
Modeling and Prototyping Systems

Introduction
In previous sections we modeled a small number of classes to get
familiarity with basic O-O concepts, documentation products, and CASE
tools. In this section we will look at how to model and prototype a
system of classes. We will apply the basic O-O concepts as listed
below:

O-O Entities - system environment, system, class and object
O-O Connections - association, aggregation, message, generalization
specialization
Models - object model, dynamic model, functional model
Documentation Products - diagrams, text, code
Tools - With Class, StateMaker, Windows Word Processor, Borland C++
Compiler

O-O modeling loosely follows the Analysis Model in Rumbaugh's OMT
O-O methodology. O-O modeling emphasizes the early identification of
the system environment and the identification of separate interface,
control, and entity classes for highly portable systems. We will follow
an iterative approach to model and prototype a system by describing
each of the following:
1 - System Environment
2 - Classes - Object Model
3 - Classes - Dynamic Model
4 - Classes - Functional Model

Modeling the System Environment

Introduction

To rapidly model and prototype O-O systems, it is desirable to focus on
a single system within a large system environment. With this focus we
can model and prototype this single system with a dedicated team of
developers, then integrate this single system with other systems. In
the real world to construct a house, it is desirable to focus on a major
component of a house, for example, the roof, with a dedicated team of
workers. In S/W it is desirable to partition a large S/W system into
manageable subsystems that can be linked or connected together.
The purpose of this section is to present a "how to" focus on a single
system and to model the system environment. In modeling the system
environment, we will present the objective, key entities, key
connections, and key products as introduced below.

Objective - The objective is to define the boundary and scope of the
system within a larger environment in terms of interacting systems,
event messages, response messages and problem domain objects. It
is important to have a clearly defined boundary and scope to
accomplish development requirements, cost, and schedule goals.

Entities - The key entities are the system being modeled, interacting
systems (devices or programs), and problem domain objects.

Connections - The key connections are event messages and response
messages.

Products (Diagrams and Text) - The key products are the
requirements statement, drawing, block diagram, event flow diagram
(messages), event list (messages), event scenario (messages), and
data dictionary of problem domain objects.

Entities

There are several key entities in modeling the system environment:
system to be modeled, interacting system (device or program), and
problem domain objects. These are defined below.

System Environment - The system environment consists of a system
and interacting systems (devices or programs). In S/W a GUI based
text processor is an system environment with a system, for example,
the text processor program and interacting system (device or
program), for example, a GUI system and a file system.

System - The system is the system to be modeled and prototyped. It
is our center of focus. It generally consists of 10 to 100 classes as a
rough order of magnitude. It is generally programmed as a single .EXE
or concurrent process. The text editor program is an example of a
system. A large system may be partitioned into subsystems. A
subsystem may consist of other subsystems or the subsystem may
consist of classes.

Interacting System (Device Or Program) - An interacting system
(device or program) is any entity that interacts with the system. An
interacting system can be a HW device, S/W program, a GUI program,
a data management program, a communications program, etc. An
interacting system is sometimes called an actor, terminator, outside
agent, or external system.

Problem Domain Object - A problem domain object is an object that

is passed as a parameter in an event message and or an response
message. It exists in the system environment and is manipulated by
the system. Examples are bank account, customer, registration,
product, etc. A problem domain object is sometimes called a real
world object, an application object, or domain object.

Connections

The key connections in modeling the system are event messages and
response messages. These are defined below.

Event Message - An event message is a message (communication)
from an interacting system (device or program) to the system. The
system must respond. An event message is based on a user or
physical phenomenon such as a user action of pressing a function key.
Examples of event messages are turn on, turn off, record data, store
data, print report, etc. Generally, a menu item or button in a GUI
window represents an event message. The event messages represent
the functional requirements of the system, i.e. what the system must
do.

Response Message - A response message is a message from the
system to an interacting system (device or program). It is in response
to an event message such as a message to a printer. Examples of
response messages to an interacting GUI system are open window,
show dialog box, display text, etc. Examples of response messages to
an interacting data base management system are get record, update
record, delete record, find record, etc.

Strategy to Identify Major Entities in the System Environment

The following is a recommended strategy to identify major entities in
the system environment.

1. Start with the customer provided information, e.g. requirements
statement, drawing, block diagram, etc.

2. Identify the system to be modeled and interacting systems which
interact (communicate) with the system. This is to set the scope and
boundary of the system.

3. For a large system, identify smaller subsystems to developed
individually.

4. Identify event messages. These are based upon events which occur

in the system environment.

5. Identify response messages. These are responses to event
messages.

6. Identify problem domain objects that are passed into and from the
system in messages. The problem domain objects will be basic objects
used in the system.

Products to Describe the System Environment

There are many products to describe the system environment as
described below.

Requirements Statement - States the requirements for the system.

Drawing or Physical Representation - Provides a physical, real
world view of the system environment.

Block Diagram - Shows the system and interacting systems within
the system environment.

Event Flow Diagram (Messages) - Shows event and response
messages and problem domain object. It sets the boundary for the
system.

Event List (Messages) displays the event messages to which the
system must respond and response messages that the system initiates
to interacting systems.

The Event Scenario (Messages) displays the time ordered sequence
of event and response messages.

Data Dictionary of Problem Domain Objects displays problem
domain objects that exist in the system environment. These are
received from or sent to interacting systems (devices or programs) in
event messages and response messages.

User Interface Drawing, Description, and GUI Prototype -
Drawing, description, and GUI prototype of the user interface, e.g.,
menus, dialog boxes, windows

General Steps to Create Products for the System Environment

The following are the general steps to create products (diagrams, text,

and code) to describe the system environment.

1 - Collect written information and interview the client, users, and
experts about the system environment that consists of the system and
interacting systems (devices or programs).

2 - Create the system requirements statement in text form with the
description of commands (event messages), responses (response
messages), and input and output data (problem domain objects).

3 - Make a drawing or physical representation of the major components
of the system environment, e.g., HW devices and SW programs.

