
             

A Data-Aware Grid for Visual Basic 3.0 Data Access
This is a demo version of TrueGrid.    We believe we've created the easiest and most powerful grid
available and appreciate your interest in this demo.    It is identical in features and functionality to the full
TrueGrid product, except that it will only operate in Visual Basic design mode.    We want to make it easy
for you to get a good idea of what TrueGrid offers, how it operates, and how flexible it is.   

We've put together a demo program which runs during design-time.    The demo program is called
TGDEMO.MAK.    To run the demo, you should:

1. Run Visual Basic.

2. Open the TGDEMO.MAK project.

3. Run the application.

The TGDEMO program is self-explanatory and has a window called the Navigator which describes each
of the demos and how to operate them.    Running TGDEMO is the quickest way to understand how
TrueGrid operates, but you can also develop your own design-time applications using the demo.    We've
provided documentation with the demo, so you can understand how the grid operates.

If you like TrueGrid, and want one for your very own, you can order one directly from Apex at 800-858-
APEX.    You can also fax in your order at 412-681-4384.    For other questions and information, call Apex
at 412-681-4343.    We would be glad to provide you with some assistance with the demo, but can't
provide the level of support we offer for product owners.    You can contact us via CompuServe (Brian
Hess 71053,1062) or Internet (truegrid@apexsc.com).

If you want, you can begin developing using the demo version of TrueGrid, since it has the same product
features as the production version.    However, when you purchase a production TrueGrid, you will need to
recreate any TrueGrid controls you were using in the demo and reset the design-time properties they way
they were originally.

Here's the table of contents for the on-line TrueGrid documentation:
    Overview of TrueGrid
    TrueGrid Pro Features
    TrueGrid Properties and Events, Grouped by Functional Area
    Layout Editor Reference
    Contacting Apex

This is the "Gunsmoke" Version (2.1) of TrueGrid.
Copyright (c) Apex Software Corporation, 1994.    All rights reserved.

Contacting Apex
If you have any problems using TrueGrid, or encounter problems which you believe may be software
bugs, please contact us and we will do our best to assist you in solving your problem.    For technical
questions and support, please use CompuServe if possible.    We can respond more quickly and
effectively on CompuServe.    If you don't have a CompuServe account, please use fax or telephone as
listed below.

Orders: 800-858-APEX

CompuServe: 71053,1062 (Tech Support)

By phone: 412-681-4738

By mail: Apex Software Corporation
4516 Henry Street
Pittsburgh, PA    15213

By fax: 412-681-4384

Our office hours are 9 a.m. - 6 p.m. (EST)

 Overview
TrueGrid is a bound database grid for Visual Basic 3.0.    Using technology derived from our Agility
database product, TrueGrid manages the interface with the database completely, freeing you to
concentrate on important application-specific tasks.

TrueGrid is very easy to use, requiring no more work than simply dropping the grid on a form and setting
the DataSource property---that's all!    You don't need to write a single line of code to get the grid up and
running, making it ideal for an instant data browser or data display window.

This new version of TrueGrid also adds significant power to the original design.    Full Excel-like split
capability, customizable fonts and colors, calculated and unbound columns, and drag-and-drop features
are just some of the things which have been added.    Yet, TrueGrid is still very easy to use, and the new
features are there only if you want to use them.

The grid works with all formats that Visual Basic recognizes.    Any database that you can use with Visual
Basic you can use with the grid.    See Summary of Features for an overview of some of TrueGrid's
features.

We've spent a lot of time trying to make TrueGrid the inexpensive alternative for Visual Basic data access
users.    We hope you enjoy using it.    If you need technical assistance, please call and talk to us.    We'd
be glad to help.

The How to Use TrueGrid (not included) section provides detailed examples and instructions on how to
use the grid.    If you're already very familiar with Visual Basic and other custom controls, you may want to
quickly peruse the TrueGrid Properties and Events section.

 TrueGrid Pro Features
The following is a summary of the major features of TrueGrid Pro:

1. Easy To Use:    TrueGrid's features are familiar, intuitive, and easy to use.    In most cases, they
require no code.

2. Drop and Go:    Simply drop TrueGrid on a Visual Basic form, set the DataSource property, and
instantly you have a fully functional database-aware browse table - without writing a single line of
code!

3. Database Formats:    Supports all database formats Visual Basic recognizes.
4. No Size Limit:    Automatically handles databases of any size - programmers do not need to

adjust any virtual memory settings.    There is no delay or additional memory overhead for large
databases.

5. Fast and Efficient:    Only data required for display will be retrieved, TrueGrid is simply the
fastest grid in the market.

6. Bound Controls:    Automatically works with other Visual Basic bound controls.    All Data Control
operations, data validation events, and error trapping are supported seamlessly.

7. Editing and Data Validation:    In-cell editing with automatic update and data validation events.   
8. DropDown Text Edit:    A multi-line text control will dropdown automatically when editing large

data.

9. Configurability:    Most properties are configurable at both design time and by code.    In addition,
splits, column width and column order are configurable interactively by end-users at run time.   

10. Layout Editor:    Allows programmers to visually and interactively configure various column and
split properties at design time.    Features such as locked columns are automated.    TrueGrid is
the only grid that allows the programmer to visually configure the appearance of the grid at design
time.

11. Tab and Arrow Keys:    Complete control of the use of the tab and arrow keys to navigate
through the cells of the grid or to move focus to another control.

12. AddNew:    Allow end-users to enter a new record at the bottom of the grid with automatic update
and error trapping.

13. Select and Mark:    Select and mark non-contiguous records by mouse clicks, or by code.   
14. Callback: TrueGrid can be used with data managed by programmers; it doesn't have to be bound

to a Data Control.   

15. EditMask:    The EditMask property fully supports the Visual Basic Format$ string.   
16. Cross-Form Binding:    TrueGrid Pro can be bound to a Visual Basic Data Control in another

form.

17. Splits:    Splits a grid into any number of independent grids.    The splits can scroll simultaneously
or independently, or be locked from scrolling.    An Excel-like split bar allows end-users to create
splits interactively.    Programmer can decide how much interactive control the end-users have.

18. Per-Cell Color and Font:    Control the color and font style of each individual cell based on cell
contents and cell status.    If cell contents or status are updated, the color and font will be adjusted
automatically.   

19. Indentation: Control per-cell text indentation, ideal for building outlines and subtitles in a grid
column.   

20. Multi-Line Row and Heading:    Heading and row heights are independently controlled.   
21. Drop Down Combo or List Box:    Easy to program features to drop down a combo or list box, or

even any Visual Basic control from a cell.

22. Drag and Drop:    Easy to program features to allow drag and drop of data to and from other
controls.   

23. Calculated Columns:    Create columns to display calculated expressions simply by entering a
Visual Basic expression in a ColumnExpression property.    No code required.    Visual Basic
constants (e.g., null, True, False, date constants, etc.), operators, field names, functions (over 35
Visual Basic functions are supported), and even other calculated columns are supported.   
TrueGrid automatically resolves all dependencies and calculation orders.

24. In-Cell Graphic:    You can display graphical images in a cell, not just textual information.   
25. In-Cell Combo Box and Radio-Button:    For easy data entry and inspection; eliminate end-user

typing and error.

26. Value List:    Values from bound or calculated columns can be translated to any textual strings or
pictures for display purposes.    For example, (0, 1) may be displayed as (Yes, No), country
names may be displayed as bitmaps of their respective flags.    Value lists can be defined at
design time using the Layout Editor - no code necessary!

27. Column Summaries:    Built-in properties to support column summaries such as column sum.   
An event will be fired when the column sum changes.

28. Built-in Crystal Reports support:    You can perfrom ad-hoc SQL queries, display and edit the
resultingt (dynaset) data on TrueGrid, configure the grid (hide, resize or rearrange field columns)
at runtime or design time, and generate reports on the fly.

28. Complete Programmer Control:    Programmer can override all default and inherited data and
attributes and dictate what data, color, and font styles the grid should display in a cell using the
UnboundFetch and FetchAttribute events.

29. Royalty Free:    TRUEGRID.VBX can be distributed free with your runtime applications.   
30. On-Line Help:    Context sensitive help with detailed overview, property and event references,

and plenty of examples.   

31. Samples:    TrueGrid Pro comes with plenty of sample applications to illustrate product features.   
They also provide useful tips and tricks.

The Layout Editor Dialog
Click on a graphic element to display information about that element.

Double-clicking on a column in the Layout Editor will bring up the Properties pop-up.

For instructions on how to use the Layout Editor click "Describe".   

The Layout Editor Dialog

The Layout Editor is a tool you can use at design-time to configure many of the TrueGrid properties and
gives you a WYSIWYG view of how TrueGrid will appear at runtime.    You run the Layout Editor by
clicking on the Layout property in the Visual Basic properties window, or by clicking on a TrueGrid control
with the right mouse button.

The Layout Editor provides complete design-time control over the appearance of TrueGrid and allows you
to control the following aspects of the grid:

1. Column Configuration.    You can change the heading, fieldname, format mask, expression,
column text fonts and heading fonts, column and heading justification, editability, and visibility of
columns.

2. Locked Columns.    You can lock columns at the left margin (as shown above).
3. Splits.    You can control the size and position of splits, as well as customize the attributes of

columns within each split.    The ability to control splits is available only if you start the Layout
Editor while SplitLocked is False.    Normally, it defaults to True, so the split capabilities are
disabled.

4. Value Lists.    Using the Field Values Dialog you can design several types of values lists,
including the ability to translate values.    You can also have the data displayed in several formats
such as in a dropdown combo, radio buttons, or allowing the user to cycle through available
choices.

Moving and Resizing Columns
If columns are currently displayed in the layout editor, you can simply move them or resize them to adjust
their appearance.

To move a column, simply grab the column by its heading using the mouse, then drag the column to the
left or right.

To resize a column, place the mouse over the vertical separator line between columns and adjust the
column size by dragging the line to the left or right.    Columns are always adjusted so that they contain an
integral character width, so exact placement may not be possible.

If you resize a column to zero-width, the column is made invisible.    You can still access the column's
properties, but you must use the Column Properties Dialog to do so.

Changing Basic Column Properties
If you double-click over a column, or if you click on a column with the right mouse button, a pop-up
appears which allows you change basic column properties as well as insert and delete columns:

The popup will look like this:

Each of the options is described below:

Left Justify, Right Justify, and Center allow you to select the justification for the column.    Normally, this
affects the justification for both the column text and the heading.    However, if the heading justification
was changed in the Column Properties Dialog, then this option affects only the text justification of the
column.

Editable allows you to change the editability of the column.    It will be checked if the column is currently
editalbe, and unchecked if it is not.

