
Using Content-Addressable Search Engines

To Encrypt and Break DES

Peter C. Wayner

Computer Science Department

Cornell University

Ithaca NY 14853

Abstract

A very simple parallel architecture using a modi�ed version of content-addressable

memory can be used to cheaply and e�ciently encipher and decipher data with

DES-like systems. The paper will describe how to implement DES on these mod-

i�ed content-addressable memories at speeds approaching some of the best spe-

cialized hardware. The chips can also be used to build a large scale engine for

exhaustively searching the entire keyspace of DES.

The original DES system was designed to be easily implemented in hardware [NBS77]

and the current silicon manifestations of the cipher use modern processor design tech-

niques to encipher and decipher information at about 1 to 20 megabits per second.

Implementations of DES in software for standard CPUs, however, are markedly slower

than specialized chips because many of the operations involved in DES are bit-level ma-

nipulations. As a result, many of the DES-like systems such as Merkle's Khufu [Mer90]

were designed as replacements that could be easily implemented on conventional hard-

ware.

There is one class of general architecture, however, that implements bit-level op-

erations. The machines like the CM-1, CM-2 and CM-200 from Thinking Machines

Corporation and the Maspar machine all have thousands of one-bit processors. The

designers intended that large number of processors would make up for the de�cencies

of the individual nodes.

Another example of this small architecture is now emerging from the labs of mem-

ory designers who are trying to build sophisticated content addressable memory. The

individual processors of these machines are even weaker than the ones of the CM-1, but

they can be packed very densely on a chip. The tiny processors have only a fraction of

the memory of a CM-1 (42 bits versus thousands) and only a one dimensional intercon-

nection network (vs 12), but this is su�cient to implement DES successfully. Moreover,

the packing density (1024 processors per chip) ensures that a signi�cant amount of

parallelism is very cheap.

1



Implementing the cipher on generalized parallel architectures like this have one

main advantage{ cost. Many computer designers often �nd that the tradeo� between

the speed of a specialized DES chip is often not worth the price. Generalized, content-

addressable machines, however, have many other applications and this makes them a

good compromise for the system designer. This paper will describe how to implement

the algorithm on this architecture and produce results that are on par with the best

specialized hardware.

1 Content-Addressable Memory Machines

Standard memory maps an address to a value. Unfortunately, there are many appli-

cations when an algorithm needs to know which memory location holds a particular

value. The only recourse is to search all the memory to �nd the value in question.

Content-addressable memory is a hardware solution to this problem that will invert

the search and provide the address holding a value in only one operation. The tech-

nique has been well-researched over the years and the book by Kohonen [Koh87] notes

many approaches and summarizes some of the more salient research. Several companies

including AMD are making basic content-addressable memory modules.

Recently teams at Syracuse University (some publications include [Old86, OWN87,

OSB87]), MIT and Cornell ([Bri90, WS89, Zip90]) have developed more sophicated

and powerful implementations in silicon. They allow the programmer to chain the

result of several searches together in a simple fashion so that larger data structures

and more complicated searches can be performed in hardware. Some of this hardware

was originally intended to speed up logic programming, but many people have found

surprising and interesting applications for the simple hardware. Old�eld and his team

at Syracuse, for instance, are currently working on compressing data.

A company, Coherent Research Incorporated of Syracuse, New York, is building

sophisticated content-addressable memory chips called the Coherent Processor for

widespread use. This paper will use their chip as an example because it is commercially

available, but there is no reason why the algorithms cannot be modi�ed slightly for use

on similar chips.

At the basic level, the Coherent Processor is a large, single dimensional array of very

simple parallel processors. Each processor has 42 bits of memory (W

i

[0] : : :W

i

[41], the i

denotes the processor number) and three one-bit registers (R

1

, R

2

and R

3

). It also has a

processing unit that can execute instructions on the registers, transfer data between the

registers and the memory, communicate with the two neighboring processors or match

a value on the internal bus. The instructions are simple boolean operations that read

three bits of memory and store the result in a third. The match instructions can be

used to simultaneously compare one 42-bit value against the entire array of processors.