4 - Make a block diagram of the system environment to show the
system and connections to interacting systems (devices or programs).

5 - If required, collect domain analysis information about the problem
to be solved, similar problems and similar systems.

6 - Create the Event Flow Diagram (Messages) with the system in the
middle surrounded by interacting systems (devices or programs). Show
or list event messages, response messages and problem domain
objects.

7 - Create the Event List (Messages). Describe the "10 most
important" event messages. For each event message state time,
priority, throughput, and other requirements. List the response
messages to interacting systems

8 - Create the Event Scenario (Message Scenario). For each event
message, state the response messages in a scenario (script). State the
simplest scenario (script) first then add variations and errors later.

9 - Create the Data Dictionary of Problem Domain Objects. Describe
the "10 most important" problem domain objects. An object of
problem domain may be an atomic, collection, or composite object.
Describe each object of problem domain in terms of its name, direction
to or from the system, class, and other relevant information.

10 - Trace each event message from interacting systems (devices or
programs) to the system and then to other interacting systems
(devices or programs) as response messages.

Creating the Requirements Statement

Description - The requirements statement is a primary document to
describe the requirements and functions of the system. The
requirements statement is the problem statement and charter. The
emphasis in the requirements statement is to describe the system and
its interactions with interacting systems (devices or programs). For
simple systems, the requirements statement consists of a few
sentences stating what the system must do. For complex systems, the
requirements statement may be thousands of pages of detailed
requirements and specifications. In this tutorial only very simple
requirements statements are presented. This section describes the
requirements statement, its purpose, steps to create, and a sample
requirements statement.

Purpose of the Requirements Statement - The purpose of the
requirements statement is to state the requirements for the system
environment with emphasis on the system.

Steps to Create the Requirements Statement

The following are the steps to create a requirements statement.

1. Identify the system environment with the system and interacting
systems (devices or programs).

2. State the functional requirements of the system, i.e. what the
system must do.

3. State the users, user types, user roles, or user categories of the
system, e.g., customer, operator, supervisor, end user, etc. In "Object-
Oriented Software Engineering", Jacobson et. al. uses the term actor to
refer to a user role or user category. Each actor has one or more
events and a message scenario (use case) of messages through the
system.

4. Describe the system's commands (event messages), responses
(response messages), and input and output data (problem domain
objects).

5. If necessary, describe the interacting systems (device or program).

TV Controller Case Study - The following is the Requirements
Statement for the TV Controller Case Study.

TV Controller System Requirements Statement

The TV Controller is a software program (system) that receives
commands (event messages) from a TV Buttons Device (interacting
system) and sends messages (response messages) to TV Speaker
Device, TV Channel Device, and TV Storage (interacting system). The
TV Controller stores the last used volume and channel selection. The
commands (event messages) are turn on, turn off, increase volume,
decrease volume, increase channel, and decrease channel. The TV
Controller initiates the following response messages: get volume, set
volume, store volume, get channel, set channel, and store channel.
The following data (Problem Domain Objects) are passed in the
response messages: volume setting and channel setting.

Creating the Drawing - A Physical Representation

Description - A drawing is a physical diagram of the system
environment showing typical users, hardware devices, software
programs, and objects passed into and from the system. This section
describes the requirements statement including its purpose, steps to
create, and a sample requirements statement.

Purpose - The purpose of the drawing is to provide a physical, real
world view of the system environment including the user, H/W devices,
S/W programs, etc.

The drawing is very important for the following reasons:
- helps identify H/W and S/W systems,
- helps identify the boundary of the system,
- helps define links (communications) between the system and H/W
and S/W systems,
- helps define input and output data (problem domain objects) that is
passed to and from the system in messages,
- helps maintain an object orientation versus a functional orientation,
- provides an excellent "starting point" because it is easy to understand
and discuss with the client and users,

Steps to Create the Drawing - The following are the steps to create
the drawing.

1. Show the system as a box in the middle of the drawing.

2. Show users and their user roles, e.g., user, operator, etc.

3. Show H/W devices that interact with the system.

4. Show S/W programs that interact with the system.

5. Show links between the H/W devices and S/W programs with the
system.

6. Draw small symbols to represent input and output data (problem
domain objects) that is passed to and from the system in messages.

TV Controller Case Study - The drawing for the TV Controller is
shown in file tvdraw.omt.

Creating the Block Diagram

Description - The block diagram has boxes for each major entity in
the system environment. It shows major hardware devices, software
programs, and connections. This section describes the block diagram
including its purpose, steps to create, and a sample block diagram.

The block diagram shows the system being modeled and interacting
systems (devices or programs) within the system environment. The
block diagram may show interacting systems that initiate commands
(event messages). The block diagram may show interacting systems
that receive responses (response messages). The block diagram leads
to the event flow diagram (messages).

Purpose of the Block Diagram - The block diagram shows a high
level view of the system environment with the system and interacting
systems (devices or programs).

Steps to Create the Block Diagram - The following are the steps to
create the block diagram.

1. Show the system being modeled and interacting systems (devices
or programs) as boxes.

2. Place the system being modeled in the box in the middle of the
diagram.

3. Place interacting systems that send commands (event messages)
on the top or left of the diagram.

4. Place interacting systems that receive commands (response
messages) from the system on the right or bottom of the diagram.

5. Show line between interacting systems and the system being
modeled. These lines represent interaction or communication.

TV Controller Case Study - The block diagram for the TV Controller
is shown in tvblock.omt.

Creating the Event Flow Diagram (Messages)

Description - The event flow diagram (messages) displays the
system, event messages, response messages, and problem domain
objects in graphic form. The event flow diagram (messages) is
functionally equivalent to the structured analysis context diagram
described by Ware and Mellor in "Structured Development for Real-
Time Systems" Volume 1. Both the event flow diagram (messages)
and structured analysis context diagram set the boundary of the
system. This section describes the event flow diagram (messages)
including its purpose, steps to create, and a sample diagram.

