Chapitre 5 - Mélanges et leur comportement

EXERCICE 5-7

a) Solubilité maximale de Mg dans Al:

À 451 °C, l'aluminium (phase α) peut dissoudre à l'état solide 15 %m de magnésium.

$$\theta = 451 \,^{\circ}\text{C}$$
 $C_{\text{max}} = 15 \,^{\circ}\text{m Mg}$

b) Solubilité maximale de Al dans Mg :

À 437 °C, le magnésium (phase δ) peut dissoudre à l'état solide 12,7 %m d'aluminium.

$$\theta = 437 \,^{\circ}\text{C}$$

 $C_{\text{max}} = 12,7 \,^{\circ}\text{m Al}$

c) Nombre de points eutectiques :

Il y a **trois (3)** points eutectiques dans le diagramme Al-Mg. Leurs caractéristiques (coordonnées dans le diagramme) sont les suivantes :

Eutectique	θ (°C)	%m Mg
E ₁	451	15
E ₂	≈ 445	≈ 40
E ₃	437	67,7

d) Composé γ:

Le composé γ a une <u>température de solidification de 462 °C</u>. Son domaine d'existence sur le diagramme d'équilibre ne se limitant pas seulement à une droite verticale mais ayant une certaine largeur, <u>ce composé n'est pas stœchiométrique</u>. En d'autres termes, le composé γ admet des variations de composition autour de sa composition stœchiométrique théorique.

e) Composé β:

Le composé β a une composition chimique moyenne $C_{mMg} \approx 37$ %m . Connaissant la masse molaire M_{Mg} (24,31 g/mole) du magnésium et celle M_{Al} (26,98 g/mole) de l'aluminium, on peut transformer cette concentration massique C_{mMg} en concentration atomique C_{aMg} . Voici comment réaliser cette transformation des concentrations massiques en concentrations atomiques :

Pour un alliage donné, on a par définition :

$$C_{mMg} + C_{mAl} = 1 \tag{1}$$

La masse de magnésium C_{mMg} représente n_{Mg} mole de magnésium tel que : $n_{\text{Mg}} = \frac{C_{\text{mMg}}}{M_{\text{Mg}}}$ (2)

La masse d'aluminium C_{mAl} représente n_{Al} mole d'aluminium tel que : $n_{Al} = \frac{C_{\text{mAl}}}{M_{Al}}$ (3)

L'alliage contient donc n_{Mg} moles de magnésium et n_{Al} moles d'aluminium; la concentration atomique C_{aMg} en magnésium est donc, par définition, égale à :

$$C_{aMg} = \frac{n_{Mg}}{n_{Mg} + n_{Al}} \tag{4}$$

En tenant compte des équations (2) et (3), on obtient :

$$C_{aMg} = \frac{C_{mMg}}{M_{Mg}} + \frac{C_{mAl}}{M_{Al}}$$
 (5)

Dans le cas du composé β , avec les valeurs numériques données ci-dessus, on obtient $C_{\text{aMg}} = 38,72 \, \text{\%at}$.

Comme le composé β est un composé de formule chimique $\mathrm{Mg}_{\mathbf{x}}\mathrm{Al}_{\mathbf{y}}$, où \mathbf{x} et \mathbf{y} sont des nombres entiers petits et premiers entre eux, la concentration atomique C_{aMg} de Mg dans le composé est voisine de :

$$C_{aMg} = \frac{x}{x+y} = 38,78 \% \approx 40 \%$$

Les valeurs des plus petits nombres entiers \mathbf{x} et \mathbf{y} qui conduisent à cette concentration atomique de 40% sont : $\mathbf{X} = \mathbf{2}$ et $\mathbf{y} = \mathbf{3}$

Le composé ${\pmb \beta}$ admet donc pour formule chimique théorique :

 Mg_2Al_3

Lui aussi, <u>le composé β n'est pas stœchiométrique</u> car il admet des variations légères de composition autour de sa composition stœchiométrique théorique.

 $\underline{\textit{Note}}$: la lecture des pages 516-517 du livre $\underline{\textit{Des Matériaux}}$ (paragraphe $\underline{\textit{Série 5000 Al-Mg}}$) permet bien de confirmer que le composé $\underline{\textit{Mg}}_2\underline{\textit{Al}}_3$.

f) Composition C₀ d'un alliage contenant 50% de α primaire et 50% de constituant eutectique à 450 °C

Le constituant eutectique ($\alpha + \beta$) se forme à partir du liquide de composition eutectique. Il faut donc trouver la composition C_0 d'un alliage qui, à 452 °C, contient 50% de α primaire et 50% de liquide eutectique. En appliquant la formules donnée par la règle des bras de leviers pour calculer la fraction massique f_{le} de liquide eutectique, on obtient l'équation suivante :

$$f_{le} = \frac{C_0 - 15}{35 - 15} = 50\% = 0.5$$

Il est alors aisé d'en déduire la valeur de C_0 :

 $C_0 = 25 \text{ } \%\text{m Mg}$

g) Composition C_0 d'un alliage contenant 50% de α et 50% de β à 0 °C :

On raisonne de façon similaire à celle de la question précédente ; la règle des bras de leviers donne l'équation suivante à 0 $^{\circ}$ C pour cet alliage:

$$f_{\alpha} \cong \frac{C_0 - 1}{35 - 1} = 50\% = 0.5$$

Il est alors aisé d'en déduire la valeur de C_0 :

 $C_0 \approx 18 \text{ %m Mg}$