If there is a match, then the appropriate value is placed in a register.

The following table shows the basic Coherent Processor instructions and the number

of clock cycles used to complete them.

1. MATCH Simultaneously compare the 42 general bits at each processor with the

values on a bus and store the result of this match in R

1

. This is used to look up

2



items quickly. The match routine can include wild-card matches for individual

bits so it is possible to match for strings of bits like \0000******11*****" (a \*"

matches both a \0" and a \1"). If you want to move the value of bit W

i

[2] into

R

3

, then you would \match" a pattern with 1 in bit W

i

[2] and wild-card matches

speci�ed for the rest and store the result in R

3

. If the value of bit W

i

[2] was 1 in

a particular word, then the match would be successful and a 1 would be stored in

R

3

. If a zero was in bit W

i

[2], then the match would be unsuccessful and a zero

would be stored. The values of the other columns would not be a�ected. Cost:

4 cycles.

2. CALC Calculate a three-bit function of the three registers and store the result in

a third register. Cost: 2 cycles.

3. READ Take the result of a selected word and place it on the bus. This operation

usually follows a MATCH operation. Cost: 3 cycles.

4. WRITE Move the result from the bus into the selected word(s). Cost: 2

cycles.

5. SHIFT The �rst registers of each word are interconnected. They can shift the bit

in their register to adjacent words in one step. Cost: 2 cycles.

6. WRITECOLUMN Moves a bit from a register into one of the 42 bits of memory.

Cost: 2 cycles.

These commands can be strung together to manipulate data in simple and straight-

forward methods.

2 Implementing Plain DES

There are three main operations involved in encrypting a block of 64 bits with the basic

mode of the Data Encryption Standard known as the Electronic Code Book (ECB).

They are 1) permuting the bits, 2) passing a 32-bit block through an s-box and 3)

permuting the key structure. Each of these steps is easy to program on the Coherent

Processor , in a large part because the architecture is so limited. Several features of the

instruction set, however, make implementing the algorithm very easy.

Let the plaintext blocks of data be denoted, fB

1

; : : : ; B

n

g and the individual bits of

block B

i

be fB

i

[0] : : :B

i

[63]g. The key is K and the individual bits are K[0] : : :K[55].

There are sixteen rounds of encryption and a key scheduling algorithm chooses a

32 bit subset of key bits to be used on each round. Let K

(l)

[0] : : :K

(l)

[31] be the 32

bits used in round l. Each block of 64 bits is broken into two, 32-bit halves (called B

L

and B

R

) and in each round the value of one of the halves is mixed with a subset of the

key bits, passed through the s-box and then mixed with the other 32-bit half. More

precisely, in each round:

B

R

 B

R

� f(B

L

�K

(l)

):

Then B

L

and B

R

are exchanged.

3



The data to be encrypted is broken into 64-bit blocks and each block is stored in

32-bit halves in two adjacent 42 bit words in the array, W

i

and W

i+1

.

2.1 Permuting the Bits

At the beginning and the end of the encryption process, the 64 bits in the block are

passed through a bit-wise permutation. This step is often considered the slowest part of

many software implementations for general purpose machines and many people believe

that it was included to slow down software implementations and force general CPUs to

move bits one by one. The Coherent Processor must also move each bit one at a time,

but at least this is the best that it can do. In practice, the large number of parallel

processors makes up for the weakness.

Let the permutation be written, W

i

[p

0

] ! W

j

[p

1

] ! : : :! W

i

[p

63

] ! W

i

[p

0

]. The

process can be accomplished by stringing together a chain of bit moving commands.

When the bits to be exchanged are on di�erent words, then the CAM must also exe-

cute a bit-passing command to swap the bit to the adjacent word. The work can be

summarized in pseudo-code:

Move W

i

[p

0

] into a bit .

for k:=1 to 63 do

Move W

i

[p

k

] into a bit.

Move W

i

[p

k�1

] into its destination.