Selecting Heading Text... will allow you to change the heading text of the column.    The cursor will be
moved to the heading area of the column and you can change the text displayed there.

Field Name... allows you to change the field name associated with bound columns.    The field name is
entered in the heading area, although it will not be displayed there when you have finished changing it.

Selecting Edit Mask... will allow you to enter a Visual Basic Format String for the column.    Like the field
name, you enter the edit mask in the heading region, although it will not be displayed when you are done
entering it.

Insert Column will insert a new column to the left of the current column.    The newly inserted column will
be a bound column, but no field name will be associated with the column initially.

Delete Column will physically delete the column from the layout.    If you inadvertently delete a column,
you need to exit the layout editor using the Discard option of the system menu.    This will discard all
changes you made during the layout editor session.    When you reenter the layout editor, the column
layout will be the same as it was on the original form.

The Properties... option will display the Column Properties Dialog and position you to the current column.
This dialog is a more complete way to edit most of the column characteristics.

Clicking the Value List... option will bring up the Field Values Dialog and allow you to create a value list
for the current column.    This dialog allows you to create a value list interatively at design time.

Working With Splits in the Layout Editor
By default, TrueGrid's properties are set so that splits cannot be created directly in the layout editor.    For
many people, this behavior is ideal, since the "Locked at Left" option of the Column Properties Dialog will
take care of creating a split automatically for locked columns.

However, advanced users may wish to use the split capabilities for more sophisticated operations.    In
such cases, all of the capabilities of splits are available at design time.

To enable splits in the layout editor, you must be sure that the SplitLocked property is set to False, which
unlocks the displayed split.    Now, upon entering the layout editor, a small split create box will appear at
the leftmost extent of the horizontal scrollbar.    You can drag the box interactively to create a new split.

Once splits exist in the layout editor, you can choose to have changes you make to columns be applied
only to the column within the currently selected split.    To do so, you need to make sure SplitPropsGlobal
is set to False, which allows you to have access to split-specific behavior.    Although most properties can
be applied on a per-split basis, some properties (FieldName, EditMask, Bound/Unbound/Calculated
column state) are global properties of a column.    The Column Properties Dialog will automatically
highlight column-global properties in blue so you know which settings apply to the column globally, and
which apply on a per-split basis.

Layout Editor Caption
The caption indicates the name of the control (specified by the Name property) as well as the legend "Layout Editor"
so you know which control you are editing and that you are presently in the layout editor.    You can reposition the
layout editor on your screen by holding the mouse down over the caption bar.

Inactive Headings
Only one split (section of the layout) is active at one time.    The inactive headings are shown using the
InactiveForeColor and InactiveBackColor to differentiate them from the active split.    You can customize these colors
on a per-split basis by leaving the layout editor, assuring that SplitPropsGlobal is False, then setting the headings
while SplitIndex points to the proper split number.

Active Split Headings
Only one split (section of the layout) is active at one time.    The active split is shown using the HeadBackColor and
HeadForeColor settings for the grid.    You can customize these colors on a per-split basis by leaving the layout editor,
assuring that SplitPropsGlobal is False, then setting the headings while SplitIndex points to the proper split number.

Locked Columns
Locked columns are always at the left, and are really just a special type of split.    Locked columns are easily created
by using the Locked at Left checkbox in the Column Properties dialog and TrueGrid automatically sets up the split
properties for you.    If you master the proper split properties, you can create locked columns (or variations) yourself.

Column Within a Split
The columns within a split can be modified by double-clicking on the column (or by using the right mouse button).   
This split is inactive (note the heading color).    You can move the columns (by holding down the mouse on their
heading), or adjust their size by moving the line between columns.    When you attempt to edit a column within a split,
the Layout Editor automatically makes the split the active split.    You can simply click on a split to make it the active
split if you want.    If SplitPropsGlobal is False, then each split has its own column settings; otherwise, when you
change column settings, they are changed for all splits.

Column Within a Split
The columns within a split can be modified by double-clicking on the column (or by using the right mouse button).   
This split is the active split (note the heading color).    You can move the columns (by holding down the mouse on their
heading), or adjust their size by moving the line between columns.    When you attempt to edit a column within a split,
the Layout Editor automatically makes the split the active split.    You can simply click on a split to make it the active
split if you want.    If SplitPropsGlobal is False, then each split has its own column settings; otherwise, when you
change column settings, they are changed for all splits.

Horizontal Scroll Bar
The horizontal scroll bar allows you to scroll columns from left to right to examine them, or change their size.    Each
split has its own horizontal scrollbar and the position can be different for each split.    The position of the scrollbars in
the layout editor is not saved.    When you run your application, all of the splits will be positioned to their leftmost
column.

Vertical Scrollbar
Normally, there is only one vertical scrollbar (see SplitGroup for a discussion of multiple vertical scrolliing).    If you
have sample data displayed in the cells (shown here), then the vertical scrollbar allows you to scroll through the
sample data; otherwise, the scrollbar does nothing.    The scrollbar won't be shown if you have disabled it using the
VertScrollbar property.

Scrollbar Placeholder
Locked columns have no horizontal scrollbar, and instead display a grey area where the scrollbar would be.    If the
grid itself has no horizontal scrollbars at all (due to the setting of HorzScrollbar for example), then this grey area will
be omitted as well.

"New Split" Box
The small black box at the leftmost side of the leftmost split (locked columns don't have them) can be used to create
new splits interactively.    All you need to do is drag the new split box to the right and a new split will be created.    The
new split inherits all of the column settings from the split immediately to its right.    Unless you have SplitLocked set to
False, you won't be able to create splits in the Layout Editor.    Once splits are created, you can lock them using the
SplitLocked property so the user can't change them.

"Resize Split" Box
Between splits, the small black box allows you to move the boundary between splits.    Just drag it to the left or right to
resize the split, or all the way to the left or right boundary to delete a split.    Unless you have SplitLocked set to False,
you won't be able to resize a split.    Once you have set the split sizes, however, you can change SplitLocked so that
the user can no longer adjust them.

System Menu

The system menu contains several options for controlling the overall Layout editor, including options for displaying
sample data, clearing the grid, and discarding changes before returning to Visual Basic.

"Move" Option
The Move option allows you to move the layout editor anywhere on your screen.    You can also move the layout
editor by grabbing the caption area.

"Close" Option
The Close option will close the layout editor, save all changes you have made to the layout, and return to Visual
Basic.

"Discard" Option
Choosing the Discard option will ignore any changes you have made during this Layout Editor session and return to
the Visual Basic design environment.    The original layout will remain intact in the TrueGrid control on your form.

"Clear Fields" Option
Selecting Clear Fields will remove all splits and columns, making the current layout completely blank.    If you then
choose "Close", all layout information will be deleted and the grid will return to its initial state with no design-time
layout at all.    If you inadvertently choose "Clear Fields", then just choose Discard and return to Visual Basic; the
original control layout will remain intact.

"Show Sample Data" Option
This option will toggle the layout editor display of sample data.    The sample data is useful for showing how text
formatting within columns will look.    It also displays the row and column numbers in the columns, which is useful for
knowing exactly what the column indexes are for use in your code.

"Layout Editor Help" Option
This option will bring up the Layout Editor Help screen.

Column Properties Dialog
Click on a graphic element to display information about that element.

For instructions on how to use the Column Properties Dialog click "Describe".   

Column Properties Dialog

Introduction to the Column Properties Dialog
The column properties dialog was added in TrueGrid 2.0 to make it easier to change many of the column
properties.    You invoke the column properties dialog by bringing up the Properties Pop-up in the Layout
Editor.    The column you clicked on to bring up the properties popup will be the initial column displayed in
this dialog.

Any changes you make to the current column can be discarded by clicking Cancel (which returns you to
the Layout Editor).    Clicking OK will save the changes you made.    You can move from column to column
using the scrollbar at the left, and insert new columns with New as well as delete existing columns with
Delete.    The Update button will update the changes to the current column without leaving the properties
dialog.

Once changes are made to a column, and updated, the changes are immediately reflected in the layout
grid.    If you make changes to properties which affect the appearance of text in columns, you may want to
be sure you select Show Sample Data from the system menu of the Layout Editor.    TrueGrid will fill the
grid with sample data so you can see the effect of your changes.

Properties Affected by the Dialog
The column properties dialog controls the following properties:
ColumnExpression Corresponds to the expression typed in the Expression area of the dialog

box.
ColumnField Choosing a fieldname in the Field Name combo, or typing one in, changes

this property.
ColumnFontStyle Clicking on the text Bold, Underline, or Italic checkboxes changes this

property from -1 (meaning the text font is inherited from the grid) to the
appropriate font style.

ColumnHeadFontStyle Clicking on the heading Bold, Underline, or Italic checkboxes changes this
property from -1 (meaning the heading font is inherited from the grid) to the
appropriate font style.

ColumnName Corresponds to the value typed in the Heading field.
ColumnSize Changed by setting the value of the Limit entry in the dialog.
ColumnStyle The ColumnStyle property contains bits which indicate the disposition of the

column justification and editability.    These bits correspond to the Heading
Justification and Text Justification combos as well as the Editable
checkbox.

ColumnType Changed by clicking on the Bound, Unbound, or Calculated column radio
buttons.

ColumnVisible The Visible checkbox will set this property.
ColumnWidth Changed by setting the value of the Width entry in the dialog.
EditMask Changing the Format$ entry sets this property.

There is no property corresponding to the Locked at Left checkbox (see below).
Locking Columns at the Left Margin
The Locked at Left checkbox is a convenience feature designed to simplify the use of splits.    Locking
columns is a common use for splits, and since several properties must be set to accomplish this, the
Locked at Left process automates a common task.

When you click Locked at Left, TrueGrid will automatically create a split and set the proper properties so
that the selected column appears in the leftmost part of the grid.    Once locked, you can treat the column
just like any other, changing its width and other characteristics without concern for its locked status.

To unlock the column, just uncheck the box.

How "Locked at Left" Works
Once you master the split properties (see the advanced user's overview for Realizing the Full Potential of
Splits) you can create more sophisticated effects than the simple locked column.    It may be useful, in
such cases, to know exactly what "Locked at Left" does.

When you lock a column, TrueGrid does the following:

1. If there is no split at the left, TrueGrid creates one.

2. TrueGrid assures that all of the columns which are locked have ColumnVisible set to True in the
leftmost split, and have ColumnVisible set to False in all of the remaining splits.    Note that all
columns are always present in all splits, but it is the visibility state of the column that makes it
appear where you want it.

3. TrueGrid makes sure that the leftmost split has its SplitLocked property set to True so that it is a
fixed split and the user cannot remove or resize it.

4. TrueGrid sets the SplitSizeMode of the leftmost split to "2 - Number of columns" so that the split
will always conform to the size of an integral number of columns.

