Chapitre 5 - Mélanges et leur comportement

EXERCICE 5-3

a) Solubilité maximale de Pb dans Bi

Le plomb n'est pas soluble dans le bismuth solide.

0 %

b) Solubilité maximale de Bi dans Pb

C'est la teneur maximale en Bi dans la phase α du plomb (23,8% à 184 °C)

23,8 %

c) Phases (nature, composition et proportion) dans un alliage à 50 % de Bi à 126 et 124 °C

On identifie tout d'abord dans quel domaine se trouve le point caractérisant l'alliage de composition nominale C_0 porté à la température T. Pour calculer les proportions des phases, il suffit d'appliquer la règle des bras de levier à chacune de ces températures. On obtient ainsi :

TEMPÉRATURE	PHASES	COMPOSITION	PROPORTION
126°C	β	42% Bi	$\frac{56-50}{56-42}=42,8\%$
	ш	56% Bi	$\frac{50-42}{56-42}=57,2\%$
124°C	β	42% Bi	$\frac{100 - 50}{100 - 42} = 86,2\%$
	γ	100% Bi	$\frac{50 - 42}{100 - 42} = 13,8\%$

d) Phases (nature, composition et proportion) dans un alliage à 50 % de Bi à 126 et 124 °C

La proportion d'eutectique à 124°C est égale à celle de liquide qui existait à 126°C juste avant la transformation eutectique :

$$(f_E)_{124^{\circ}C} = (f_L)_{126^{\circ}C} = 57,2\%$$

e) Composition des alliages contenant 50 % de phase β à 100 °C

À 100°C, le diagramme présente deux régions à deux phases: région \boldsymbol{A} ($\alpha + \beta$) et région \boldsymbol{B} ($\beta + \gamma$). Dans chacune de ces régions existera donc un alliage contenant 50% de phase β . En appliquant la règle des bras de leviers dans chacune de ces régions, on obtient

- région
$$A(\alpha + \beta)$$
: $f_{\beta} = 0.5 = \frac{C_1 - 20}{30 - 20}$, d'où $C_1 = 25\%$ Bi

- région B
$$(\beta + \gamma)$$
: $f_{\beta} = 0.5 \frac{100 - C_2}{100 - 41}$, d'où $C_2 = 70\%$ Bi