If W

i

[p

k

] is on the wrong word,

then pass it to the correct one.

Move W

i

[p

63

] into W

i

[p

0

] .

There are only 32 bits that need to be shifted between words. It is possible to do

this quickly. The next section which computes the values of the s-boxes is much more

time intensive.

Cost: 129 MATCH or WRITECOLUMN instructions, 32 SHIFT instructions. 580

cycles.

2.2 Computing the S-boxes

The s-box are responsible for providing the non-linear mixing of the bits that is necessary

to provide adequate security. At the highest level, the s-box is a function that maps 32

bits to 32 other bits. The s-boxes used in DES are, though, much simpler and they can

be described as eight functions that take 6 out of the 32 bits and return four. Some

bits are used more than others. These eight s-boxes can be further simpli�ed into 32

functions that map six bits to one bit and this is the best level of abstraction to use

when programming the Coherent Processor .

Meyer and Matyas [MM82] describe the design of the S-boxes in terms of minterms,

which are roughly the same as clauses of boolean variables. An equation describing

output of one bit of an s-box might look something like this:

4



B

i

[1] � :B

i

[2] �B

i

[3] �B

i

[4] + B

i

[1] � :B

i

[5] � :B

i

[6] +B

i

[2] �B

i

[5]: (1)

(\�"=boolean and, \+"=boolean or, \:"=boolean not.) There are three minterms

in the example and it is generally believed that the number of minterms in a minimal

expression is one measure the complexity of the s-box. The recent papers by Biham and

Shamir [BS91] and others , show that there are additional ones that are more important.

Meyer and Matyas note that there are 52 and 53 minterms in the description of each of

the 8 s-boxes.

These minterm descriptions of the s-boxes can be directly converted into operations

for the Coherent Processor . Each clause of variables to be ANDed together can be

computed with a MATCH equation with appropriate set of ones for the variables in the

clause, zeros for the negated variables in the clause and wildcards for the unrepresented

variables. The expression from equation 1 can be encoded:

MATCH\1011 � � � : : : � ��

00

! R

1

CALCR

1

! R

2

MATCH\1 � � � 00 � � : : : � ��

00

! R

1

CALCR

1

�R

2

! R

2

MATCH\ � 1 � �1 � � : : : � ��

00

! R

1

CALCR

1

�R

2

! R

1

(2)

This takes 6 cycles per minterm. At 53 minterms per s-box and 8 s-boxes per

encryption round, this takes 2544 cycles per encryption round to calculate the values

of the bits. It takes one SHIFT, one MATCH, one CALC and one COLUMNWRITE

to XOR each of the 32 bits into the adjacent word. That is an additional 384 cycles

for 2928 per encryption round. There are 16 rounds in DES, the permutations take 580

cycles and the overall encryption process takes 47,528 cycles.

2.3 Handling the Key

When the result of one of the 32 functions is computed it must be xor-ed with the key

and then passed to the adjacent word to be xor-ed with the appropriate bit. The same

key encrypts all the blocks at the same time and it can be included by XORing the

key vector, K

(l)

, into the match words. For instance, assume that \11001100 10101110

01001100 11100101" is the 32 bits of key being used in a round and the minterms from

equation 1 de�ne the s-box equations. Then the operations in example 2 become:

MATCH\0111 � � � : : : � ��

00

! R

1

CALCR

1

! R

2

MATCH\0 � � � 11 � � : : : � ��

00

! R

1

CALCR

1

�R

2

! R

2

5



MATCH\ � 0 � �0 � � : : : � ��

00

! R

1

CALCR

1

�R

2

! R

1

(3)

The same key is used to encrypt or decrypt each block of data in the simple version

of DES. There are 56 key bits, but only 32 of them are used during each of the 16

di�erent rounds. The bits being used are maintained by the program running on the

general machine that is driving the Coherent Processor . It selects the subset of 32

bits that are used in each encryption and modi�es the s-box functions accordingly.

This method presupposes that the sixteen 32-bit subsets of the keys are precomputed

and \compiled" into the code. This process is non-trivial and certain to cost some time.