5. TrueGrid sets the SplitSize of the leftmost split to equal the exact number of locked columns.   
This causes TrueGrid to display only the locked columns and to keep the split at the proper size.

So long as the above properties remain consistent, TrueGrid will continue to support the "Locked at Left"
behavior in the Layout editor.    If you modify the SplitSizeMode, SplitSize, or SplitLocked setting for the
left split, or if the locked columns are not invisible in all other splits, TrueGrid assumes that you know what
you are doing and the "Locked at Left" checkbox will be grayed-out.

Although there is no corresponding property at runtime, the utility functions TgLockColumnLeft,
TgLockColumnRight, and TgUnlockColumn can be used to manipulate locked columns at runtime.

More About Splits
By default, you don't need to know much about splits, but once you learn how to use them, TrueGrid
enables you to control many split characteristics in the column properties dialog.

The column properties dialog is affected by splits in two ways:

1. When you enter the column properties dialog, not only are you positioned at a particular column,
but if you have multiple splits, you are positioned within a particular split.    You can tell which split
you are in by looking at the TrueGrid headings in the layout.    The current split will use the active
heading color while all other splits will use the inactive heading color.

2. Normally, changing column properties will change the properties in all splits.    However, if you
have SplitPropsGlobal set to False, then TrueGrid allows you to make changes to columns in only
the current split.    To make this clearer, the column properties dialog will change slightly if
SplitPropsGlobal is False to indicate which settings are global, and which are applied only to the
current split.

Column Number
The column number shows the column currently being edited.    When you click on the layout editor to bring up the
properties pop-up, the column you click over will be the column initially displayed.    Use the scrollbar at the left to
move from column to column.

Scrollbar for Changing Columns
Use the scrollbar at the left to change from column to column.    When moving to another column, information for the
current column will be automatically updated to the grid displayed in the layout editor.    If you want to discard
information you've changed, then click Cancel instead.

Bound, Unbound, or Calculated Column Radio Buttons
Bound columns require a field name to be specified, which will automatically be fetched and updated by TrueGrid.   
For unbound columns, you need to write code in the UnboundFetch event to fill the column with data when it is
needed.    When calculated columns are selected, an expression can be entered at the bottom of the dialog.   
TrueGrid will automatically calculate the expression and fill the column with data for you.    These radio buttons
correspond to setting the ColumnType property in your code at runtime.

Heading Text
The heading field will be displayed at the top of the column.    The heading can be as long as you like and will wrap
within the heading area if HeadingHeight has been set large enough to accomodate more than one row.    The
heading text can be changed at runtime using the ColumnName property.

Column Display Width
The Width setting specifies the size of the column as it is displayed.    This value is specified in characters.    Changing
this value will change the actual displayed width of the column in the layout editor.    You can also change the width by
moving the vertical lines in the Layout Editor.    At runtime, you can inspect and change this value using the
ColumnWidth property.

Column Data Entry Limit
This setting specifies the maximum number of characters which can be entered into the field.    It is independent of
the column's display width.    The default value (if non-zero) is derived from the database definition.    If you set this
value to zero, then TrueGrid imposes no data entry limit.    At runtime, you can inspect and change this value using
the ColumnSize property.

Format$ String
This combo box specifies the Visual Basic Format String to be used for displaying data in the column.    This does not
affect the storage format of the data, but only the displayed value.    The drop-down contains a list of frequently used
formats.    However, you can type directly into the text area to enter your own format string, or to clear the format
string for the column.    At runtime, this setting can be changed and inspected using the EditMask property.

Column Field Name
This item is available only for bound columns.    It contains the database field name to which the column is bound.    If
TrueGrid is linked to a data control, then the drop-down portion will contain a list of valid fieldnames for you to choose
from.    However, you can type directly into the text area of the combo if you know the fieldname, or if the fieldname
will be valid at runtime even though it is not available at design time.    At runtime, this setting can be changed and
inspected using the ColumnField property.

Calculated Expression
This item is available only for calculated columns.    When enabled, you must enter a valid Visual Basic Expression
consising of Visual Basic Operators and functions supported by TrueGrid.    When you update the column information,
TrueGrid checks the expression for validity.    At runtime, you can inspect and change this value by using the
ColumnExpression property.

Heading Justification Combo
This combo box allows you to select Left, Right, or Centered justification styles for the current column heading.    At
runtime, this setting can be changed and inspected using the ColumnStyle property.

Column Text Justification Combo
This combo box allows you to select Left, Right, or Centered justification styles for the current column text.    In order
to see the effect of this setting, you need to turn the sample data display in the Layout Editor system menu.    At
runtime, this setting can be changed and inspected using the ColumnStyle property.

Heading Font Bold
This checkbox applies bold font characteristics for the heading of the current column.    If the checkbox is grayed-out,
then all font characteristics are currently inherited from the default grid font characteristics.    Checking either the bold,
italic, or underline boxes will force the column to override default settings and all three boxes will no longer be
grayed-out.    At runtime, this setting can be changed and inspected using the ColumnHeadFontStyle property.

Heading Font Italic
This checkbox applies italic font characteristics for the heading of the current column.    If the checkbox is grayed-out,
then all font characteristics are currently inherited from the default grid font characteristics.    Checking either the bold,
italic, or underline boxes will force the column to override default settings and all three boxes will no longer be
grayed-out.    At runtime, this setting can be changed and inspected using the ColumnHeadFontStyle property.

Heading Font Underline
This checkbox applies underlined font characteristics for the heading of the current column.    If the checkbox is
grayed-out, then all font characteristics are currently inherited from the default grid font characteristics.    Checking
either the bold, italic, or underline boxes will force the column to override default settings and all three boxes will no
longer be grayed-out.    At runtime, this setting can be changed and inspected using the ColumnHeadFontStyle
property.

Column Text Font Bold
This checkbox applies bold font characteristics for the text of the current column.    The change will not be apparent in
the grid unless the Show Sample Data option is selected in the Layout Editor system menu.    If the checkbox is
grayed-out, then all font characteristics are currently inherited from the default grid font characteristics.    Checking
either the bold, italic, or underline boxes will force the column to override default settings and all three boxes will no
longer be grayed-out.    At runtime, this setting can be changed and inspected using the ColumnFontStyle property.

Column Text Font Italic
This checkbox applies italic font characteristics for the text of the current column.    The change will not be apparent in
the grid unless the Show Sample Data option is selected in the Layout Editor system menu.    If the checkbox is
grayed-out, then all font characteristics are currently inherited from the default grid font characteristics.    Checking
either the bold, italic, or underline boxes will force the column to override default settings and all three boxes will no
longer be grayed-out.    At runtime, this setting can be changed and inspected using the ColumnFontStyle property.

Column Text Font Underline
This checkbox applies underlined font characteristics for the text of the current column.    The change will not be
apparent in the grid unless the Show Sample Data option is selected in the Layout Editor system menu.    If the
checkbox is grayed-out, then all font characteristics are currently inherited from the default grid font characteristics.   
Checking either the bold, italic, or underline boxes will force the column to override default settings and all three
boxes will no longer be grayed-out.    At runtime, this setting can be changed and inspected using the
ColumnFontStyle property.

Locked At Left Setting
Checking this box causes the current column to be locked at the leftmost portion of the grid.    In actuality, TrueGrid
creates a split at the left of the grid and automatically sets the proper properties to lock this column.    Unchecking the
box will unlock the column.    If this box is greyed, then you have modified the layout of splits so that TrueGrid can no
longer recognize the left split as the one containing locked columns.    There is no property equivalent for this
checkbox.

Column Visible Checkbox
If this box is checked, then the current column is visible in the grid.    If unchecked then the column will not be visible.   
Upon exiting the layout editor, any invisible columns are physically removed from the layout rather than being stored.
(unless Preserve is also checked).    At runtime, column visibility can be controlled using the ColumnVisible property.

Preserve Checkbox
Checking this box will preserve a column as part of the design-time layout, even if the it is invisible in all splits of the
grid.    Normally, upon exit from the Layout Editor, any columns which are completely invisible are removed from the
layout to conserve runtime memory.    Sometimes, it is useful to preserve hidden columns for some runtime purpose
(such as unbound or calculated columns which depend upon their values).    If a column is visible, this checkbox is
grayed-out.

Column Editable Checkbox
If this box is checked, then the current column will be editable by the user.    If unchecked, no editing can take place in
the column.    At runtime, this setting may be changed by using the ColumnStyle property.    Even if a column is
marked as editable, editing will not be allowed if the Editable property is set to False for the grid, or if the column's
split is marked as uneditable with the SplitEditable property.

Create New Column Button
Clicking on this button will insert a new column immediately to the left of the the current column.    Any changes to the
current column will be saved before the new column is created.

Delete Current Column Button
Clicking on this button will delete the current column from the layout.    If the column occurs in more than one split, it
will be removed from all splits simultaneously.    Any changes to the current column will be lost.    If you want a column
to be visible in one split and not in another, don't use the Delete button, but rather make the column invisible in the
splits where you do not want it to appear.    Split-specific column changes are only possible if SplitPropsGlobal is set
to False.

Update Column Properties Button
Clicking on this button will update the properties for the current column so that they are reflected in the layout editor
grid.    Moving to a new column, adding a new column, or clicking OK will also update the current column properties.

Cancel Current Column Edits
Clicking on this button will discard any changes made to the current column only and return to the layout editor grid.   
Any changes made to other columns will still be permanent unless the Discard option is used in the Layout Editor
system menu.

Help Button
Clicking on this button will bring up the on-line help page for the column properties dialog.    Help can also be obtained
by pressing F1 in the column properties dialog or in the layout editor.

OK Button
Clicking on this button will save the current column definition and return to the layout editor grid.

Value list.. button

Clicking this button will bring up the Field Values Dialog and allow you to create a value list for the current
column.    This dialog allows you to create a value list interatively at design time.

Properties Pop-up (Layout Editor)

The properties pop-up can be accessed by double-clicking on a column in the layout editor, or by clicking on a
column with the right mouse button.    Each of the entries in this dialog corresponds to entries in the Column
Properties Dialog but they are included here as well for convenience.

Left Justify (pop-up)
Allows you to select left justification for the column.    Normally, this affects the justification for both the column text
and the heading.    However, if the heading justification was changed in the Column Properties Dialog, then this option
affects only the text justification of the column.

Center (pop-up)
Allows you to select centered text for the column.    Normally, this affects the justification for both the column text and
the heading.    However, if the heading justification was changed in the Column Properties Dialog, then this option
affects only the text justification of the column.

Right Justify (pop-up)
Allows you to select right justified text for the column.    Normally, this affects the justification for both the column text
and the heading.    However, if the heading justification was changed in the Column Properties Dialog, then this option
affects only the text justification of the column.

