
A Tour of the P6 Microarchitecture

Introduction
Achieving twice the performance of a PentiumÒ processor while being manufactured on the
same semiconductor process was one of the P6’s primary goals. Using the same process as
a volume production processor practically assured that the P6 would be manufactureable,
but it meant that Intel had to focus on an improved microarchitecture for ALL of the
performance gains. This guided tour describes how multiple architectural techniques -
some proven in mainframe computers, some proposed in academia and some we
innovated ourselves - were carefully interwoven, modified, enhanced, tuned and
implemented to produce the P6 microprocessor. This unique combination of architectural
features, which Intel describes as Dynamic Execution, enabled the first P6 silicon to exceed
the original performance goal.

Building from an already high platform
The Pentium processor set an impressive performance standard with its pipelined,
superscalar microarchitecture. The Pentium processor’s pipelined implementation uses five
stages to extract high throughput from the silicon - the P6 moves to a decoupled, 12-stage,
superpipelined implementation, trading less work per pipestage for more stages. The P6
reduced its pipestage time by 33 percent, compared with a Pentium processor, which
means that from a semiconductor manufacturing process (i.e., transistor speed)
perspective a 133MHz P6 and a 100MHz Pentium processor are equivalent
The Pentium processor’s superscalar microarchitecture, with its ability to execute two
instructions per clock, would be difficult to exceed without a new approach. The new
approach used by the P6 removes the constraint of linear instruction sequencing between
the traditional “fetch” and “execute” phases, and opens up a wide instruction window using
an instruction pool. This approach allows the “execute” phase of the P6 to have much more
visibility into the program’s instruction stream so that better scheduling may take place. It
requires the instruction “fetch/decode” phase of the P6 to be much more intelligent in
terms of predicting program flow. Optimized scheduling requires the fundamental
“execute” phase to be replaced by decoupled “dispatch/execute” and “retire” phases. This
allows instructions to be started in any order but always be completed in the original
program order. The P6 is implemented as three independent engines coupled with an
instruction pool as shown in Figure 1.

Dispatch
/Execute

Unit
Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

Figure 1. The P6 is implemented as three independent engines

Page 1

that communicate using an instruction pool.

Page 2

What is the fundamental problem to solve?
Before starting our tour on how the P6 achieves its high performance it is important to note
why this three-independent-engine approach was taken. A fundamental fact of today’s
microprocessor implementations must be appreciated: most CPU cores are not fully
utilized. Consider the code fragment in Figure 2:

r1 <= mem [r0] /* Instruction 1 */
r2 <= r1 + r2 /* Instruction 2 */
r5 <= r5 + 1 /* Instruction 3 */
r6 <= r6 - r3 /* Instruction 4 */

Figure 2. A typical code fragment.

The first instruction in this example is a load of r1 that, at run time, causes a cache miss. A
traditional CPU core must wait for its bus interface unit to read this data from main memory
and return it before moving on to instruction 2. This CPU stalls while waiting for this data
and is thus being under-utilized.
While CPU speeds have increased 10-fold over the past 10 years, the speed of main
memory devices has only increased by 60 percent. This increasing memory latency,
relative to the CPU core speed, is a fundamental problem that the P6 set out to solve. One
approach would be to place the burdon of this problem onto the chipset but a high-
performance CPU that needs very high speed, specialized, support components is not a
good solution for a volume production system.
A brute-force approach to this problem is, of course, increasing the size of the L2 cache to
reduce the miss ratio. While effective, this is another expensive solution, especially
considering the speed requirements of today’s L2 cache SRAM components. Instead, the P6
is designed from an overall system implementation perspective which will allow higher
performance systems to be designed with cheaper memory subsystem designs.

P6 takes an innovative approach
To avoid this memory latency problem the P6 “looks-ahead” into its instruction pool at
subsequent instructions and will do useful work rather than be stalled. In the example in
Figure 2, instruction 2 is not executable since it depends upon the result of instruction 1;
however both instructions 3 and 4 are executable. The P6 speculatively executes
instructions 3 and 4. We cannot commit the results of this speculative execution to
permanent machine state (i.e., the programmer-visible registers) since we must maintain
the original program order, so the results are instead stored back in the instruction pool
awaiting in-order retirement. The core executes instructions depending upon their
readiness to execute and not on their original program order (it is a true dataflow engine).
This approach has the side effect that instructions are typically executed out-of-order.
The cache miss on instruction 1 will take many internal clocks, so the P6 core continues to
look ahead for other instructions that could be speculatively executed and is typically
looking 20 to 30 instructions in front of the program counter. Within this 20- to 30-
instruction window there will be, on average, five branches that the fetch/decode unit must
correctly predict if the dispatch/execute unit is to do useful work. The sparse register set of
an Intel Architecture (IA) processor will create many false dependencies on registers so the
dispatch/execute unit will rename the IA registers to enable additional forward progress.
The retire unit owns the physical IA register set and results are only committed to
permanent machine state when it removes completed instructions from the pool in original
program order.
Dynamic Execution technology can be summarized as optimally adjusting instruction
execution by predicting program flow, analysing the program’s dataflow graph to choose
the best order to execute the instructions, then having the ability to speculatively execute

Page 3

instructions in the preferred order. The P6 dynamically adjusts its work, as defined by the
incoming instruction stream, to minimize overall execution time.