When the amount of data encrypted or decrypted per key change is large, then this

\compilation" time is minimal. If the key is changed frequently,then there may be some

signi�cant impact on the encryption times. A better understanding of the e�ects of this

will need to wait until the software is completely implemented on a working system.

2.4 The Total Cost

The current version of the Coherent Processor will run at speeds up to 50 MHtz. If

an encryption takes about 47,428 cycles, then each pair of words in the processor array

can encrypt about 1,000 64-bit blocks per second. Writing a word into the array and

reading it out takes 5 cycles in total. One chip of the current model has 1024 words

or processors, so it can read in, encrypt and write out blocks of 32K in 52,548 cycles.

This is equivalent to 31.2 megabits per second{ something that is in line with the

middle range of current DES chips. The Cryptech CRY12C102 data sheet reports that

it runs at 22.5 megabits per second and the Pijnenburg PCC100 gets 20 megabits per

second. Moreover, the Coherent Processor is designed to be easily expanded by linking

together multiple copies of the chip and n chips will n times faster for small numbers

of n. When there are hundreads or thousands of chips, the cost of writing and reading

the information from the Coherent Processor becomes the limiting factor. Coherent

Research reports that the new chip will cost about $100 per copy in small quantities

and substantially less in large ones.

3 Exhaustive Attack on DES

When DES was introduced in 1977, some computer scientists protested that 56 bits

were not su�cient because it would be possible to do an exhaustive search of the key

space in a short amount of time using a massively parallel computer. [DH77] In their

book, Meyer and Matyas [MM82] discount that possiblity and predict that it would

just not be physically possible to build the machine until the 1990's because there were

too many physical limitations. Heat and power usage are two major barriers.

How easy would it be to build one today? Standard o�-the-shelf encryption chips

are plentiful and relatively cheap, but they require a second processor feeding them the

keys and the test cases. Anyone who wants to build such a machine must undertake a

project of building such a large array of distributed computers. This would require a

6



large amount of custom design work. A truly dedicated attacker could even fabricate

custom DES testing chips which have a built in circuit for incrementing the key by one

bit and testing the result against another register. Only governments could a�ord a

budget this large. Moreover, the slightest change in the algorithm would render this

machine worthless.

Garon and Outerbridge calculated the approximate costs of designing such a ma-

chine and found that it would cost about $129,000 for a machine that would break DES

within 1 year if the machine was built in 1990. [GO91] They assume that it is possible

to build a node that encrypts 2 million key tests for $25 in order to complete such a

machine. They do not describe the details of how to design the board or manufacture

it is su�cient quanties.

The Content Addressable Memory array chips, however, are designed to be built

into large parallel arrays of chips. It is already possible to buy a board for a PC which

has 64 chips of a previous model of the Coherent Processor . Large arrays should not

be hard to create. Moreover, the algorithm is implemented in software, so the machine

can also be used to attack many other subtle and not-so-subtle variations of DES.

What is the best way to do an exhaustive search with the current architecture of

the Coherent Processor? The version described for simple encryption and decryption is

able to work very quickly because it can encode the key in the stream of instructions fed

to the Coherent Processor. This approach must be abandoned because an exhaustive

search of the key space requires that each processing node must use a di�erent key.

One alternative is to store the key bits in the 10 extra tag bits stored at each node.

Two nodes are used to hold the two 32-bit half-blocks of each case, so there are up

to 20 extra key bits which can be stored at each node. Let there be 2

n

processors in

the machine. That means there are 2

n�1

potential keys that can be tested with each

round because two nodes are used for each encryption. Assume that n � 21 and the

problem does not over
ow the physical space of the real machine. (Later versions of the

architecture could have more free bits available.) At each pair of nodes, store a unique

set of n � 1 key bits. These bits will be used by this pair of nodes alone. The other

56� (n� 1) bits are shared by all the instances and they are encoded in the instruction

stream as before.

