Chapitre 14 - Composites

EXERCICE 14-3

Un composite à matrice métallique est fait d'une matrice d'alliage d'aluminium (AI) renforcée de fibres continues de carbure de silicium (SiC). La fraction volumique V_f de fibres est égale à 35% et les propriétés des composants sont données au tableau suivant.

	Unités	Al	SiC
Module d'Young $oldsymbol{E}$	GPa	70	500
Limite d'élasticité R_e	MPa	280	
Résistance à la traction R_m	MPa	520	2500
Allongement après rupture A_f	%	11,66	

- a) Calculez le module d'Young E (en GPa) du composite.
- b) Calculez l'allongement $A_{\mathcal{C}}$ (en %) du composite à l'instant de sa rupture.
- c) Calculez la limite d'élasticité R_{eC} (en MPa) du composite.
- d) Calculez la résistance à la traction R_{mC} (en MPa) du composite en supposant que la courbe de traction de l'aluminium est linéaire dans son domaine plastique entre la limite d'élasticité et la résistance à la traction.