Page 4

Overview of the stops on the tour
We have previewed how the P6 takes an innovative approach to overcome a key system
constraint. Now let’s take a closer look inside the P6 to understand how it implements
Dynamic Execution. Figure 3 extends the basic block diagram to include the cache and
memory interfaces - these will also be stops on our tour. We shall travel down the P6
pipeline to understand the role of each unit:
The FETCH/DECODE unit: An in-order unit that takes as input the user program

instruction stream from the instruction cache, and decodes them into a series of
micro-operations (uops) that represent the dataflow of that instruction stream. The
program pre-fetch is itself speculative.

The DISPATCH/EXECUTE unit: An out-of-order unit that accepts the dataflow stream,
schedules execution of the uops subject to data dependencies and resource
availability and temporarily stores the results of these speculative executions.

The RETIRE unit: An in-order unit that knows how and when to commit (“retire”) the
temporary, speculative results to permanent architectural state.

The BUS INTERFACE unit: A partially ordered unit responsible for connecting the three
internal units to the real world. The bus interface unit communicates directly with
the L2 cache supporting up to four concurrent cache accesses. The bus interface
unit also controls a transaction bus, with MESI snooping protocol, to system
memory.

Bus Interface Unit

Fetch Load Store

L1 ICache L1 DCache

L2 CacheSystem Bus

Dispatch
/Execute

Unit
Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

Figure 3. The three core engines interface with the memory
subsystem using 8K/8K unified caches.

Page 5

Tour stop #1: The FETCH/DECODE unit.
Figure 4 shows a more detailed view of the fetch/decode unit:

ID
(x3)

Next_IP

BTB

MIS

RAT
Allocate

From BIU

ICache

To
Instruction
Pool (ROB)

BIU - Bus Interface Unit
ID - Instruction Decoder
BTB - Branch Target Buffer
MIS - Microcode Instruction
 Sequencer
RAT - Register Alias Table
ROB - ReOrder Buffer

Figure 4: Looking inside the Fetch/Decode Unit
Let’s start the tour at the ICache, a nearby place for instructions to reside so that they can
be looked up quickly when the CPU needs them. The Next_IP unit provides the ICache
index, based on inputs from the Branch Target Buffer (BTB), trap/interrupt status, and
branch-misprediction indications from the integer execution section. The 512 entry BTB
uses an extension of Yeh’s algorithm to provide greater than 90 percent prediction
accuracy. For now, let’s assume that nothing exceptional is happening, and that the BTB is
correct in its predictions. (The P6 integrates features that allow for the rapid recovery from
a mis-prediction, but more of that later.)
The ICache fetches the cache line corresponding to the index from the Next_IP, and the
next line, and presents 16 aligned bytes to the decoder. Two lines are read because the IA
instruction stream is byte-aligned, and code often branches to the middle or end of a cache
line. This part of the pipeline takes three clocks, including the time to rotate the prefetched
bytes so that they are justified for the instruction decoders (ID). The beginning and end of
the IA instructions are marked.
Three parallel decoders accept this stream of marked bytes, and proceed to find and
decode the IA instructions contained therein. The decoder converts the IA instructions into
triadic uops (two logical sources, one logical destination per uop). Most IA instructions are
converted directly into single uops, some instructions are decoded into one-to-four uops
and the complex instructions require microcode (the box labeled MIS in Figure 4, this
microcode is just a set of preprogrammed sequences of normal uops). Some instructions,
called prefix bytes, modify the following instruction giving the decoder a lot of work to do.
The uops are enqueued, and sent to the Register Alias Table (RAT) unit, where the logical
IA-based register references are converted into P6 physical register references, and to the
Allocator stage, which adds status information to the uops and enters them into the
instruction pool. The instruction pool is implemented as an array of Content Addressable
Memory called the ReOrder Buffer (ROB).
We have now reached the end of the in-order pipe.

Page 6

Tour stop #2: The DISPATCH/EXECUTE unit
The dispatch unit selects uops from the instruction pool depending upon their status. If the
status indicates that a uop has all of its operands then the dispatch unit checks to see if the
execution resource needed by that uop is also available. If both are true, it removes that
uop and sends it to the resource where it is executed. The results of the uop are later
returned to the pool. There are five ports on the Reservation Station and the multiple
resources are accessed as shown in Figure 5:

FEU
IEU

J EU
IEU

AGU

AGU

Port 0

Port 1

Port 2

Port 3,4

Load

Store

RS

To/from
Instruction
Pool (ROB)

RS - Reservation Station
EU - Execution Unit
FEU - Floating Point EU
IEU - Integer EU
JEU - Jump EU
AGU - Address Generation Unit
ROB - ReOrder Buffer

