
Implementing an Edit button in a
Database Front-End Applications using Visual Basic 3.0

by Barth Riley, # 72677,3172

I am currently writing a client and volunteer database application in Visual
Basic 3.0. Recently, I wanted to implement an Edit button on my data-entry
forms. Pressing the Edit button would allow the user to modify the data fields;
prior to that point (and after the user saves the current record) the information on
the screen would become read-only. This presented a problems, since Visual
Basic offered no direct support for a read-only facility (e.g., viaa a ReadONly
property). Setting the Enabled property to False was generally not satisfactory,
since I wanted the user to be able to clearly see the contents of each field.
Though setting the TabStop property to False prevents user access to a control
via the Tab key, it does not prevent access through clicking on the control with
the mouse, or pressing an access key. And lastly, despite indications to the
contrary, setting the MultiLine property of a TextBox to True and the Enabled
property to False does not achieve a read-only display of a TextBox's contents; it
only made the contents of the text box invisible.

Implementing read-only controls required some doing, including a perusel
of the Windows API. I also discovered that different types of controls require
different methods to prevent the user from editing the contents of a control. The
following details the methods I use to create read-only controls. Some of these
techniques are fairly straightforward; others require brute force. I have also
included a small demo project written in Visual Basic 3.0 to demonstrate these
ideas. I hope you will find this helpful!

Text Boexes:

Preventing user input in a text box is straightforward. Using a call to the
Windows API function SendMessage, the following code fragment demonstrates
the use of this function:

Declare Function SendMessage Lib "User" (Byval hWnd As integer,--
Byval Msg As Integer, wParam as Integer, lParam As Any) --
As Integer

Sub SetTBReadOnly(tbCtl As TextBox, ByVal fReadOnly As Integer)
 Const WM_USER = &H400
 Const EM_SETREADONLY = WM_USER + 31
 Dim intRet As Integer

 intRet = SendMessage(tbCtl.hWnd, EM_SETREADONLY, fReadOnly, 0&)

End Sub

Thus, for example:

SetTBReadOnly Text1, True

would set the textbox Text1 to read-only mode.

Once a text box has been set to read-only mode, the control can still
accept the focus (i.e., text will be highlighted when double-clicked) and respond
to clicks and key presses, even though the contents of the text box remain
unchanged. This can be advantageous if you wish to notify the user that s/he
cannot edit the contents of the text box until the Edit button is pressed. Another
advantage of this approach is that a text box can be activated/deactivated with
the same subroutine. Unfortunately, this method can only be used with text
boxes; there are no corollaries to the EM_READONLY message for other
controls, including combo boxes, masked edit boxes, option buttons, and check
boxes.

Masked Edit Boxes:

In my opinion, the easiest way to disable user input with a masked edit
control (short of setting the Enabled property to False) is to set the Mask property
to the contents of that field. For example, the following code fragment shows
how a bound masked edit control could be made read-only:

Sub Data1_Validate(Action As Integer, Save As Integer)
' Clear the Mask to allow the value of the next
' record to be visible
MaskEdit1.Mask=""

End Sub

Sub Data1_Reposition()
 If Not fEdit Then ' Disable user-input
 MaskEdit1.PromptInclude = True
 MaskEdit1.Mask = MaskEdit1.Text
 End If
End Sub

The Validate event handler for the data control clears the Mask property
so that the contents of the control can be updated and visible. Once the new
value for MaskEdit1 has been set, the Data1_Reposition subroutine will be
triggered. The PromptInclude property is set to True so that the contents of the
field will be visible. The Mask property is then set to the Text property. The Mask
property is completely filled with literal characters, which prohibits the user from
entering additional characters. Note that the fEdit flag indicates if editing
operations are allowed. This approach works particularly well when the length of
the mask is constant, such as with a social security number (e.g., "###-##-####")

or telephone number (e.g., "(###) ###-####"). With fields that contain variable-
length data, such as numbers, you may need to experiment with different Mask
values and set the PromptInclude property to False in order to display the proper
value during Edit mode. To set a masked edit control back to edit mode, do the
following:

Sub cmdEditBtn_Click()
Dim szMask As String

szMask = MaskEdiit1.Mask
MaskEdit1.Mask = ""
MaskEdit1.Text = szMask
MaskEdit1.Mask = "##/##/##" ' in the case of a date field

End Sub

This subroutine simply saves the edit mask (the contents of the control),
clears the edit mask, sets the Text property to the previous Mask property
(szMask) and sets the Mask property again, this time to one which will accept
user input.

Combo Boxes:

Exactly how one prevents the user from changing the contents of a
combo box may depend in part on the Style of the combo box control. If the style
is ComboList (2) setting the TabStop and Enabled properties to False will disable
user input without graying the text of the current item. Because the combo box is
disabled, however, no user events will be triggered when the user clicks on the
control or presses a key. This may be undesirable if you wish to remind the user
to press the Edit button to enable editing.

Alternately, if the style of the combo box is DropDown Combo (0) or
Simple (1), or if you wish to respond to user events, a "brute force" approach is
necessary. This approach requires code to handle the DropDown, KeyDown,
and KeyPress events of the combo box, as follows:

Sub Combo1_DropDown()
If Not fEdit Then

' Temporarily disable the control
Combo1.Enabled = False
Combo1.Enabled = True

End If
End Sub

Sub Combo1_KeyDown (KeyCode As Integer)
If Not fEdit Then KeyCode = 0

End Sub

Sub Combo1_KeyPress(KeyAscii As Integer)
If Not fEdit Then KeyAscii = 0

End Sub

The first procedure (Combo1_DropDown) applies only to combo boxes
which have a drop down list. When not in editing mode, (fEdit is False) the
routine temporarily disables the combo box which effectively squelches the drop
down operation (Though this causes a slight flicker within the combo box, the
text remains visible; clever, eh?). The KeyDown and KeyPress event handlers
prevent the user from scrolling through the list via the arrow keys and from typing
a new value in the editing portion of the combo box. The fEdit flag should be
declared as a form-level variable.

Check Boxes and Option Buttons:

There is no good way to prevent a user from changing the value of a
check box or option button group. The only way I have found is to set the value
of a check box or option button to its original value in response to a Click event.
If anyone has a better approach, please let me know!

The following code demonstrates my method:

Sub Check1_Click()
Static OldValue As Integer

If fEdit or fLoading Then
 OldValue = Check1.Value
Else
 Beep

 Check1.Value = OldValue
End If

End Sub

Because you are resetting the value of the control after the fact, the value
will momentarily change when the user clicks on the control. You could write
code to temporarily disable the control during a MouseDown event (similar to the
code I wrote to prevent a combo box from dropping down). Unfortunately, this
strategy is not reliable and does not prevent the user from changing the value of
check box or option button by double clicking the mouse. Finally, you could
disable the control or control group altogether. Alternatives anyone?

Sample Code:

I have included in the ZIP file a sample project demonstrating the use of
an Edit button and read-only controls. The project (EDITDATA.MAK) includes
one form (EMPLOYEE.FRM) and one module (EDITDATA.BAS). Since the

project includes masked edit control, it requires the Professional edition of Visual
Basic. If you do not have the Professional edition, simply delete all references to
the masked edit controls. The program references a database file called
EMPLOYEE.MDB which is located in the C:\VB directory. Therefore the
database files (EMPLOYEE.MDB and EMPLOYEE.LDB) should reside in this
directory.

The program code is copyrighted. You are free to distribute the code in its
original form only. If any of the code is incorporated in other programs,
references to its author (Barth Riley) should be included with the ported code.

I hope you have found these notes and sample code to be helpful. If you
have questions or comments, please drop me a line. My CompuServe number
is 72677,3172. Happy coding!