Purpose - The purpose of the event flow diagram (messages) is to
show the scope and boundary of the system, event and response
messages, and problem domain objects (incoming and outgoing
objects - data).

Steps to Create the Event Flow Diagram (Messages) - The
following are the steps to create the event flow diagram (messages).

1. Start with the system requirements statement, drawing, and block
diagram.

2. Place the system being modeled in the box in the middle.

3. Place interacting systems that send commands (event messages)
on the top or left of the diagram.

4. Place interacting systems that receive commands (response
messages) from the system on the right or bottom of the diagram.
However, many interacting systems both send and receive messages.

5. Show event messages as arrows from interacting systems to the
system being modeled.

6. Show response messages as arrows from the system being modeled
to the interacting systems.

7. If desired, show problem domain objects as small arrows. The small
arrow should point in the direction that the problem domain object is

passed.

8. Walk-through each event (stimulus) message from the interacting
systems to the interacting systems.

TV Controller Case Study - The event flow diagram (messages) of
the TV Controller is shown in tvevents.omt.

Creating the Event List (Messages)

Description and Purpose - The event list (messages) lists and
describes all the event (stimulus) messages to which the system must
respond and all the resulting response messages from the system. Its
purpose is to provide a list of event and response messages. This
section describes the event list (messages) and event scenario
(messages) with its purpose, steps to create, and a sample event list
(messages).

The event list (messages) is useful for the following reasons:
- to understand system requirements,
- to generate initial test cases,
- to generate menus and dialog boxes,
- to provide a test scenario for walk-throughs

Steps to Create the Event List (Messages) - The following are the
steps to create the event list (messages).

1. Identify event (stimulus) messages from interacting systems to
which the system must respond. Question is "What occurs in the
external environment to which the system must respond?

2. Group event messages by user type, user role, or user category,
e.g., user, customer, operator, accountant, etc.

3. Describe each event message. For each event message state
timing, priority, throughput, and other requirements.

4. Identify response messages from the system to interacting systems.
Question: For each event (stimulus) message what are the response
messages?

5. Using the event flow diagram (messages), walk-through all
messages to check completeness.

TV Controller Case Study - The following is the Event List

(Messages) for the TV Controller Case Study.

Event List (Messages)

Event Messages (Interacting System --> TVController)

Event Input Parameter Return Parameter
Interacting

Message Object/Class Object/Class
System(Sender)

TurnOn None None TVButtons
Device

IncreaseVolume None None "
DecreaseVolume None None "
IncreaseChannel None None "
DecreaseChannel None None "
TurnOff None None "

Response Messages (TVController --> Interacting System)

Response Input Parameter Return Parameter
Interacting

Message Object/Class Object/Class
System(Receiver)
GetVolume None VolumeSetting Storage

/Integer Device

StoreVolume VolumeSetting None
Storage

/Integer Device

GetChannel None ChannelSetting Storage
/Integer Device

SetChannel ChannelSetting None Channel
/Integer Device

SetVolume VolumeSetting None Volume
/Integer Device

SetChannel ChannelSetting None Channel
/Integer Device

Creating the Event Scenario (Messages)
Description and Purpose - The event scenario (messages) shows the
time ordered sequence of event and response messages. This section
describes the event scenario (messages) with its purpose, steps to
create, and a sample event list (messages).

Steps to Create the Event Scenario (Messages) - The following
are the steps to create the event scenario (messages).

1. Start with the event list (messages).

2. Create the event scenario (messages). For each event (stimulus)
message state the resulting response messages in a scenario (script).
State the simplest scenario (script) first then add variations and errors
later. The recommended table includes the following headings:
sequence from 1 to ?, interacting system that sends the message
(sender), the system that receives the message (receiver), the
message name, and remarks.

3. If desired create an event trace diagram (message scenario) as
described by Rumbaugh et. al. in "Object -oriented Modeling and
Design". A sample event trace diagram (message scenario) is shown
below.

4. Using the event flow diagram (messages), walk-through all
messages to check completeness.

TV Controller Case Study - The following is the event scenario
(messages) for the TV Controller Case Study.

Event Scenario (Message)

Sequ- Sender Receiver Message
Remarks

ence

1 - TVButtonsDevice TVController TurnOn
Event Msg

2 - TVController StorageDevice GetVolume
Response Msg

3 - TVController StorageDevice GetChannel
Response Msg

1 - TVButtonsDevice TVController IncreaseVolume

Event Msg
2 - TVController SpeakerDevice SetVolume Response
Msg

1 - TVButtonsDevice TVController DecreaseVolume
Event Msg

2 - TVController SpeakerDevice SetVolume Response
Msg

1 - TVButtonsDevice TVController IncreaseChannel
Event Msg

2 - TVController ChannelDevice SetChannel Response
Msg

1 - TVButtonsDevice TVController DecreaseChannel
Event Msg

2 - TVController ChannelDevice SetChannel Response
Msg

1 - TVButtonsDevice TVController TurnOff
Event Msg

2 - TVController StorageDevice StoreVolume
Response Msg

3 - TVController StorageDevice StoreVolume
Response Msg

Event Trace Diagram (Message Scenario)
(Sender Interacting System --> TVController --> Receiver

Interacting System)

Interacting Event TVController Response
Interacting

System (Sender) Message System Message System
(Receiver)

TV Buttons Turn On --> | --> Get Volume StorageDevice
Device | --> Get Channel

StorageDevice
|

 " IncreaseVolume --> | --> SetVolume SpeakerDevice

|
 " DecreaseVolume --> | --> SetVolume SpeakerDevice

|
 " IncreaseChannel--> | --> SetChannel

ChannelDevice
|

 " DecreaseChannel--> | --> SetChannel
ChannelDevice

|
 " TurnOff --> | --> StoreVolume

StorageDevice
| --> StoreChannel Storage

Device

Creating the Data Dictionary for Problem Domain Objects

Description and Purpose - The Data Dictionary for Problem Domain
Objects shows and describes each incoming and outgoing problem
domain object. A problem domain object exists in the system
environment, e.g. account, customer, transaction, etc. They are basic
classes in the system. This section describes the data dictionary of
problem domain objects with its purpose, steps to create, and a sample
data dictionary of problem domain objects.