Editable (pop-up)
The editable option allows you to change the editability of the column.    It will be checked if the column is currently
editalbe, and unchecked if it is not.

Heading Text... (pop-up)
This option will allow you to change the heading text of the column.    The cursor will be moved to the heading area of
the column and you can change the text displayed there.

Field Name... (pop-up)
Selecting this option allows you to change the field name associated with bound columns.    The field name is entered
in the heading area, although it will not be displayed there when you have finished changing it.

Edit Mask... (pop-up)
Selecting Edit Mask... will allow you to enter a Visual Basic Format String for the column.    Like the field name, you
enter the edit mask in the heading region, although it will not be displayed when you are done entering it.

Insert Column (pop-up)
Insert Column will insert a new column to the left of the current column.    The newly inserted column will be a bound
column, but no field name will be associated with the column initially.

Delete Column (pop-up)
This option will physically delete the column from the layout.    If you inadvertently delete a column, you need to exit
the layout editor using the Discard option of the system menu.    This will discard all changes you made during the
layout editor session.    When you reenter the layout editor, the column layout will be the same as it was on the
original form.

Properties... (pop-up)
The Properties... option will display the Column Properties Dialog and position you to the current column.    This
dialog is a more complete way to edit most of the column characteristics.

Value List... (pop-up)
Clicking the Value List... option will bring up the Field Values Dialog and allow you to create a value list for the
current column.    This dialog allows you to create a value list interatively at design time.

Field Values Dialog
Click on a graphic element to display information about that element.

For instructions on how to use the Field Values dialog click "Describe".   

Field Values Dialog

Version 2.1 of TrueGrid adds a powerful new feature called "value list".    Using this feature you can
dramatically enhance the display of the grid.    At design time you can set up these features using the
Field Value Dialog.    To access the Field Values dialog click on the Value List option from the Properties
pop-up or click the Value List... button in the Column Properties Dialog.    The column you clicked on to
bring up the properties popup will be the initial column displayed in this dialog.

Any changes you make to the current column's value list can be discarded by clicking Cancel (which
returns you to the previous dialog).    Clicking OK will save the changes you made.   

Once you are in this dialog you can specify the valid values for a column in the data column.    A common
simple use is to check the "cycle on click" check box in which case when the user clicks on that column it
will display each value in the data column in succession.    You could also check the "Auto Validate" check
box and the user would then be able to enter only values specified in the data column.

Once the data is entered you then need to choose how you want to display the data.    You can click on
one of the three radio buttons to choose how you want the data displayed.    If you select the "Text" button
the data will be displayed normally.    If you check the "Radio buttons" option then the grid will take the
values in the data column and display them as radio buttons.    Selecting the "Combo" option will result in
a dropdown combo box being automatically displayed with the values taken from the data colum.    If you
check the "Sorted" check box in conjunction with the "Combo" option then the values will be displayed in
sorted order.

If you want a certain value to be displayed even if it is not in the value list then select that value and click
the "Default" check box.    This value will be displayed for any value not listed in the data column.

Translated values and pictures
Using value list to automate the data entry is great but one of the most important features that TrueGrid
enables you to do is substitute database data with your own!    If you click on the "Translate Values" check
box you will notice that another column appears in the grid with the heading "User value".    Using this
column it is possible to substitute cryptic values such as 0 and -1 with True/False, Yes/No, or whatever
you heart desires.    Neat huh?    It gets better.    Let's say that you want to show a simley face and a
frowning face.    The toughest part is getting the bitmaps (we stole them from WinMine).

Once you have the bitmaps simply select the row you want the picture to appear in and click the
"Picture..." button.    A file open dialog appears and you can select your bitmap.    When you return the
bitmap will be displayed in the right hand side of the grid.    If you choose to use pictures then it is highly
recommended that you use the Text option for display.    You can still use the "Cycle on click" option, in
fact this is recommended when using things like check boxes.    However, using AutoValidate doesn't
make much sense since the user can't "enter" the picture.

Properties Affected by the Dialog
The field values dialog controls the following properties:
ColumnButton Automatically set to True if the combo option is selected.
VlistCount Automatically set to the number of values in the data column.
VlistData An indexed property that corresponds to the values in the data column.
VlistDefault Correspondes to the Default check box.
VlistPicture An indexed property that corresponds to any pictures used in the user value

column.
VlistStyle Set using a combination of the display values frame, and the cycle on click,

auto validate, and translate values check boxes.
VlistText An indexed property that corresponds to the text values used in the user

value column.

Layout Editor Caption
The caption indicates the name of the column (specified by the ColumnName property) as well as the legend "Field
Values..." so you know which column you are editing and that you are presently in the field values dialog.    You can
reposition the field values dialog on your screen by holding the mouse down over the caption bar.

Data Value Column
This column holds the values that represent the values in the database.    In this column you should specify all the
values you want the user to be able to enter (if you click Auto Validate), or cycle through (if you click Cycle on Click).   
If the Translate values check box is turned off these are the values that will be displayed in the grid at run-time.

User Value Column
This column holds the value the programmer wants the user to see.    These values can either be text or picutres.   
This column is only present when the "Translate Values" check box is turned on.    In this column you should specify
all the values you want the user to be able to enter (if you click Auto Validate), or cycle through (if you click Cycle on
Click).

Data Column Entries
These are the values that TrueGrid will compare against the database (or array) to either substitue with the translated
value, auto validate, or cycle through, depending on which options are turned on.    The number of entries can be
checked at run-time using the VlistCount.

User Value Entries
These are the values that TrueGrid will display in the grid in place of it's corresponding value in the data column.   
These values can be either text or pictures.    You can check these values at run time using the VlistText or
VlistPicture depending on contents of the column.

OK Button
Clicking on this button will save the current value list definitions and return to the layout editor or the column
properties dialog (depending on which one you entered the dialog from).

Cancel Button
Clicking on this button will discard any changes made to the current value list and return to the layout editor or
column properties dialog (depending on which one you entered the dialog from).

Picture Button
Clicking this button allows you to have BMP files displayed in the User value column.    When you click this button a
File Open dialog will pop up and allow you to select a BMP file.    The picture will then appear in the current row in the
user column.

Display as Text
This is the default display method.    If you have this option chosen then the grid will display the Data value or the
User value, depending on the Translate Values check box, in standard format.

Display as Radio Button
This option allows you to display a set of Radio buttons in place of the standard text layout.    In each cell there will be
a radio button for each option listed in the data or user value column.

Display as Combo Box
Using this option the grid will display the data in a standard text layout.    However if the user clicks on a column with
this setting a ColumnButton and an automatic dropdown combo will appear for the user to select from.    You can
control the number of items displayed in the dropdown before a scroll bar appears by setting the
ColumnComboMaxItems

Sorted Check Box
This check box is only enabled when the Combo option is selected.    If Sorted is checked the values that appear in
the dropdown combo will be in sorted order.

Translate Values Check Box
If you want the values in the data column to be substituted with different values then check the translate check box.   
When checked a second column appears in the grid and allows you to enter in values to be displayed in the grid at
run time in place of the values in the data column.

Auto Validate Check Box
If checked then the user will only be able to enter in values from the value list.    If the user tries to enter in a value that
is not in the list then the grid will beep and stay in edit mode until the user enters a valid value.

Cycle on Click Check Box
If checked the users can cycle through all the values in the value list simply by clicking on the cell.    Also the user will
only be able to edit the cell by explicitly typing in a value.

Default Value Check Box
If checked the current column in the value list will change the font to an italic.    This value will then be used for any
value that is in the database or typed in by the user that is not in the value list.

Property and Event Reference by Area
    Overall grid color
    Colors specific to splits

    Colors specific to columns within splits

    Overall grid fonts

    Fonts specific to splits

    Fonts specific to columns within splits

    Per-cell colors and fonts

    Controlling margins within cells

    Heading size and presence

    Horizontal and vertical grid lines

    Miscellaneous grid appearance properties

    Row and column numbering

    Calculated, bound, and unbound columns

    Miscellaneous column information

    Scrollbars

    Layout configuration

    User keyboard and mouse navigation

    User modification of grid appearance

    Editing cell contents

    Controlling database behavior

    Working with multiple row selections

    Controlling splits

    Drag and drop

    Determining cell dimensions and location

    Finding cells based upon coordinates

    Programmer control

    Value list

    Column Summary

Group:    Overall grid color
These properties control the overall color of the grid.    They are the default colors used by all splits, and
all columns of the grid.    These can be overridden by changing split-specific, column specific, and cell-
specific colors.    These color values are not split-specific, but apply globally.

Properties
BackColor Changes the background color of the grid to the specified color value.    Can be

changed at design time or runtime.
ForeColor Changes the foreground color of the grid to the specified color value.    Can be

changed at design time or runtime.

Group:    Colors specific to splits
TrueGrid allows certain "basic" colors to be set to control default colors for the headings (whether active
or inactive), marked rows, vertical and horizontal lines, and the color of a cell when it is in editing mode.   
These properties can be set at design time or runtime.    If changed, they take effect immediately.

These properties are affected by the setting of SplitPropsGlobal.    If it is False, then the setting will apply
only to the current split; if True it applies to all splits.

Properties
EditBackColor Controls the background color of a cell when it is opened for editing.    By

default, this property is set to the system highlight background color.    Because
of this, text selected with the mouse (although still selected) will not be evident. 
Change this property (and EditForeColor) if you want to differentiate highlighted
text.

EditForeColor Controls the foreground color of a cell when it is opened for editing.
HeadBackColor Specifies the background color of the headings whenever the grid is active.   

When inactive, the InactiveBackColor is used for the headings.    If there are
multiple splits, this color is used only for the current split.

HeadForeColor Specifies the foreground color of the headings whenever the grid is active.   
When inactive, the InactiveForeColor is used for the headings.    If there are
multiple splits, this color is used only for the current split.

HorzColor Specifies the color used for horizontal lines (if present).    If the HorzLines
property is set to 3D mode, then this color specifies the color of the darker
border of 3D bevels; the lighter color is derived from this.

InactiveBackColor Controls the background color of the headings whenever the grid (or split) is
inactive.

InactiveForeColor Controls the foreground color of the headings whenever the grid (or split) is
inactive.

SelectedBackColor If a row is currently selected by marking the row, this color specifies the
background color for that row.    By default, the color is black.    Selected rows
are shown only if SelectMode is set accordingly.    This color can be overridden
by cell-specific color settings.

SelectedForeColor If a row is currently selected by marking the row, this color specifies the
foreground color for that row.    By default, the color is black.    Selected rows
are shown only if SelectMode is set accordingly.    This color can be overridden
by cell-specific color settings.

