can use the Ints2Long function to do so, by loading the segment into the high word and offset into the
low word.

Form:

PokeI Ptr&, Nr%

Arguments:

Ptr&:
    far pointer
Nr%:
    integer to place in memory at the pointer location

Result:

See above. 



Poke Long

Function:    PokeL 

This routine pokes a long integer into a specified memory location. The memory location is specified as a 
pointer, which is a combined segment and offset value.    The VarPtr function can be used to get a pointer 
to a variable.    If you want to create a pointer to an address for which you know the segment and offset, 
you can use the Ints2Long function to do so, by loading the segment into the high word and offset into the
low word.

Form:

PokeL Ptr&, Nr&

Arguments:

Ptr&:
    far pointer
Nr%:
    long integer to place in memory at the pointer posn

Result:

See above. 



Power of 2 Integer

Function:    Power2I 

This function returns the result of raising 2 (two) to the specified power.    It's much faster than using the 
floating-point raise-to-power operator in BASIC, and is especially handy for bit twiddling.

Form:

Result% = Power2I(Power%)

Arguments:

Power%:
    power to which to raise two

Result:

Result%:
    two to the specified power 



Power of 2 Long

Function:    Power2L 

This function returns the result of raising 2 (two) to the specified power.    It's much faster than using the 
floating-point raise-to-power operator in BASIC, and is especially handy for bit twiddling.

Form:

Result& = Power2L(Power%)

Arguments:

Power%:
    power to which to raise two

Result:

Result&:
    two to the specified power 



Printer Ports

Function:    PrtPorts 

This function returns the number of printer (parallel) ports installed.

Form:

Result% = PrtPorts()

Arguments:

none

Result:

Result%:
    printer ports (0-3) 



Pointer Array Double-precision

Function:    PtrMatD 

This routine initializes each element of a double-precision array to an increasingly large value.    The value
starts at a specified beginning and is incremented by one for each subsequent element.

Form:

PtrMatD VarPtr(Array#(FirstElem)), Elements%, InitValue#

Arguments:

Array#(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
InitValue#:
    value to which to init first array element

Result:

Array#(FirstElem thru FirstElem + Elements% - 1) are initialized 



Pointer Array Integer

Function:    PtrMatI 

This routine initializes each element of an integer array to an increasingly large value.    The value starts 
at a specified beginning and is incremented by one for each subsequent element.

Form:

PtrMatI VarPtr(Array%(FirstElem)), Elements%, InitValue%

Arguments:

Array%(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize 
InitValue%:
    value to which to init first array element

Result:

Array%(FirstElem thru FirstElem + Elements% - 1) are initialized 



Pointer Array Long

Function:    PtrMatL 

This routine initializes each element of a long integer array to an increasingly large value.    The value 
starts at a specified beginning and is incremented by one for each subsequent element.

Form:

PtrMatL VarPtr(Array&(FirstElem)), Elements%, InitValue&

Arguments:

Array&(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
InitValue&:
    value to which to init first array element

Result:

Array&(FirstElem thru FirstElem + Elements% - 1) are initialized 



Pointer Array Single-precision

Function:    PtrMatS 

This routine initializes each element of a single-precision array to an increasingly large value.    The value 
starts at a specified beginning and is incremented by one for each subsequent element.

Form:

PtrMatS VarPtr(Array!(FirstElem)), Elements%, InitValue!

Arguments:

Array!(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize 
InitValue!:
    value to which to init first array element

Result:

Array!(FirstElem thru FirstElem + Elements% - 1) are initialized 



Right Rotate Integer

Function:    RRotateI 

This function returns the result of rotating an integer right by a specified number of    bits.

Form:

Result% = RRotateI(Number%, Count%)

Arguments:

Number%:
    number to rotate
Count%:
    number of bits by which to rotate

Result:

Result%:
    rotated number 



Right Rotate Long

Function:    RRotateL 

This function returns the result of rotating a long integer right by a specified number of bits.

Form:

Result& = RRotateL(Number&, Count%)

Arguments:

Number&:
    number to rotate
Count%:
    number of bits by which to rotate

Result:

Result&:
    rotated number 



Right Shift Integer

Function:    RShiftI 

This function returns the result of shifting an integer right by a specified number of bits.

Form:

Result% = RShiftI(Number%, Count%)

Arguments:

Number%:
    number to shift
Count%:
    number of bits by which to shift

Result:

Result%:
    shifted number 



Right Shift Long

Function:    RShiftL 

This function returns the result of shifting a long integer right by a specified number of bits.

Form:

Result& = RShiftL(Number&, Count%)

Arguments:

Number&:
    number to shift
Count%:
    number of bits by which to shift

Result:

Result&:
    shifted number 



Second Unsqueeze

Function:    SecondUnsq 

This function returns the second from a compressed time.    It works in conjunction with the TimeSq time 
compression function.

Note that the second value will always be even, due to the limited amount of information that can be 
squeezed into an integer.

Form:

SecondNr% = SecondUnsq(Number%)

Arguments:

Number%:
    compressed time

Result:

SecondNr%:
    second number 



Set Array Currency

Function:    SetMatC 

This routine initializes each element of a currency array to a specified value.