Steps to Create the Data Dictionary for Problem Domain
Objects - The following are the steps to create the data dictionary of
problem domain objects.

1. Identify problem domain objects that are passed into or from the
system in messages. Question: What data and information (problem
domain objects) are passed into and from the system?

2. Describe each problem domain object in terms of its name, class,
direction passed to or from the system, and descriptive information.

3. List and describe each problem domain object either in a narrative
form or in the following table form.

Problem Domain Object Class Description

TV Controller Case Study - The following is the Data Dictionary of
Problem Domain Objects for the TV Controller Case Study in narrative
form.

Data Dictionary for Problem Domain Objects

(Objects Passed To and From the TV Controller)

VolumeSetting is an object of the integer class. It is passed to and
from the TV Controller and the Storage Device. It is passed from the
TV Controller to the Speaker Device. It indicates the magnitude of the
desired or current TV audio volume setting.

ChannelSetting is an object of the integer class. It is passed to and
from the TV Controller and the Storage Device. It is passed from the
TV Controller to the Channel Device. It indicates the desired or current
TV channel setting.

User Interface Description and Drawing
Description and Purpose - The user interface description documents
user interface requirements in drawings and text descriptions for
button panels, function keys, menus, windows, input forms, output
reports, etc. It documents H/W and S/W interfaces to be simulated in
prototype with interface objects.

Steps to Draw the User Interface - The following are the steps to
draw the user interface.

1. Select the form of the interface, e.g., Text or GUI

2. For a text interface drawing, show the following:

- Show menu and menu items for each event message.

- Show text prompts for data input for each incoming problem domain
object.

- Show text statement for data output for each outgoing problem
domain object.

3. For a GUI interface drawing, show the following:

- Show a menu, menu item, button or similar GUI object for each event
message.

- Show an input text box for each data input for each incoming problem
domain object.

- Show an output text box or similar GUI object for each data output for
each outgoing problem domain object.

4. Prototype the user interface using a screen painter or interface
builder to get user feedback. See file tvgui.omt.

Evaluating the System Environment Products

The following are various criteria and questions to ask in evaluating the
adequacy of the products describing the system environment.

- Have we collected enough information to identify and describe the
system and interfaces to interacting systems (devices or programs)?

- Have we grouped interacting systems together that have a common
function?

- Have we organized the interacting systems for loose message
coupling?

- Have we described the system in terms of commands, functions, and
data inputs and outputs?

- Have we identified users and their user roles, e.g., operator,
supervisor?

- Have we clearly stated the scope (boundary) of the system in terms
of the "10 most important" event messages, response messages, and
problem domain objects?

- Have we grouped smaller external data items into larger composite
problem domain objects with strong cohesion.

- Does the customer (requester of the system) agree that we have
clearly stated the scope (boundary) and the functionality of the
system?

Modeling Classes - The Object Model

Introduction

To rapidly model and prototype O-O systems, it is desirable to "plug
and play" as we now do with stereo components. In S/W terms it is
desirable to be able to quickly "change out" and replace an interacting
system within a system environment. In the real world to construct a
house, it is desirable to be able to replace the roof without major
disruption to the rest of the house. The purpose of this section is to

present a "how to" to model and prototype interface, control, and
entity classes. We will present the objective, key entities, key
connections, and key products as introduced below.

Objective - The objective is to identify, describe, organize, and
prototype interface, control, and entity classes and objects.

Entities - Key entities are the initializer class, interface classes, control
classes, and entity classes

Connections - Key connections are association, aggregation, and
generalization specialization. Defer messages until the dynamic
model.

Products (Diagrams, Text, Code) - Key products in the object model
are as follows: class diagram, data dictionary listing classes, class
specification, and prototype;

Key Entities - Basic Classes in the System

The system can be described as being composed of interface, control,
and entity classes. It is useful to have separate interface, control, and
entity classes for modifiability. Ideally, to replace an old interacting
system with a new interacting system, one would change the interface
class not entity classes. The terms used in this section, e.g., interface
object, control object, and entity object were introduced in "Object-
Oriented Software Engineering" by Jacobson et. al. These classes are:

- Initializer class - initializes the system
- Interface classes - interact with interacting system (device or

program)
- Control classes - manage time based and state based event

behavior
- Entity classes - manage application information.

Initializer Class - An initializer class is a high level class. It starts and
initializes the system. It is the "main" in C++.

It is useful for several reasons:
- provides a starting point to trace messages,
- as a top level composite, it provides a means to construct a
hierarchical system,
- is required to construct programs in C++ and other languages

A guideline is to create a initializer class for the system to start and
initialize the system. For example, we have a single initializer class in

the TV Controller System named TVMain.

Interface Classes - An interface class defines objects that
communicate directly with interacting systems (devices or programs).
An interface class has the following characteristics:
- encapsulates protocol details of an interacting system (device or
program),
- interacts with a single interacting system (device or program) or
group of interacting systems,
- has an operation for each event message handled,
- has an operation for each response message sent.

Typically, an event message is initially handled by an interface object,
then sent to a control object, then sent to an entity object, then sent to
another interface object. It is important to identify interface classes to
encapsulate protocol details of interacting systems (devices or
programs) for portability. Interface classes facilitate portability to
rapidly transfer a system from one environment to another.

There are two major choices to identify and group interface classes.
1. First choice, identify an interface class for each individual
interacting system (device or program). This is appropriate under the
following conditions:
- there is a relatively small number of interacting systems (devices or
programs), i.e. less than ten;
- the interacting systems (devices or programs) are very well defined,
e.g., a GUI program and a data base program;
- to group interacting systems (devices or programs) together as a
logical unit is not appropriate. e.g., to group a data base program and
a communications program together is not appropriate.