VertColor Specifies the color used for horizontal lines (if present).    If the HorzLines
property is set to 3D mode, then this color specifies the color of the darker
border of 3D bevels; the lighter color is derived from this.

Group:    Colors specific to columns within splits
Each column can have its own default background and foreground color, specified by these properties.   
These properties can be set only at runtime and can be overridden by cell-specific color settings if
desired.    These colors accept a special value, INHERIT_COLOR (defined in TGCONST.TXT) which
indicates that the column color is to be inherited from the default grid color.

These properties are affected by the setting of SplitPropsGlobal.    If it is False, then the setting will affect
the column only within the current split; if True it applies to the column in all splits.

Properties
ColumnBackColor Specifies the background color of the column.    The default setting is

INHERIT_COLOR, indicating that the column has no special background color.
ColumnForeColor Specifies the foreground color of the column.    The default setting is

INHERIT_COLOR, indicating that the column has no special foreground color.

Group:    Overall grid fonts
TrueGrid allows customization of fonts in a variety of circumstances.    However, the basic font face
(specified by FontName) and the point size of the font (FontSize) are global to the entire grid and cannot
be changed.

These properties are not affected by SplitPropsGlobal, and control the base font used for all cells and
headings in the grid.

Properties
FontBold If True then the base font will be bold.    This is the default.
FontItalic If True then the base font will be italic.    Defaults to False.
FontName Specifies the font typeface name to be used for all grid cells and headings.   

This font cannot be overridden and must apply globally to the entire grid.   
However, the bold, italic, and underline properties of the font (referred to as the
font style) can be changed selectively on a per-column or per-cell basis, as well
as for the headings.

FontSize This property specifies the point size for fonts used within the entire grid and
cannot be overriden.    The setting of this property determines the height of a
line of text, and is the basis for the heading height and row height.

FontStrike If True then the base font will use strike-out text.    This setting is global and
cannot be overridden.    Defaults to False.

FontUnder If True then the base font will be underlined.    This setting is global, and can be
overridden on a column or per-cell basis.    Defaults to False.

Group:    Fonts specific to splits
The headings may use a different font style than the rest of the grid.    This property is affected by the
setting of SplitPropsGlobal.    If it is False, then the property applies to the headings in the current split
only; if True then all headings are affected.    This property is available at design-time and runtime.

Properties
HeadFontStyle Specifies the font style to be used for headings.    Defaults to 0, meaning that

the font style is inherited from the global grid font settings.

Group:    Fonts specific to columns within splits
The font style can be specified on a per-column basis and can be used to override the base font style.   
These properties can be set at runtime, or at design-time in the layout editor.    These font styles accept a
special value, INHERIT_FONT (defined in TGCONST.TXT) which indicates that the column font is to be
inherited from the default grid font.

These properties are affected by the setting of SplitPropsGlobal.    If it is False, then the setting will affect
the column only within the current split; if True it applies to the column in all splits.

Properties
ColumnHeadFontStyle Specifies the font style to be used for a heading for the specified column.   

Defaults to INHERIT_FONT.
ColumnFontStyle Specifies the font style to be used for cell text within the specified column.   

Defaults to INHERIT_FONT.

Group:    Per-cell colors and fonts
TrueGrid supports an advanced technique, tailored to database usage, which permits colors and fonts to
be specified on a per-cell basis.    Rather than "apply" colors and fonts to specific cells, TrueGrid has
methods for defining cell colors based upon a cell's status or contents.    This makes font and color
selection much faster, since TrueGrid has a better knowledge of how fonts and colors are intended to be
used.

A special method (using the FetchAttributes event) allows cell color and font to be specified using any
desirable means.    All of these properties use the special values INHERIT_FONT and INHERIT_COLOR
(defined in TGCONST.TXT) to specify that no color or font override is provided for a specific case.

The use of these properties is somewhat complex, but they provide great power and flexibility.

All of these properties are affected by the setting of SplitPropsGlobal.    If it is False, then the setting will
affect the column only within the current split; if True it applies to the column in all splits.

Meaning of Cell Status Values
There are 16 separate cell status values, which indicate the disposition of a cell.    The status is a
combination of four separate conditions:

1. Current cell.    The cell is the current cell, specified by the ColumnIndex and RowIndex properties.

2. Part of a highlighted row marquee.    When the MarqueeStyle property indicates that the entire
row is to be highlighted, cells in such rows have this additional condition set.

3. Updated data.    The data in the cell has been updated by user modification, or setting the Text or
ColumnText properties.

4. Marked row.    The cell is part of a row marked by the user (or programmer) and displayed as such
according to the setting of the SelectMode property.

The cell status is a combination of these four conditions and there are a total of 16 different cell
dispositions, shown in the following table:

Status Condition of Cell Meaning of
Value Row

Marked
Data

Changed
Row

Marquee
Current
Cell

Status Value

0
Normal cell, not current, marked, changed, or part
of a highlighted row.

1 X
The current cell, not marked, changed or part of a
highlighted row.

2 X
Part of a highlighted row, not current, marked or
changed.

3 X X
Current cell in highlighted row, not marked or
changed.

4 X
Changed cell, not current, marked, or part of a
highlighed row

5 X X
Current cell when changed, not marked or part of
a highlighted row.

6 X X
Cell changed within a highlighted row, not current
or marked.

7 X X X
Current cell changed within a highlighted row, not
marked.

8 X
Row within a marked cell, not current, changed, or
part of a highlighted row.

9 X X
Current cell within a marked row, not changed or
part of a highlighted row.

10 X X
Cell in a marked row which is also the highlighted
row, not current cell and not changed.

11 X X X
Current cell in a marked row which is also the
highlighted row, but not changed.

12 X X
Cell within a marked row in which data has been
changed, not current and not part of a highlighted
row.

13 X X X
Current cell within a marked row in which data has
been changed; not part of a highlighted row.

14 X X X
Cell within a marked row (which is also
highlighted) in which data has been changed, but
not the current cell.

15 X X X X
Current cell within a marked row which is also
highlighted.    Data in the cell has been changed.

Each status value is distinct, and you can set a different set of colors and fonts for each of the 16 status
conditions.    That is, setting attributes for status 1 affects the current cell, but only when it is not marked,
is not changed, and is not part of a highlighted row marquee.    To affect the current cell under all
circumstances, you would need to set the attributes for status values 1, 3, 5, 7, 9, 11, 13, and 15.   
Usually, this is not necessary since no application will have cells of all possible status values.    For
example, if the marquee is set to a dotted cell, then none of the status values which indicate a row
marquee condition will ever be encountered.

Parameter Properties
These properties do not actually change the grid appearance, but are used as parameters for other cell-
specific color and font properties.    Usually, these properties must be set before using the cell-specific
properties such as SetStatusAttr, ColumnSetStatusAttr, AddRegexAttr, and ColumnAddRegexAttr.

TrueGrid never modifies these properties, but initializes them all to a default value of INHERIT_COLOR or
INHERIT_FONT.    The properties are available only at runtime, and are global to the entire grid (even
though the attribute setting properties are specific to the current split).
ParamBackColor Specifies the background color to be applied to the cells specified by

subsequent setting of one of the per-cell attribute properties.    Defaults to
INHERIT_COLOR.

ParamFontStyle Specifies the font style to be applied to the cells specified by subsequent
setting of one of the per-cell attribute properties.    Defaults to INHERIT_FONT.

ParamForeColor Specifies the foreground color to be applied to cells specified by subsequent
setting of one of the per-cell attribute properties.    Defaults to
INHERIT_COLOR.

ParamStatus Specifies the cell status of cells affected by regular expressions added with
AddRegexAttr and ColumnAddRegexAttr.    There are 16 different cell status
values.    This property defaults to the special value, -1, meaning that the
regular expression applies to cells of any status.

Setting Per-Cell Attributes Based Upon Status
The following two properties allow you to apply the values of ParamForeColor, ParamBackColor, and
ParamFontStyle to cells which have a given status.    These properties are available only at runtime and
are write-only.
SetStatusAttr Applies the attributes specified by ParamForeColor, ParamBackColor, and

ParamFontStyle to all cells with a specified status.    The attributes are applied
as cells are displayed, so once this property is set, the grid will respect the
attributes as the grid is scrolled, or data is changed and refreshed.

ColumnSetStatusAttr Like SetStatusAttr, but applies the attributes only to cells within a given column
which have the specified status.    Overrides any settings provided with
SetStatusAttr.

Setting Per-Cell Attributes Based Upon Cell Contents
TrueGrid allows you to specify attributes which are applied to a cell based upon whether the cell matches
a particular regular expression.    A regular expression specifies a pattern which is tested against the cell
contents whenever it is displayed or changed.    If the pattern matches, then the specified attributes are
applied.    TrueGrid allows you to add an unlimited number of patterns with corresponding attributes.
AddRegexAttr Adds a regular expression to the list of patterns for the current split (or all splits

if SplitPropsGlobal is True).    ParamForeColor, ParamBackColor, and
ParamFontStyle must be set before assigning to this propery.    The parameters
specify the attributes which are applied when a pattern match occurs.    If
ParamStatus is set to -1, then the pattern applies to all cells, regardless of
status.    If ParamStatus contains a value from 0 to 16, then only cells of that
status which match the pattern are affected.

ColumnAddRegexAttr Like AddRegexAttr, but applies only to the specified column.    You may set
patterns with both AddRegexAttr and ColumnAddRegexAttr.    Those set with
ColumnAddRegexAttr take priority over those which are set with AddRegexAttr
whenever a match occurs on both patterns.

ColumnHasRegexAttr Returns True if the specified column has pattern attributes associated with it.   
Setting it to False clears any pattern attributes for the column.

HasRegexAttr Returns True if the current split has pattern attributes associated with it.   
Setting this property to False clears any pattern attributes for the current split
(or all splits if SplitPropsGlobal is True).

Setting Cell Colors and Fonts    Using User-Defined Criteria
For cases where status-dependent or pattern-dependent attribute settings are inappropriate, TrueGrid can
query your program each time it needs to know cell attributes.    This is done via the FetchAttributes event.
The event will be triggered only for those columns which have the ColumnCellAttrs property set to True.   
Using this capability, you can have cell colors and fonts which are dependent upon the contents of a cell
(if it is a certain range, for example) or even dependent upon the contents of other cells and databases.
ColumnCellAttrs If set to True for a column, then TrueGrid will trigger the FetchAttributes event

each time it needs to know what the cell attributes will be.    TrueGrid optimizes
this behavior so it calls FetchAttributes only when cells are scrolled into view, or
when their contents or status changes.

FetchAttributes Event This event is fired whenever TrueGrid needs to know the color and font to use
for a cell within a column which has ColumnCellAttrs set to True.