Form:

SetMatC VarPtr(Array@(FirstElem)), Elements%, Value@

Arguments:

Array@(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
Value@:      value to which to initialize array

Result:

Array@(FirstElem thru FirstElem + Elements% - 1) are initialized



Set Array Double-precision

Function:    SetMatD 

This routine initializes each element of a double-precision array to a specified value.

Form:

SetMatD VarPtr(Array#(FirstElem)), Elements%, Value#

Arguments:

Array#(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
Value#:
    value to which to initialize array

Result:

Array#(FirstElem thru FirstElem + Elements% - 1) are initialized 



Set Array Integer

Function:    SetMatI 

This routine initializes each element of an integer array to a specified value.

Form:

SetMatI VarPtr(Array%(FirstElem)), Elements%, Value%

Arguments:

Array%(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
Value%:
    value to which to initialize array

Result:

Array%(FirstElem thru FirstElem + Elements% - 1) are initialized



Set Array Long

Function:    SetMatL 

This routine initializes each element of a long integer array to a specified value.

Form:

SetMatL VarPtr(Array&(FirstElem)), Elements%, Value&

Arguments:

Array&(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
Value&:
    value to which to initialize array

Result:

Array&(FirstElem thru FirstElem + Elements% - 1) are initialized 



Set Array Single-precision

Function:    SetMatS 

This routine initializes each element of a single-precision array to a specified value.

Form:

SetMatS VarPtr(Array!(FirstElem)), Elements%, Value!

Arguments:

Array!(FirstElem):
    first element of array to initialize
Elements%:
    number of elements to initialize
Value!:
    value to which to initialize array

Result:

Array!(FirstElem thru FirstElem + Elements% - 1) are initialized



Swap Currency

Function:    SwapC 

This routine swaps two currency values.

Form:

SwapC Number1@, Number2@

Arguments:

Number1@:      first number
Number2@:      second number

Result:

Number1@:      former second number
Number2@:      former first number 



Swap Double-precision

Function:    SwapD 

This routine swaps two double-precision numbers.

Form:

SwapD Number1#, Number2#

Arguments:

Number1#:
    first number
Number2#:
    second number

Result:

Number1#:
    former second number
Number2#:
    former first number 



Swap Integer

Function:    SwapI 

This routine swaps two integers.

Form:

SwapI Number1%, Number2%

Arguments:

Number1%:
    first number
Number2%:
    second number

Result:

Number1%:
    former second number
Number2%:
    former first number 



Swap Long

Function:    SwapL 

This routine swaps two long integers.

Form:

SwapL Number1&, Number2&

Arguments:

Number1&:
    first number
Number2&:
    second number

Result:

Number1&:
    former second number
Number2&:
    former first number 



Swap Single-precision

Function:    SwapS 

This routine swaps two single-precision numbers.

Form:

SwapS Number1!, Number2!

Arguments:

Number1!:
    first number
Number2!:
    second number

Result:

Number1!:
    former second number
Number2!:
    former first number 



Time Squeeze

Function:    TimeSq 

This function compresses a time into a single integer.    This provides a very efficient storage format.    
Note, however, that an integer is not quite large enough to store an exact time-- the seconds value, if odd,
will be rounded down to the next closest even number.

Uncompression is done with HourUnsq, MinuteUnsq, and SecondUnsq. See also DateSq, which allows 
you to compress a date value similarly.

Note that compressed times are not in a format that may be readily used for comparison or time math 
purposes.    If you need such capabilities, convert the time to a BASIC time/date serial number first-- see 
your BASIC manual for details.

Form:

Result% = TimeSq(HourNr%, MinuteNr%, SecondNr%)

Arguments:

HourNr%:
    hour number (0-23)

MinuteNr%:
    minute number (0-59)

SecondNr%:
    second number (0-59; see note on truncation)

Result:

Result%:
    compressed time 



Variable Pointer

Function:    VarPtr 

This function returns a far pointer to a variable.    It works with any variable type except BASIC strings, 
which are stored in an unusual format.    This function is required for passing arrays to the PBCwin 
routines which take arrays as parameters. It has not been tested with VB/Win 2.0 arrays, and is likely not 
to work with such arrays if they're over 64k bytes.    Since BASIC arrays may move in memory, it is 
advised that you get the pointer to an array just before using it, to minimize the risk of accessing the 
wrong area of memory.

This function can also be used to provide a pointer for use with the various Peek_ and Poke_ routines in 
PBCwin.

Note that the PBCwin function, VarPtr, is not identical to the DOS BASIC function, VARPTR.    It returns an
absolute address consisting of both segment and offset, rather than merely an offset value.

Form:

Ptr& = VarPtr(Vbl)

Arguments:

Vbl:
    variable for which to get a pointer

Result:

Ptr&:
    far pointer to variable 



Year Unsqueeze

Function:    Function:    YearUnsq 

This function returns the year from a compressed date.    It works in conjunction with the DateSq date 
compression function.

Form:

YearNr% = YearUnsq(Number%)

Arguments:

none

Number%:
    compressed date

Result:

YearNr%:
    year number 