2. Second choice, identify an interface class for a group of logically
related interacting systems. This is appropriate if a group of several
interacting systems (devices or programs) work together as a unit,
e.g., several HW devices could be grouped together
- if they have a common purpose such as user interface, or
- if they may be changed as a unit.

A guideline is to create an interface class for each interacting system
(device or program) (or group of systems) that send event messages or
receive response messages. For example, we have an interface class
for each interacting system to the TVController.

Control Classes - A control class defines objects that have time based

and state based behavior for events. It has the time based sequencing
and logic for events. It has the state based logic for events, i.e. finite
state machine logic. It has decision logic for stimulus response
behavior.

A guideline is to create a control class for each user role, i.e. group of
related events. The control class has an operation for each event that
it handles. For example, we have a single control class in the
TVController System named TVController.

Entity Classes - An entity class defines objects that manage,
computes, and store application information without interface details.
The following are several ways to identify entity classes:
- Identify an entity class for each problem domain object.
- Identify an entity class for any application entity that you can draw.
- Identify an entity class for any application entity you need to process
an event message.
- Identify an entity class for any application entity you enclose in an
input form, GUI dialog box, or text box.
- Identify an entity class for any application entity that has a search
key or lookup key.
- Identify an entity class for any application entity in a data model, e.g.,
semantic data model, entity relationship data model, data tables, etc.
- Identify an entity class for any application entity that has a Class -
Responsibility - Collaboration - Card (CRC Card). See "Designing
Object-Oriented Software" by Wirfs-Brock, Wilkerson, and Werner.

A guideline is to create an entity class for each problem domain object
and other important application entities. Typical operations in entity
classes are get, set, and calculate attribute values. In the TVController
System, we have an entity class for each problem domain object, e.g.
Volume and Channel.

Connections

The key connections are association, aggregation, and generalization
specialization as presented earlier. Defer messages until the dynamic
model.

Strategy to Identify and to Organize Classes

The following is a recommended strategy to identify and organize
interface, control, and entity classes.

1. Start with the description of the system environment with the

following identified: system, interacting system (device or program),
event messages, response messages, problem domain objects.

2. Identify an initializer class to be the composite class for the entire
system. This class starts and initializes the system.

3. Identify interface classes to interact with interacting systems
(devices or programs). There are two primary choices. First choice,
identify an interface class for each individual interacting system
(device or program). Second choice, identify an interface class for a
group of logically related interacting systems.

4. Identify a control class for each user role, e.g., group of related
event messages.

5. Identify connections for each class, e.g., association, aggregation,
and generalization specialization.

6. Organize the initializer class, interface classes, control classes, and
entity classes.

7. Identify attributes and operations for each class. The following are
guidelines:

- Initializer class - operation "initialize" or "start",

- Interface classes - operation for each event message and an
operation for each response message,

- Control classes - operation for each event message.

- Entity classes - query, update, and computation operations.

8. Test the class diagram with the check of connections.

- Check associations and aggregation. Start with the initializer class
and trace the "has a" or "part of" connections.

- Check generalization specialization. Start with highest superclass.

Products (Diagrams, Text, and Code) to Describe Classes

There are four major documentation products in the object model as
described below.

Class Diagram - Displays classes and objects with their attributes,
operations, and connections.

Data Dictionary Listing Classes - Lists classes with their attributes

Class Specifications - Displays all relevant information for each class.
Provides design documentation to build the prototype.

Prototype - C++ source code and demonstrations

General Steps to Create Products Describing Classes
The following are the general steps to create products (diagrams, text,
and code) to describe the interface classes.

1 - Create the Class Diagram. Initially identify an initializer class,
interface classes, and control classes. Then add entity classes.

2 - Create the Data Dictionary Listing Classes. Identify and describe all
classes.

3 - Develop a Class Specification for each class to document the
attributes, operations, and other details, e.g., description,
superclasses, persistence, etc.

4 - Program the prototype and demonstrate to get user feedback. This
is to ensure that you understand the fundamental requirements.

Creating the Class Diagram

Description and Purpose - The class diagram graphically show the
classes in a system with their attributes, operations, and connections.
There are various forms and graphic notation of class diagrams that
have been published by Coad/Yourdon, Rumbaugh, Booch, and
numerous others.

Steps to Create the Class Diagram - The following are the steps to
create the class diagram.

1. Start with the descriptions of the System Environment.

2. Identify an initializer class to be the composite class for the entire
system.

3. Identify an interface classes to interact with each interacting
system (device or program) or group of interacting systems.

4. Identify a control classes for each user role, e.g., group of related
events.

5. Identify an entity classes for each problem domain object and other
application entities.

6. Identify connections for each class, e.g., association, aggregation,
and generalization specialization.

7. Organize the initializer class, interface classes, and entity classes.

8. Identify attributes and operations for each class. The following are
guidelines for operations:

- Initializer class - operation "initialize" or "start",
- Interface classes - operation for each event message and an
operation for each response message,
- Control classes - operation for each event message.
- Entity classes - query, update, and compute operations.

9. Test the class diagram by checking connections.

- Check associations and aggregation. Start with the initializer class
and trace the "has a" or "part of" connections.

- Check generalization specialization. Start with highest superclass.

TV Controller Case Study - The class diagram for the TV Controller
Case Study. are shown in tvclass1.omt showing interface and control
classes and tvclass2.omt showing all classes including entity classes.

Creating the Data Dictionary Listing Classes

Description and Purpose - The data dictionary listing classes
textually lists and describes the class in a system. with a brief
description including purpose, attributes, operations, and connections.
The data dictionary listing classes is abbreviated documentation for
each class. The data dictionary listing classes is the object oriented
equivalent of the traditional data dictionary.

Steps to Create the Data Dictionary Listing Classes - The
following are the steps to create the data dictionary listing classes.

1. Start with the Class Diagram showing all the classes in the system.

2. List classes starting with the initializer class, then interface classes,
then control classes, and finally entity classes.

3. Briefly describe each class, e.g., purpose, attributes, operations,
connections, and other information.

TV Controller Case Study - The following is the Data Dictionary
Listing Classes for the TV Controller Case Study.