Figure 5: Looking inside the Dispatch/Execute Unit

The P6 can schedule at a peak rate of 5 uops per clock, one to each resource port, but a
sustained rate of 3 uops per clock is typical. The activity of this scheduling process is the
quintessential out-of-order process; uops are dispatched to the execution resources strictly
according to dataflow constraints and resource availability, without regard to the original
ordering of the program.
Note that the actual algorithm employed by this execution-scheduling process is vitally
important to performance. If only one uop per resource becomes data-ready per clock
cycle, then there is no choice. But if several are available, which should it choose? It could
choose randomly, or first-come-first-served. Ideally it would choose whichever uop would
shorten the overall dataflow graph of the program being run. Since there is no way to really
know that at run-time, it approximates by using a pseudo FIFO scheduling algorithm
favoring back-to-back uops.
Note that many of the uops are branches, because many IA instructions are branches. The
Branch Target Buffer will correctly predict most of these branches but it can’t correctly
predict them all. Consider a BTB that’s correctly predicting the backward branch at the
bottom of a loop: eventually that loop is going to terminate, and when it does, that branch
will be mispredicted. Branch uops are tagged (in the in-order pipeline) with their fallthrough
address and the destination that was predicted for them. When the branch executes, what
the branch actually did is compared against what the prediction hardware said it would do.
If those coincide, then the branch eventually retires, and most of the speculatively
executed work behind it in the instruction pool is good.
But if they do not coincide (a branch was predicted as taken but fell through, or was
predicted as not taken and it actually did take the branch) then the Jump Execution Unit
(JEU) changes the status of all of the uops behind the branch to remove them from the
instruction pool. In that case the proper branch destination is provided to the BTB which
restarts the whole pipeline from the new target address.

Page 7

Tour stop #3: The RETIRE unit
Figure 6 shows a more detailed view of the retire unit:

RS - Reservation Station
MIU - Memory Interface Unit
RRF - Retirement Register File

R

S
MIU

RRF
From To

Instruction Pool

To/from DCache

Figure 6: Looking inside the Retire Unit

The retire unit is also checking the status of uops in the instruction pool - it is looking for
uops that have executed and can be removed from the pool. Once removed, the uops’
original architectural target is written as per the original IA instruction. The retirement unit
must not only notice which uops are complete, it must also re-impose the original program
order on them. It must also do this in the face of interrupts, traps, faults, breakpoints and
mis-predictions.
There are two clock cycles devoted to the retirement process. The retirement unit must first
read the instruction pool to find the potential candidates for retirement and determine
which of these candidates are next in the original program order. Then it writes the results
of this cycle’s retirements to both the Instruction Pool and the RRF. The retirement unit is
capable of retiring 3 uops per clock.

Page 8

Tour stop #4: BUS INTERFACE unit
Figure 7 shows a more detailed view of the bus interface unit:

MOB - Memory Order Buffer
AGU - Address Generation Unit
ROB - ReOrder BufferMem

I/F
MOB

DCache

From
AGU

To/from
Instruction
Pool (ROB)

Sys Mem

L2 Cache

Figure 7: Looking inside the Bus Interface Unit
There are two types of memory access: loads and stores. Loads only need to specify the
memory address to be accessed, the width of the data being retrieved, and the destination
register. Loads are encoded into a single uop.
Stores need to provide a memory address, a data width, and the data to be written. Stores
therefore require two uops, one to generate the address, one to generate the data. These
uops are scheduled independently to maximize their concurrency, but must re-combine in
the store buffer for the store to complete.
Stores are never performed speculatively, there being no transparent way to undo them.
Stores are also never re-ordered among themselves. The Store Buffer dispatches a store
only when the store has both its address and its data, and there are no older stores
awaiting dispatch.
What impact will a speculative core have on the real world? Early in the P6 project, we
studied the importance of memory access reordering. The basic conclusions were as
follows:
• Stores must be constrained from passing other stores, for only a small impact on
performance.
• Stores can be constrained from passing loads, for an inconsequential performance
loss.
• Constraining loads from passing other loads or from passing stores creates a
significant impact on performance.
So what we need is a memory subsystem architecture that allows loads to pass stores. And
we need to make it possible for loads to pass loads. The Memory Order Buffer (MOB)
accomplishes this task by acting like a reservation station and ReOrder Buffer, in that it
holds suspended loads and stores, redispatching them when the blocking condition
(dependency or resource) disappears.

Tour Summary
It is the unique combination of improved branch prediction (to offer the core many
instructions), data flow analysis (choosing the best instructions to operate upon), and
speculative execution (executing instructions in the preferred order) that enables the P6 to
deliver twice the performance of a Pentium processor on the same semiconductor
manufacturing process. This unique combination is called Dynamic Execution and it is
similar in impact as “Superscalar” was to previous generation Intel Architecture processors.

And while our architects have been honing the P6 microarchitecture, our silicon
technologists have been working on the next Intel process - this 0.35 micron process will
enable future P6 CPU core speeds in excess of 200MHz.

Page 9