At the beginning of each round of encryption, the local key bits must be XOR-

ed into the appropriate half-block of bits before that half-block is passed through the

S-boxes. These four or �ve instructions will XOR in the key bit K

i

in to position B

j

:

MATCHK

i

! R

1

SHIFT

MATCHB

j

! R

2

CALCR

1

XORR

2

! R

2

WRITECOLUMNR

2

! B

j

(4)

The SHIFT instruction is only necessary if the key bit is on the opposite node from

the destination bit. This process is repeated at the end of the S-box calculation to

7



remove the bit from the data. Only 32 of the 56 key bits are used at each round, but

it is possible that up to n� 1 of these bits will come from the bits stored locally. The

operations in equation 4 take 16 cycles. They must be repeated 2n� 2 times for each

round. The result takes 512n� 512 extra cycles for each encryption. If a machine was

built with a full complement of 2

21

processors, then it would take 57,126 cycles to test

2

20

potential keys. This step must be repeated 2

36

times and the machine is capable of

doing about 875 of these tests per second or about 76 million per day. Exhausting the

entire space would require 904 days. If the well-known trick of exploiting symmetry in

the keys is used to reduce the key space to 2

55

keys, then one machine will test all in

452 days.

How much would such a machine cost? There are 2

10

processors on a chip that will

cost between $30 and $100. 2

11

chips are necessary and this would cost between about

$60,000 and $200,000. Control hardware would add additional $10,000 to $20,000. 45

machines would cost about $3 million dollars and exhaustively search the space in 10

days or $30 million to search the space in 1 day with 450 machines. I'm assuming that

volume discounts would apply at this scale. This is a price that should apply at the

end of 1992 when the chips become widely available.

The standard assumptions about time and transistor density should apply to this

model as well. It is entirely conceivable that we will see large changes in density and

price of these machines in the near future and this should prove to be a major threat

to the security of DES and by logical extension, the UNIX password system. This large

machine made up of CAM is reprogrammable so it is possible to retool it to mount

an exhaustive search on DES-like system where either the s-boxes or the scheduling

algorithms were constrained.

4 DES with Modi�ed Chaining

The last several section described how to encrypt a large block of data in parallel using

a simple DES with no feedback. A more robust version of DES feeds the result of

encrypting each block into the key selection of the next block. Let E

i

= f(K;B

i

)

represents the cipher text blocks. A feedback cipher sets E

i

= f(K;B

i

� E

i�1

). \�"

represents boolean XOR. E

0

is set to a pre-arranged constant. This process is called

Cipher Block Chaining (CBC).

The modi�cation adds a great deal of strength to the plain DES because it reduces

the redundancies that can developed if there is an 64 bit block that occurs often in the

plaintext. The feedback mode ensures that a di�erent value will permute each block

and obscure the redundancy. It should be obvious that this system cannot be used

when all the blocks are computed in parallel. Here is a modi�ed version of chaining

that can be implemented in parallel.

One solution is to exchange and XOR bits with neighbors at the end of certain

rounds of encryption. In round 1, the left half of each block is used to compute the

value XORed into the right half. After this, the left blocks are exchanged with the

neighboring blocks and XOR'ed into the right halves of the neighboring block. This

can be done with pseudo-code like this. W

i

is the left half and W

i+1

is the right half.

8



for k:=0 to 31 do

MATCH W

i

[k]! R

1

CALC COPY R

1

! R

2

SHIFT

SHIFT

CALC XOR R

1

R

2

! R

1

WRITECOLUMN R

1

! W

i+1

[k]

This command shifts one bit to the next pair of words over and xor's it with the value

of a neighboring block. It takes 16 cycles per bit to do it. This can be repeated as

often as desired at the cost of slowing down the entire encryption. Doing this at the

end of each round of encryption costs 8,192 cycles and this slows the encryption rate

to 27.0 megabits per second. In this case, a change in block B

i

will propigate through

blocks B

i

to B

i+16

and e�ect their encrypted values. Arbitrarily complex shifting can

be included as long as care is taken to ensure that the results can be reversed. If this

step is done often in the process, it can e�ectively turns the encryption into one large

block at a small decrease in speed.