Data Dictionary Listing Classes

Class Description
TVControllerMain Initializer Class
TVButtonsInterface Interface
Class
StorageDeviceInterface Interface Class
SpeakerDeviceInterface Interface
Class
ChannelDeviceInterface Control
Class
TVItem Entity Class
Volume Entity Class
Channel Entity Class

Creating the Class Specification

Description - The class specification is a key documentation product to
document a class. Its purpose is to state adequate information to
document and to program each class. The form of the class
specification used in this tutorial is the Booch class specification
presented in "Object Oriented Design with Applications" by Grady
Booch. He presents the key aspects of each class, e.g., description,
enclosing system, superclasses, visibility, cardinality, concurrency,
persistence, space, applicable documents, and remarks. The class
specification is described in more detail in earlier section.

Steps to Create the Class Specification - The following are the
steps to create the class specification.

1. Start with the class diagram or data dictionary listing classes.

2. Document each class with the following information: description,
enclosing system, superclasses, visibility, cardinality, concurrency,
persistence, space, applicable documents, and remarks.

Evaluating the Products in the Object Model

The following are various criteria and questions to ask in evaluating the
adequacy of the products in the object model.

- Have we identified an initializer class?

- Have we identified interface classes with operations to handle all
event messages?

- Have we identified interface classes with operations to send response
messages?

- Have we identified a control class for each user role with an operation
for each event message?

- Have we identified entity classes for each problem domain object and
other important application entities with get, set, and compute
operations?

- Does the prototype show the basic functionality of the system?

Modeling Classes - The Dynamic Model

Introduction

To rapidly model and prototype O-O systems, we must understand the
stimulus response behavior of the system over time. We must model
the time oriented sequence of messages from event messages to
response messages. The dynamic model defines the documentation
products to model the stimulus response behavior of a system and
classes. The purpose of this section is to present a "how to" to model
stimulus response behavior in terms of messages and states. We will
present the objective, key entities, key connections, and key products
as introduced below.

Objective - The objective is to identify messages, the sequence of
messages, the rules which govern messages including state based
rules.

Entities - Key entities are the initializer class, interface classes, control
classes, and entity classes.

Connections - The key connection is messages. Association,
aggregation, and generalization specialization connections are
identified in the object model.

Products (Diagrams, Text, Code) - Key products in the dynamic model
are as follows: message diagram (event flow diagram), event scenario
(messages), state diagram, and prototype.

Creating the Message Diagram (Event Flow Diagram)

Description and Purpose - The message diagram (event flow
diagram) graphically shows the classes in a system with message
connections. This diagram is briefly described in "Object-oriented
Design and Modeling" by Rumbaugh et. al.

The steps to create the message diagram (event flow diagram) are
listed below.

1. Start with the description of the system environment and the object
model. In particular examine the system message diagram
(messages), the event list (messages), event scenario (messages), and
the class diagram.

2. For each event message, identify the sequence of message
connections from class to class through the system. Message
connections may be shown between classes but the actual execution
of message occurs between objects.

3. On the message diagram (class diagram showing messages), show
a message connection whenever an object of a class sends a message
to an object of another class. Generally there will be a message
connection whenever there is an association or aggregation
connection.

4. For each event message to an interface class, trace resulting
messages through the system. Generally an event message has a
response message in an interface class.

5. Initially create an message diagram (event flow diagram) for
interface and control classes. Then add entity classes.

TV Controller Case Study - The message diagrams (event flow
diagrams) for the TV Controller Case Study is shown in With Class files
are tvmsg1.omt showing interface and control classes and
tvmsg2.omt showing interface, control, and entity classes.

Creating the Message Scenario

Description and Purpose - The message scenario lists messages
from an event message to response messages. A message scenario
lists messages in a time ordered sequence for the first message to last
message through the system. The message scenario is referred to as a
"Use Case" by Jacobson et. al. in "Object Oriented Software
Engineering".

Steps to Create the Message Scenario - The following are the
steps to create the message scenario.

1. Start with the system event list (messages) and event scenario
(messages).

2. For each event message, identify the sequence of messages
through the system.

3. For each message, identify the sender object, receiver object,
invoked operation, input parameters, and output parameters.

4. Check the message diagram (event flow diagram) and trace
messages through the system.

5. Initially identify the simplest sequence of messages, later identify
more complex sequences with error and unusual conditions.

TV Controller Case Study - The following is the Message Scenario for
the TV Controller Case Study.

Message Scenario for TurnOn Event
(Uses C++ Message Form)

Sequ- Sender Receiver Object. Output
ence Object Invoked Operation Parameter

(Input Parameter Class & Object)
(Class & Object)

1 TVButtonsDevice aTVButtonsInterface.TurnOn() --
2 aTVButtonsInterface aTVController.TurnOn(); --
3 aTVController aVolume.GetVolume (); --
4 aVolume aStorageDeviceInterface. int
aVolumeSetting

GetVolume ();

5 aVolume aSpeakerInterface.
SetVolume (int aVolumeSetting); --

6 aTVController aChannel.GetVolume (); --
7 aChannel aStorageDeviceInterface.; int
aChannelSetting

GetChannel ()
8 aChannel aChannelDeviceInterface.

SetChannel (int aChannelSetting); --

Creating the State Diagram

Description - The State Diagram (State Transition Diagram) specifies
stimulus response logic for a system or class. It specifies the pattern
of event messages, conditions, actions, and states. Definitions and
steps are presented in the previous section on "Creating the State
Diagram".

TV Controller Case Study - The following is the State Diagram for
the TV Controller Case Study. The applicable StateMaker diagram is
tvstate.sm.

Evaluating the Products in the Dynamic Model

The following are various criteria and questions to ask in evaluating the
adequacy of the products in the object model.

- Have we identified the sequence of messages for each event
message possibly leading to a response message to an interacting
system?

- Are the products in the dynamic model consistent with the products
describing the system environment. For example have we modeled all
event messages shown on the system event list (messages)?