Group:    Controlling margins within cells
TrueGrid allows you to change the left and right margin of each cell based upon any criteria you specify.   
The cell margins are dynamic.    Each cell can have its own margins, and the margins can be changed as
data changes.    This makes it possible to implement outlining features by indenting cells according to an
outline level (usually stored in the database as well) or some other criteria.

Cell margins are specific to splits and can be enabled or disabled on a per-split basis.    SplitPropsGlobal
is respected.    If SplitPropsGlobal is True, then turning on cell margins for a column affects all splits;
otherwise, only the current split is affected.

Properties
ColumnFetchMargins If True, then the specified column will have cell margins, which causes the

FetchMargins event to be triggered each time the grid needs to know cell
margins within the column.    Defaults to False for all columns.

Events
FetchMargins If ColumnFetchMargins is True for a column, this event will be triggered each

time the grid needs to know the cell margins (usually at the same time it
fetches the cell data).    The cell margins are specified by the InsetLeft and
InsetRight arguments, which are changed to reflect the new margins.    Margins
are specified in 10ths of a character, so that the margins are proportional to the
font being used.

Group:    Heading size and presence
TrueGrid allows you to have headings for columns, or to hide them.    These properties can be set at
design time or runtime.    If changed, they take effect immediately.

Properties
Headings If True then column headings are displayed; if False then there will be no

column headings.    This property is affected by SplitPropsGlobal.    If it is True,
then headings in all splits are affected; if False then only headings in the
current split are affected.    If one split has headings and another does not, then
the splits without headings show a "grey area" where the headings would be.

HeadingHeight Specifies the height of the heading area, in lines.    This number can be
fractional.    For example, 1.5 indicates that the headings should be 1.5 times
as high as a single line of text.    Defaults to 1, and applies globally to all splits
in the grid.

Group:    Horizontal and vertical grid lines
These properties specifiy how grid lines should appear.    Both properties support settings for no lines,
single-width lines, and 3D lines.

Properties
HorzLines Indicates whether horizontal grid lines appear.    This setting is global to the

entire grid.    The setting of HorzColor specifies the color of the lines, and can
be tailored to each split.

VertLines Indicates whether vertical grid lines appear.    This setting is affected by
SplitPropsGlobal.    If it is True, then the line setting applies to all splits; if False
then only the current split is affected.

Group:    Miscellaneous grid appearance properties
Properties
MarqueeStyle This property indicates how the marquee appears.    The marquee defaults to a

dotted cell border.    Options include solid cell borders, highlighted cell,
highlighted row, and highlighted row with a raised current cell.    You can also
turn the marquee off using this property.    This property is affected by
SplitPropsGlobal.    If it is True, then the marquee will be changed for all splits; if
False, then only the current split is affected.

MarqueeUnique If True, then there will be only one marquee, no matter how many splits are in
the grid.    Changing splits will hide the marquee in one split and show it in the
current split.    If False, then the marquee will be present in all splits.    The
default is True.

BorderStyle This property specifies whether the overall grid has a border or not.

Group:    Row and column numbering
These properties allow you to change and inspect the size of the grid (in rows and columns) as well as
change the current cell pointer, left column, and top row values.    Events are included to determine when
the cell pointer changes.

The current row number is global to the entire grid.    All splits within the grid will have the same current
row number.    However, the column number can be different for each split.

Properties
BottomRow Returns the number of the bottom row visible within the current split.    Splits

are normally syncrhonzed, so this value will be the same for all splits.   
However, if splits are unsynchronized (by changing their SplitGroup), the
bottom row value may be different for each split.    This property is read-only
and is available only at runtime.

ColumnIndex Allows you to inspect or change the current column index.    Columns are
numbered based upon their original order, even if the user rearranges them
(ColumnOrder can be used to inspect the actual position on the display).   
Setting this property is affected by SplitPropsGlobal.    If it is True, then
changing this property changes the current column for all splits.

Columns Returns the number of columns in the grid.    All splits must have the same
number of columns, but columns can be hidden in some splits but not in others.
You can set this property to define the number of columns.    Setting it to zero
removes all of the columns.

LeftColumn Returns the column number of the leftmost column in the current split.    Setting
this property will scroll the specified column so it is the leftmost.    If
SplitPropsGlobal is True, then setting this property will change the leftmost
column in all splits.

LinesPerRow Specifies the number of lines which are displayed in each row of the grid.    This
is an integer number (no fractions allowed) and applies globally to the entire
grid.

ReferenceRow Sets or returns the row number used for the ColumnText, CellRectLeft,
CellRectTop, CellRectWidth, and CellRectHeight properties.    ReferenceRow is
set automatically when a RowChange event occurs, or when the row number is
temporarily different from RowIndex, such as in the UnboundFetch or
FetchAttributes events.

RightColumn Returns the column number of the rightmost column in the current split.    Read-
only and available only at runtime.

RowIndex Sets or returns the current row number for the grid.    The row number is global. 
That is, all splits will have the same row index.

Rows Returns the total number of rows in the grid.    In database mode, this number
may not always reflect the actual size (if the number of rows is unknown).    You
can set this property, but only in callback mode where the grid must know how
many rows to display.

TopRow Sets or returns the current top row number for the current split.    Normally,
splits are synchronized, so setting the TopRow property will affect all splits
even when SplitPropsGlobal is False.    However, if splits are unsynchronized
(by setting SplitGroup), then the TopRow may be different for each split.

Events
CellChange This event is triggered whenever a new cell becomes current.
ColumnChange This event is triggered whenever a new column becomes current, or when the

user moves to a different split which has a different current column than the
current one.

LeftColChange Triggered whenever the left column changes to a new value.    If there are
splits, then this event is also triggered if a user changes splits and a new
column becomes the left column (due to the difference in the horizontal position
of the splits).

RowChange This event is triggered whenever a new row becomes the current row.
TopRowChange Triggered whenever the top row of the current split changes due to scrolling or

because the value of TopRow has been changed in code.    If there are
independent splits (with different SplitGroup numbers), then this event is also
triggered when changing to another split which is scrolled to a different top row
position in the database.

Group:    Calculated, bound, and unbound columns
When in database mode, TrueGrid columns can be bound, unbound, or calculated.    Bound columns are
automatically fetched from the database based upon their ColumnField property and are automatically
updated.    Unbound columns are filled in by the programmer using the UnboundFetch event.    Calculated
columns include an expression (in ColumnExpression) which TrueGrid uses to automatically calculate the
value of the column.    All column types receive the Validate and Update events whenever data is updated.
For unbound and calculated columns, updating may not be possible.    In such cases, the column should
not be editable by the user (it is up to the programmer to configure this).

These properties apply globally to all columns in the grid.    In other words, a column cannot be bound in
one split while being calculated in another.

Properties
ColumnExpression Specifies the Visual Basic expression to be used for calculating the value of the

column when the ColumnType indicates that the column is calculated.    Ignored
for other column types, but still maintained.    The expression must be a valid
expression.    Read/write at runtime.    At design time, can be set in the Layout
editor.

ColumnField Specifies the field name for a bound column when the ColumnType indicates
that the column is a bound column.    Ignored for other column types, but still
maintained.    Read/write at runtime.    At design time, can be set in the Layout
editor.

ColumnType Specifies whether the column is bound, unbound, or calculated.

Events
UnboundFetch Triggered whenever an unbound column is scrolled into view and data is

required.
Update Triggered after a column has been updated by the user.
Validate Triggered just before a column has been updated.    The proposed value for the

new cell is provided, and can be changed if the data to be written is different (in
format for example) from the data the user sees in the edited cell.

Group:    Miscellaneous column information
Each column has properties which define its behavior.    These properties define miscellaneous behavior.   
Some are global, while others are specific to a particular split.

Properties
ColumnName This property defines the string which will be used for the heading of a

particular column.    This property is global to all splits; that is, the column must
have the same heading in all splits.

ColumnOrder The column numbers used in Visual Basic code remain constant as columns
are moved.    This property defines the actual order of the column as it appears
in the displayed grid.    The value can be changed to move the column from one
position to another.    This property respects SplitPropsGlobal.    If it is True,
then changing ColumnOrder will move the column to the same position in all
splits.

ColumnStyle This property defines the text justification, heading justification, and editability
of a column.    Each split can have different values for the same column.    This
property respects SplitPropsGlobal.    If True, changing ColumnStyle affects the
column whereever it appears.

ColumnVisible If True, the indicated column will be visible.    If False, the column will not be
shown.    When the user resizes a column to zero width, this property is
automatically set to False.    Columns may be hidden in one split while they
remain visible in another.    If SplitPropsGlobal is True, setting this property
changes the state of the column in all splits.

ColumnWidth This property contains the width of the column, in characters.    Changing it will
change the column width for the current split, or for all splits if SplitPropsGlobal
is True.

EditMask This property defines the Visual Basic Format$ string which will be used to
format the text of the indicated column.    It defaults to an empty string (no
formatting).    Changing this property will change the formatting of the column in
all splits, regardless of the setting of SplitPropsGlobal.

Group:    Scrollbars
TrueGrid allows complete control over scrollbars.    These properties can specify whether horizontal or
vertical scrollbars are never shown, always shown, or shown only if necessary.

These properties respect SplitPropsGlobal.    Setting these properties while SplitPropsGlobal is True
affects the scrollbars in all splits, while setting them while SplitPropsGlobal is False affects the scrollbars
of the current split only.

Properties
HorzScrollbar Indicates whether horizontal scrollbars are shown, hidden, or displayed only

when necessary.
VertScrollbar Indicates whether vertical scrollbars are shown, hidden, or displayed only when

necessary.

Group:    Layout configuration
The grid layout consists of a wide variety of split and column settings.    Settings can be customized at
design time using the Layout editor, or saved and restored in their entirety at runtime using the Layout
property.

Properties
Layout At design time, clicking on this property brings up the layout editor, which

allows customization of column settings and other grid configuration options.   
At runtime, the Layout property contains a string which defines the complete
layout of the grid, including splits, columns, column settings, etc.    You can
save the contents of the Layout property in a string and restore it later by
reassigning it to the Layout property.
The format of the string is internal, and is checked for validity upon assignment.
The string may contain null characters, so be careful when storing it in a file or
INI file.

LayoutIndex You can use this property at design time to set up multiple layouts in the grid.   
By changing the index number, the grid can be configured to a completely
different layout.    At run time, by switching numbers it is possible to show
different layouts.    You can also save changes the user makes to an existing
layout.

Group:    User keyboard and mouse navigation
Windows defines standard conventions for how the keyboard and mouse should operate.    By default,
TrueGrid conforms to these conventions.    The tab key will move from cell to cell.    At the first or last cell,
tabbing moves out of the grid to the next or previous control on a form.    Arrow keys maintain focus within
the grid.