5 Conclusion

This paper has shown that a simple architecture intended for information storage and

retrieval can encrypt and decrypt messages faster than many of the best specialized

chips. Naturally, the results show that the process can be extended to other DES-like

systems. The only problem is expressing the s-boxes so they can be implemented with

minterms.

Chips like the Coherent Processor also makes it very easy to create a large-scale

processor for exhaustive cryptanalysis of the key space because the chips were designed

to be grouped together in a large array. The hypothetical machine described here

is much di�erent from the other machines described in the literature because it is

substantially closer to being created. The next several generations of this architecture

should pose a large threat to wide-spread use of the old DES.

There are several changes to the Coherent Processor that would make it better able

for encrypting DES. Currently, the key is \compiled" into the program for the CAM

and this may be a non-trivial event. If future versions of the architecture have more

that 42 bits per word, then it could be practical to store the key locally and add the

key in bit by bit as it is done in the brute force attack. Also, the current version of

the Coherent Processor will only compute 3 bit functions. 4 or 5 bit functions may be

quite practical and they would speed the results of the process.

This draft of the paper represents a preliminary look at the problem of implementing

DES on the special CAM architecture. Better numbers will be available when working

hardware is available.

9



6 Acknowledgements

The author would like to thank Chuck Stormon at Coherent Research for taking the

time to teach me how to program the Coherent Processor and making many valuable

comments about the structure of this paper.

References

[Bri90] Sharon Marie Britton. 8k-trit Database Accelerator with Error Detection.

PhD thesis, Massachusetts Institute of Technology, February 1990.

[BS91] Eli Biham and Adi Shamir. Di�erential cryptanalysis of snefru, khafre, redoc-

ii, loki, and lucifer. In Crypto 91, Santa Barbara, California, 1991.

[DH77] Whit�eld Di�e and Martin Hellman. Exhaustive cryptanalysis of the nbs

data encryption standard. Computer, 10(6):74{84, 1977.

[GO91] Gilles Garon and Richard Outerbridge. Des watch: And examination of the

su�ciency of the data encryption standard for �nancial institution's infor-

mation security in the 1990's. Cryptologia, 15(3):177{193, July 1991.

[Koh87] Teuvo Kohonen. Content-Addressable Memories. Springer-Verlag, Berlin,

New York City, 1987.

[Mer90] Ralph Merkle. Fast software encryption function. In A.J. Menezes and

S.A. Van Stone, editors, Crypto 90, Berlin, New York City, 1990. Springer

Verlag.

[MM82] Carl H. Meyer and Stephen M. Matyas. Cryptography: New Dimension in

Computer Security. John Wiley and Sons, New York, 1982.

[NBS77] NBS. Data encryption standard (des). Technical report, National Bureau of

Standards (US), Federal Information Processing Standards, Publication 46,

National Technical Information Services, Spring�eld, Virginia, April 1977.

[Old86] J.V. Old�eld. Logic programs and an experimental architecture for their

execution. Procedings of the I.E.E.E. Part E, 133:163{167, 1986.

[OSB87] J.V. Old�eld, Charles D. Stormon, and M.R. Brule. The application of vlsi

content-addressable memories to the acceleration of logic programming sys-

tems. In CompEuro 87, VLSI and Computers, pages 27{30, Hamburg, Ger-

many, May 1987.

[OWN87] J.V. Old�eld, R.D. Williams, and N.E.Wiseman. Content-addressable mem-

ories for storing and processing recursively-divided images and trees. Elec-

tronics Letters, 23(6):262{263, 1987.

[WS89] John Wade and Charles Sodini. A ternary content-addressable search engine.

IEEE Journal of Solid-State Circuits, 24(4):1003{1013, August 1989.

10



[Zip90] Richard Zippel. Programming the data structure accelerator. In Proceed-

ings of Jerusalem Conference on Information, Technology, Jerusalem, Israel,

October 1990.

11