- Have we modeled state based stimulus response behavior with a
state diagram?

- Does the prototype correctly implement the state based stimulus
response behavior?

Modeling Classes - The Functional Model

Introduction

To rapidly model and prototype O-O systems, it is important to specify

the rules and formulas for the correct transformation of data. In the
functional model we identify those rules and formulas in terms of
tranformation rules and correctness assertions. We update the class
specification and update the prototype. The purpose of this section is
to present a "how to" identify transformation rules and correctness
assertions for classes in a system. The key documentation product is
the class specification and prototype.

Updating the Class Specifications with Transformations and
Correctness Assertions

Description - The class specification provides text information about
the class. Class information should include transformations and
correctness assertions and other information necessary for
programming or documentation. The major question are "What are the
transformations in the system?" "How do we ensure correct
transformations?". We are interested in formulas, mathematical
equations, rules, and correctness assertions that define or limit how we
correctly change data values. A correctness assertion is any rule or
expression, e.g., operation precondition, operation postcondition, and
invariant.

Steps to Create Class Specifications with Transformations and
Correctness Assertions

1. Start with the class diagram, data dictionary listing classes, and
class specifications.

2. For every operation that changes a data value in an attribute or
associated object, ask the questions "What is the rule, expression,
formula or equation to correctly change the data value?" "What are
the preconditions to ensure the correct transformation of the data
value?" What are the postconditons to check that the correct
transformation of the data value occurred?" "What are the invariants
that must be satisfied at all times?" "What are the exceptions that are
raised if an operation cannot correctly transform a data value?"

3. Update each class specification with transformation and correctness
assertions.

4. Update the prototype with transformation rules and correctness
assertions.

TV Controller Case Study - The following is a portion of the Volume
and Channel Class Specifications with transformation and correctness

assertion information.

Volume Class
void increment ()

transformation - volumeSetting = volumeSetting + 1

void decrement ()
transformation - volumeSetting = volumeSetting - 1

Channel Class
void increment ()

transformation - channelSetting = channelSetting + 1
void decrement ()

transformation - channelSetting = channelSetting - 1

Evaluating the Products in the Functional Model

The following are various criteria and questions to ask in evaluating the
adequacy of the products in the functional model.

- Have we specified all transactions with rules, expressions, equations,
etc?

- Have we specified adequate correctness assertions, e.g.
preconditions, postconditions, and invariants to ensure the correct
transformation of data?

- Does the prototype implement all transformations and correctness
assertions?

Developing the S/W Prototype

Description and Purpose - Our objective is to quickly create a
software prototype to get user feedback on requirements, to test the
interface elements (menu, dialog boxes, etc), and to test the
architecture of classes, message passing, and major decision logic.

The initial prototype is an interface prototype using a screen painter or
interface builder (Borland C++ Resource Workshop). The interface
prototype tests the interface classes, objects and messages with no
internal application logic or calculations. The following are several
guidelines to create the interface prototype.
- Create a menu with a menu selection or radio button for each event
message,
- Create a dialog box or text IO for problem domain objects,

- Demonstrate so a user can make menu selections and input and
output information.

A C++ prototype may be created using With Class, StateMaker, and
Borland C++. This prototype should test all classes, objects, and
messages with major decision logic from decision tables, state
transition diagrams, and if..then rules without extensive algorithmic
coding. This prototype may be iteratively updated with additional
messages, transformations, and correctness assertions.

Steps to Create the S/W Prototype - The following are steps to
create the S/W prototype.

1. Use a screen painter or interface builder (Borland C++ Resource
Workshop) to create an interface prototype to verify events
represented as menu selections and buttons and to verify problem
domain objects represented as text boxes and forms.

2. Generate C++ source code from the class diagram using With
Class.

3. Generate C++ source code from the state diagrams using
StateMaker.

4. Update the C++ source code as follows:
- integrate C++ source code from the state diagrams,
- add messages from the message scenarios and class diagrams with
messages,
- add transformations and correctness assertions from class
specifications.

5. In Borland C++, create the project and compile, link, and run.

Summary

In this tutorial we have provided a brief introduction to using With
Class and StateMaker CASE tools. We have used a hybrid O-O
methodology based upon Rumbaugh's OMT. We have provided a brief
"system requirements statement to code" case study "The TV
Controller" to show example diagrams and to list the steps to create
diagrams and reports. We have listed the steps to automatically
generate C++ source code.

References

Booch, Grady "Object Oriented Design with Applications" The
Benjamin/Cummings Publishing Co

Coad and Yourdon "Object Oriented Analysis", "Object Oriented
Design", and "Object Oriented Programming"

Felsinger, Richard "Object Oriented Analysis and Design" Seminar
Course Notes

Harel, David "Science of Computer Programming"

Jacobson, Christerson, Jonsson, Overgaard "Object-Oriented Software
Engineering A Use Case Driven Approach"

Shlaer and Mellor "Object Lifecycles Modeling the World in States"

"StateMaker User Diagram" MicroGold Software, Inc
Rumbaugh, Blaha, Premerlani, Eddy, Lorrensen "Object Oriented
Modeling and Design" Prentice Hall

"With Class User's Guide" MicroGold Software, Inc.

Glossary of Key Terms
Action - any response to an event message. Actions may be updating
an attribute, sending a message, or similar action.

Aggregation (Strong Association) - "Part of" or "bill of material"
connection between an assembly and parts that has special semantics
for "part of" (transitivity, antisymmetric, and propagation) and for the
creation, copy, and deletion of an assembly and parts

Assertion - a rule or expression for correctness, e.g., a data value
must always be greater than zero.

Association - A link, connection, or mapping between two or more
objects, e.g., "has a", "knows about", "part of", or "bill of materials".

Atomic Class - An atomic class is a primitive data type whose objects
are not logically decomposable, e.g., character, boolean, integer, and
floating point types.

Attribute - A characteristic or property of an object. An attribute has
a name (ID), class or type, and a value.