These properties are global to the entire grid and affect the way TrueGrid handles the arrows, tab key,
and the mouse.

Properties
AllowArrows If True (the default), then TrueGrid will respect the arrow keys for movement

from cell to cell.    If False, then the Arrow keys will always have their default
meaning (moving from control to control).

AllowTabs If True (the default), then TrueGrid will respect the tab key for movement from
cell to cell.    If False, then the tab key will always move between controls.

ExposeCellMode Controls the behavior of the rightmost column when the user clicks on a cell in
that column.    When set to 0 (the default) the grid will scroll to the left to make
the cell visible so all of its text can be shown.    If set to 1 then the grid will not
move, however if the user attempts to edit the cell then the grid will scroll left so
you can see all of the cell text.    If ExposeCellMode is set to 2 then the grid will
always leave the last cell clipped both when clicked and when the user
attempts to edit the cell.

MousePointer Defines the appearance of the mouse cursor when it is positioned over the grid.
SplitSelectable If True, then the current split will be selectable by the user with the mouse, and

the tab and arrow keys can be used to move into the split (providing
SplitTabMode allows such behavior).    If False, then the user will not be able to
select the split by clicking on it, and the split will be bypassed when moving
from split to split with the keyboard.    Changing this property while
SplitPropsGlobal is True will affect all splits, otherwise only the current split will
be affected.

SplitTabMode When set to 0 (the default), the tab and arrow keys will not cross split
boundaries.    When set to 1, the tab and arrow keys will move to adjacent splits
rather than be confined to the current split.    This property is global to the grid
an is not affected by SplitPropsGlobal.

TabCapture If False, then the tab key will exit the grid and move to another control if an
attempt is made to tab past the last column or before the first.    If True, then the
tab key will never exit the grid once it has focus.    The default for this property
is False.

TabIndex Specifies where the grid lies in the tab order of the current form.
TabStop If True, then the tab key will stop at the grid.    If False, the tab key will bypass

the grid and move to the next control in the tab sequence.
WrapCellPointer If True, then the cell pointer will wrap from the last column to the first in the next

row (or the first column to the last in the previous row).    This will always
operate with the arrow keys if AllowArrows is True.    It will work with the tab key
only if TabCapture is set to False, meaning that the tab key will not exit the grid.
If SplitTabMode is set to 0, the cell pointer will wrap only within the current split. 
If SplitTabMode is set to 1, then the cell pointer will move from one split to the
next before wrapping occurs.

Events
Click Triggered whenever the user clicks on a cell within the grid.
DblClick Triggered whenever the user double clicks on a cell within the grid.

Group:    User modification of grid appearance
By default, the user can change the column order, size, and can create new splits and resize them.   
These properties control the users ability to do so.

Both properties respect SplitPropsGlobal.    Setting these properties while SplitPropsGlobal is True affects
the configurability of all splits, otherwise only the current split is affected.

Properties
Configurable If True, then the user may resize columns, rearrange them, and hide them.    If

False, the column positions is fixed.    In addition, when this property is False, it
is possible to detect a click within the heading area (normally, the heading area
is used to rearrange columns).

SplitLocked If True, then the current split may be resized.    If False, the current split cannot
be changed.    If all splits are locked, then the user will be unable to create any
new splits interactively.

Group:    Editing cell contents
TrueGrid automates the process of editing cell data.    Cells are either in display mode or edit mode,
depending upon whether the user has begun typing in a cell or whether the cell has been selected with
the mouse.    If the text is larger than the cell, TrueGrid will "drop-down" an editing box for editing the cell.   
In this mode, the arrow keys are redefined to move within the drop-down editing area.

Properties
ColumnChanged This property is read-only and available only at runtime.    If True, then the data

in the specified cell has been updated by the user or through code modification.
If False, then the cell contains the original data.

ColumnSize This property restricts user input to a specified number of characters.    If set to
zero, then no limit is imposed.    This property is global to all splits.    That is,
changing the value affects the data entry limit for the column wherever it
appears.    At design time, this property can be changed in the layout editor.

ColumnText This property contains the textual value of the specified column.    The value of
this property will contain the unedited contents of the cell (without the EditMask
applied).    Changing this value will cause the cell contents to be changed as if
the user had modified the cell directly.    Since a cell contains the same value
regardless of which split it appears in, this property does not respect the
SplitPropsGlobal setting.
Normally, ColumnText refers to data within the current row.    However, when
used within the FetchAttributes, UnboundFetch, or FetchMargins events, this
property will reflect the value of the row being fetched, regardless of whether it
is the current row or not.    When used in the context of these events, the
ColumnText property cannot be changed (any change to the property is
ignored).

Editable If True, then the grid is editable.    If False, then edits are not allowed.    This
property is global to the entire grid.

EditActive If this property returns True, then the current cell is currently being edited by
the user.    If False, then no editing is in progress.    Setting this property to True
will cause editing to begin on the current cell (if it is not already in edit mode).   
Setting it to False will exit edit mode.    If the cell has been modified, this causes
the Validate and Update events to be set.    If you want to cancel editing, set the
Modified property to False and then set EditActive to False.

EditDropDown If True (the default) then the grid will automatically drop-down an editing box to
allow editing of text which won't fit in the current cell.    If False, then editing is
always constrained to the current cell boundaries.

Modified This property is useful only while the current cell is opened for editing.    In such
cases, Modified returns True the user has changed the data in the current cell
and False if the data has been unchanged.    The value of this property can be
changed at runtime to change the modified status of the editing cell.

SelLength Allows you to set or inspect the length of the currently selected text within the
editing cell.

SelStart Returns the start position of the selection in the editing cell.    If SelLength is
zero, returns the position of the caret.

SelText Contains the selected text within the current cell being edited.    Can be set to
overwrite the selected text.

SplitEditable If True, then the current split may be edited.    If False, then editing is disallowed
within the current split.    If SplitPropsGlobal is True, then setting this property
affects the editability of all splits, otherwise only the current split is affected.    If
the Editable property is False, then this property is ignored, but still maintained.

Text Contains the text value of the cell being edited, otherwise returns an empty

string.    Setting this property will change the contents of the current cell editing
area and cause the grid to enter edit mode if it is not already editing the current
cell.    Changing this property does not cause the RequestEdit event to be
triggered.

Events
Change This event is triggered each time the user makes a change to the current cell

being edited.    The event is triggered for each character typed, just as for
standard Visual Basic text boxes.

EnterEdit This event is triggered once the current cell has been opened for editing.    In
other words, the EditActive property will always be True when this event
executes.    Although editing can be cancelled by setting EditActive to False in
this event, the recommended method is to use the RequestEdit event.

ExitEdit This event is triggered after the current cell has completed the editing process. 
If editing is cancelled (because the user presses escape, or because EditActive
is set to False on an unmodified cell), the event is not triggered.

RequestEdit Whenever the user attempts to edit the current cell, this event is triggered.   
The Cancel parameter can be set to True to cause the edit request to be
ignored.    Editing can begin either by clicking with the mouse, or by typing into
a cell.    The KeyAscii parameter to this event will be zero if the mouse was
used to begin editing, or will contain the ASCII keycode used to begin the
editing process.

Update This event is sent after the current cell has successfully been edited.
Validate This event is sent when the user completes editing of the current cell.    The

validate event may cancel the update, or may change the updated value before
it is written.

Group:    Controlling database behavior
TrueGrid generally handles all database operation smoothly and automatically.    The following properties
are used to control the interface between Visual Basic and the bound TrueGrid control.

Properties
Active If set to True, then TrueGrid respects all operations performed on the database

using the Data Control or its Recordset.    If False, then TrueGrid ignores any
database movement or updates performed in Visual Basic code or in
conjunction with other bound controls.    However, even when False, TrueGrid
will still fetch data from the database during scrolling or refresh operations.

DataChanged This standard Visual Basic property will be True whenever data in the grid has
been changed but not yet updated to the database.    Setting it to False will
discard any pending changes in the grid.

DataSource This property, available only at design-time, specifies the data control to which
the grid is bound.

DataSourceHwnd A runtime, this property may be set to the HWND of a Data Control to bind
TrueGrid to that control dynamically.    It is possible to bind TrueGrid to a data
control on another form using this property.    This property cannot be assigned
to if DataSource has been set to a valid Data Control at design-time.

FetchMode Normally, TrueGrid fetches cell data one cell at a time.    In some circumstances
(such as with SQL servers), this mode may appear slow to the user, since each
access will require more time.    This property allows you to change the method
TrueGrid uses to fetch data to specify per-row or per-grid fetching rather than
per-cell fetching which is the default.

Events
Append When the user is positioned to the last row of the grid, pressing the down arrow

key will trigger this event.    It is up to the programmer to perform an AddNew
and Update to the database, which will be reflected in the grid.

Group:    Working with multiple row selections
TrueGrid supports marking of multiple rows in the grid.    This capability is enabled by setting the
SelectMode property and examining the list of Bookmarks maintained by the grid.    Bookmarks can also
be added to the Bookmark list to cause records to be marked.

Properties
BookmarkCount Contains the number of rows currently selected, or the size of the

BookmarkList.    Setting this property to zero clears all marked rows.    It cannot
be set to any other value.

BookmarkList This is a property array which contains a list of selected rows, identified by their
bookmarks.    Setting an item to an empty string unmarks the row and removes
the bookmark from the list.    You can add a bookmark by assigning a new
bookmark to the item one past the end of the BookmarkList.

SelectMode This property indicates whether selection is enabled, and whether the selected
rows are visible.    Each may be controlled independently.    Although
bookmarks are global to the grid, this property respects the SplitPropsGlobal
setting.    Setting SelectMode while SplitPropsGlobal is True will change the
selection mode for all splits in the grid; otherwise, only the current split is
affected.

SelectZoneWidth You can use this property to set the width of the area that allows the user to
interactively select multiple rows.    The number represents the number of pixels
from the left that the checkmark will appear in.    Note that in this zone the users
will be unable to change rows.

Events
MarkChange This event is triggered whenever the user marks or unmarks a row by clicking

in the left margin of the grid.
QueryMark This event operates only in callback mode.    It is triggered whenever the grid

needs to know whether a row is currently selected.    It is up to the programmer
to keep track of the list of selected rows, while TrueGrid handles the display
and selection process.

Group:    Controlling splits
TrueGrid supports powerful multiple-split capabilities, which can be used for Excel-like user-controlled
splits, or can be used to implement locked columns.    Although all splits display the same data, most
properties are specific to a split and can be set differently for each split.    SplitPropsGlobal affects this
behavior.