Class - A definition for one or more objects that have common

attributes, common behavior, common relationships, and common
semantics. In S/W a module that encapsulates attributes, operations,
exceptions, and relationships.
Cohesion - the degree of internal relatedness of elements within a
larger, more complex entity/

Collection Class - A collection class defines an object that holds other
objects called elements. Elements may be added or removed from the
collection object. Elements are stored in the collection object with an
index. Sample collection classes are array, sets, bags, lists, stacks,
queues, rings, trees, etc.

Composite Class - A composite class defines an object that has
attributes and associated/part objects.

Condition - a guard or boolean that may affect the stimulus response
logic. A condition is a guard or boolean expression signifying OK or
NOTOK that are used in IF Condition = True THEN DoSomeAction.
Examples of conditions in a Temperature Class might be "temperature
high" and "temperature OK".

Connection or Relationship - A link or connection between classes
or objects i.e. association "has a" or "part of", message "calls", and
generalization specialization "is a" or "type of".

Control Class - defines time oriented or state based stimulus
response behavior including rules and logic to respond to events.

Coupling - the degree of interconnectivity, interdependence, joining
and linking of entities.

Dynamic Binding - Late binding (association) of an object name (ID)
with an object and its class at run time. The object name may later be
associated with a different object and its class. Also, the run time look-
up of the correct version of a polymorphic operation.

Entity Class - manages and computes application information. An
entity class is independent of protocol details of other interacting
systems.

Event - an occurrence or physical phenomenon in the external
environment that occurs ar a point in time such as a user pressing a
button to which one or more systems must respond. For finite state
machines, an event is any stimulus to an object that results in some
action and that may result in a transition to a new state.

Event Message - a message from a H/W or S/W system to the system
being modeled. An event message requests some action be taken.

Exception - An abnormal, unusual error condition that may result in
an operation performing incorrectly. An exception check, e.g., a
precondition or postcondition check, is an expression that detects the
presence of an exception and invokes an exception handler. An
exception handler takes some action, e.g., attempts correct the
abnormal condition or notify a user.

Finite State Machine - an entity that has state based stimulus
response behavior in which there may be different actions from the
same event depending upon the state of the entity.

Generalization Specialization - An "is a" or "type of" connection
between superclasses and subclasses.

Generic Parameterized Class (Template) - a class that can be
modified with parameters to contain or operate on objects of the
parameter class, e.g., a parameterized Stack Class.

Inheritance - The capability of a subclass receive for use attributes,
operations, and exceptions defined in a superclass.

Initializer Class - a top level class that initializes the system. It
becomes the "main" in a C++ program.

Interface Class - defines communications with another interacting
system. An interface class handles event messages and/or response
messages. An interface class isolates protocol details to communicate
with other interacting systems.

Invariant - a general rule or expression that must be satisfied at all
times by all applicable operations.

Message - A call to an object of a class to invoke one of its operations.
A one way message is in one direction only from a requester to a
server. A two way message is a peer to peer message objects both
send and receive messages from each other, i.e. each can initiate a
message to each other.

Object Oriented Modeling - A term referring to the modeling phases
of object oriented S/W development including analysis, design, and
prototyping. It does not include implementation, productization,

testing, etc..

Object Oriented Design - A software development methodology (set
of steps) to build systems consisting of classes and objects.

Object - A thing; an instance of a class. An entity that has state
(retained information), has behavior (responds to messages), sends
and/or receives messages from other objects, and has relationships
with other objects. In S/W a variable defined by a class.

Object Oriented Programming - A method to develop software
using inheritance, dynamic binding, and polymorphism with object
oriented languages such as Smalltalk, Actor, C++, Eiffel, Object Pascal,
etc.

Operation precondition - a rule or expression that must be satisfied
before the execution of an operation for correct results.

Operation postcondition - a rule or expression that is satisfied upon
the correct execution of an operation.

Operation - An action, service, procedure, function that performs
some action in response to a message.

Pattern - Two or more entities with a well defined purpose, behavior,
connections, and structure, e.g., a tree pattern.

Polymorphism (one name many forms) - An object name may refer to
objects of different classes. An operation name may refer to different
implementations.

Problem Domain Object - an object that exists in the system
environment that is passed in a message to or from the system.

Response Message - a message from the system to other H/W and
S/W systems. A response message implements some action requested
in an event message.

State represents a mode of behavior that has a unique combination of
event messages, conditions, actions, and next state. A state is static,
i.e. waiting for an event message to arrive. While in a state, a defined
set of rules, laws, and policies apply. A state is like a manager or
coordinator that knows how to respond to each event message
according to his rules, laws, and procedures.

Static Binding - The association of an object name (ID) with an object
and its class at compile time. The object name (ID) is permanently
bound to the object and its class for the life of the program.

Subclass - A refined, more specific class of a superclass. It defines
more specific, attributes, operations, and exceptions.

Subsystem - a component of a larger system environment. A
subsystem has components, e.g., smaller subsystems or classes that
are connected together.

Subtype class - defines a specialized class. An object of the subtype
may be substituted for an object of the supertype. Objects of
supertype and subtype respond to the same messages.

Superclass - A general class that defines the most general attributes,
operations, and exceptions which may be inherited by subclasses.

Supertype class - defines a general class that has the same
operations (same protocol) as the specialized subtype classes.

System Environment - a complex system that has other systems
(subsystems) as components.

System - a general term for a complex entity that can be treated as a
unit and that has simpler components that work together to perform a
function. The system is the the S/W system to be developed. The
system which is the center of focus and which becomes a single
program (.EXE file). The system generally consists of 10 to 100 classes
as a very rough order of magnitude.

Transformation - a description of how a data value may be correctly
changed in a formula, expression, table, etc.

Transition - a unique pattern of an event message, conditions,
actions, and a destination state. For each state identify applicable
event messages. Then for each event message identify the applicable
conditions, actions, and the destination state.

Weak Association - "Has a" or "knows about" connection between
associated objects that does not have aggregation semantics.