Properties
InsertSplit Assigning an integer to this property will insert a new split before the split

indicated by the integer value.
RemoveSplit Assigning an integer to this property will remove the split indicated by the

integer value.
SplitGroup This property contains the group number for a split.    All splits with the same

group number are "synchronized" so that they scroll simultaneously.   
Changing the group number for a split will "unlink" it from other splits so that it
may scroll independently in the vertical direction.    Splits are always
independent for horizontal scrolling.

SplitIndex This property contains the number of the current split, and can be changed to
make a different split active.    Splits are numbered from 1 to the number of
splits in the grid.    At design time, changing this property while SplitPropsGlobal
is False allows you to set properties for a specific split within the design-time
layout.

SplitPropsGlobal This property affects the behavior of a large number of TrueGrid properties.    If
True (the default), then all properties apply globally to all splits.    If False, then
selected properties are applied only to the split identified by SplitIndex (the
current split).    Most properties, including column properties, can be
customized on a per-split basis.

Splits Contains the number of splits currently present in the grid.    Setting this
property to one higher than its current setting creates a new split.

SplitSize This property contains the width of the split.    Its meaning is dependent upon
the value of SplitSizeMode.    It contains either (a) a scale factor for the split, (b)
the number of columns the split must contain, or (c) the width of the split in
twips.

SplitSizeMode This property determines how TrueGrid decides upon the size of the split.    It
can be set to (a) size the split according to a scale factor, (b) force the split to
always display an integral number of columns, or (c) size the split to a specified
number of twips.

Events
SplitChange This event is triggered whenever the SplitIndex is changed either by user

interaction, or by changing the SplitIndex property directly in code.    The event
is fired only once if SplitIndex is changed in code.

Group:    Drag and drop
Most of these properties and events implement the standard Visual Basic drag-and-drop facilities.    See
the Visual Basic documentation for these properties.    In addition, TrueGrid implements additional
features to simplify the implementation of drag-and-drop interfaces.

Properties
DragIcon Contains the icon used when the grid is dragged to another location.    Defaults

to a shadow of the grid's rectangle.
DragMode Indicates whether dragging of the grid is manual or automatic.    The setting of

this property does not affect the DragCell event, which is sent in all cases.

Events
DragCell This event is triggered whenever TrueGrid detects an attempt to drag a cell

away from the grid.    The cell does not need to be the current cell.    The row,
column, and split numbers of the dragged cell are provided as arguments.   
The programmer may perform any action in this event.

DragDrop Indicates that another control has been dropped into the grid.
DragOver Indicates that another control is being dragged over the grid.

Group:    Determining cell dimensions and location
Normally, the programmer doesn't care exactly where cells are positioned relative to the coordinates of
the form.    However, in some cases (such as in the RequestEdit event) it is useful to position other
controls relative to the current cell or a column.    These properties allow you to determine the exact
location of a cell.    In order to be valid, the cell must be visible.    If the cell is not visible, these properties
return 0.

Properties
CellRectHeight If the current cell is visible, this property returns the height of the current cell in

the coordinate system of its parent form or container.    This property cannot be
set.

CellRectLeft If the current cell is visible, this property returns the left boundary of the current
cell in the coordinate system of its parent form or container.    This property
cannot be set.

CellRectTop If the current cell is visible, this property returns the top boundary of the current
cell in the coordinate system of its parent form or container.    This property
cannot be set.

CellRectWidth If the current cell is visible, this property returns the width of the current cell in
the coordinate system of its parent form or container.    This property cannot be
set.

ColumnRectLeft If the specified column is visible, this property returns the left boundary of the
column in the coordinate system of its parent form or container.    This property
cannot be set.

ColumnRectWidth If the specified column is visible, this property returns the width of the column in
the coordinate system of its parent form or container.    This property cannot be
set.

CurCellVisible This property returns True if the current cell (indicated by RowIndex and
ColumnIndex) is visible within the displayed area of the current split.    It returns
False if the cell is not visible.    Setting this property to True will scroll the grid so
that the cell is in view.    Setting it to False is meaningless and is ignored.

Group:    Finding cells based upon coordinates
TrueGrid supports several properties which can be used to determine, given a point on the grid, what
column, row, or split is present at that point.    These properties are especially useful for drag-and-drop
applications, which need to know where in the grid data is to be dropped.

Properties
ColumnAtPoint Returns the column which is beneath the point specified by PointX and PointY. 

If there is no column at that position, then this property returns zero.
PointX Specifies the X coordinate (always in twips) of the point used by

ColumnAtPoint, RowAtPoint, or SplitAtPoint.    This property must be set by the
programmer before asking for the Column, Row, or Split.

PointY Specifies the Y coordinate (always in twips) of the point used by
ColumnAtPoint, RowAtPoint, or SplitAtPoint.    This property must be set by the
programmer before asking for the Column, Row, or Split.

RowAtPoint Returns the row number which is beneath the point specified by PointX and
PointY.    For the headings, zero is returned.

SplitAtPoint Returns the number of the split which is beneath the point specified by PointX
and PointY.    If there is no split at the specified coordinate, zero is returned.

Group:    Programmer control
These are miscellaneous properties and events which are mostly of use to the programmer when
customizing the behavior of TrueGrid.

Properties
About Available only at design time.    Displays an About Box which indicates the

current version of TrueGrid.
DataMode Indicates whether the grid is being used in database mode, or callback mode

(in which case data must be provided in the Fetch event, and the Rows and
Columns properties must be set by the programmer).

Enabled If True, then user interaction with the grid will be possible.    If False, the user
cannot interact with the grid, but it will still display data and respond to the
database.

ExtendRightCol If True when the the vertical scrolll bar is not needed to display all the columns
this property will extend the rightmost column to the grids edge.    If false then
the grid will respect the rightmost columns width setting.

Height Contains the height of the grid in the scale mode of its container.
HelpContextID Contains the context ID which will be used for the grid if context sensitive help

is triggered by using the F1 key at runtime.
Hwnd This read-only property will contain the Windows HWND handle of the grid.   

Although the grid supports complex visual behavior, it consists of a single
Windows HWND Window.    Users of this property generally must be familiar
with the Windows API in order to use it.   

HwndEdit When editing is in progress, the grid displays a Windows edit control above the
current cell.    This read-only property will contain the HWND handle of that
window.    If editing is not in progress (EditActive is False), this property returns
zero.

Index The index of the grid, if it is part of a property array.
Left The left coordinate of the grid in the scale mode of its container.
Name The name used to identify the grid in Visual Basic code and at design time.
Parent This property returns the control (a form, frame, or picture control) in which the

grid is contained.
RefreshColumn You can only write to this property, and then only at runtime.    Setting this

property to zero refetches all of the data in the current column of all splits.   
Setting it to a number other than zero refetches data only in the column
indicated.

RefreshRow You can only write to this property, and then only at runtime.    Setting this
property to zero refetches all of the data in the current row of all splits.    Setting
it to a number other than zero refetches data only in the row indicated.

Tag This is a programmer defined text string which can be used for any purpose.
Top The top coordinate of the grid in the scale mode of its container.
Version This property returns the current internal version number of the TrueGrid

control being used.    The version number is an integer which is incremented for
each distributed version, including patches and special releases.

Visible If True, the grid will be visible to the user.    If False, the grid will not be visible.   
Invisible grids still respond to the database unless their Active property is set to
False.

Width The width of the grid in the scale mode of its container.

Events
CheckRows Enables the programmer to dynamically change the rows property during grid

fetching.
Fetch Called whenever the grid needs data to fill a cell in callback mode.    Not used

in database mode.
GotFocus Triggered whenever the grid receives focus.
KeyDown Triggered whenever a key is pressed in the grid, or in the editing cell.    This

event is triggered before the grid responds to the key, but it cannot be
cancelled.    Use the Form KeyPreview property to capture keys before the grid
receives them.

KeyPress Triggered when an ASCII key is pressed.    The keypress can be cancelled if
you don't want the grid to respond to the key.

KeyUp Triggered when a keyboard key returns to the unpressed state.
LostFocus Triggered whenever the grid loses focus.
MouseDown This event is triggered when either mouse button goes down and is triggered

before the grid recives the mouse event.
MouseMove Triggered when the user moves the mouse anywhere inside the grid.
MouseUp Triggered when either mouse button returns to its unpressed state.
Paint This event is triggered whenever the grid repaints itself.    This occurs

frequently in the Windows environment and is generally useful only for special
circumstances.    In this event, users familiar with the Windows API may use the
Hwnd of the grid (returned by the Hwnd property) to paint special effects,
including lines, bitmaps, icons, etc. in appropriate cells of the grid.

Group:    Value list
These are properties and events that relate to using TrueGrid's value list features at run time.

Properties
ColumnButton Determines whether or not a dropdown button will appear in a given column.
ColumnComboMaxitems Determines how many items will be displayed in the grid's automatic drop

down combo box, before a scroll bar will appear.
VlistColumn Sets the current value list column for which all value list properties are being

read from or written to.    Similar to SplitIndex or ColumnIndex and their
respective properties.

VlistCount Returns the number of entries in the value list.    Can be set to zero to remove
the value list for the current value list column.

VlistData An indexed property that returns the specific items in the value list for the
data column.    Corresponds to the Data column In the Field Values Dialog.

VlistDefault Specifies a default value to be used for the current value list column.    Any
value that is not in the value list use the default display value instead.

VlistPicture If you want to display a picture in place of the value currently displayed then
set this property for the corresponding value in the VlistData property and
have the ColumnStyle property set with GVLS_TRANSLATE.

VlistStyle Determines what options will be used for the column's value list.    This
property allows you to have the list use translated values, cycle through
available option, auto validate, and how the data is to be displayed.

VlistText If you want a string in place of the value currently displayed then set this
property for the corresponding value in the VlistData property and have the
ColumnStyle property set with the GVLS_TRANSLATE.

Events
ClickButton This event is triggered whenever a column with the ClickButton property set to

True has the button clicked by the user.    The event passes the current column.
Useful for popping up other controls.

ValidateError This event is triggered only when the VlistStyle is set to GVLS_VALIDATE.    If
the user enters a value that is not in the value list then the ValidateError is fired.
Use this event to determine what to do with new or incorrect values.

Group:    Column Summary
These are properties and events that relate to using TrueGrid's column summary features.

Properties
ColumnSum Enables the programmer to set the seed of the current column's sum.    You can

also read this property at any point to get the current column's sum.
ColumnSumEnable Boolean value that turns on a column's summary feature.    If set to True then

the grid will keep a sum for that column.    If False then the grid will not sum the
column.

Events
ColumnSumChange While the grid does keep the sum internally the programmer may want to

constantly display that value.    When there is a change in the column sum then
this event is triggered.

