
A Tour of the P6 Microarchitecture

Introduction
Achieving twice the performance of a PentiumÒ processor while being manufactured on the
same semiconductor process was one of the P6’s primary goals. Using the same process as
a volume production processor practically assured that the P6 would be manufactureable,
but  it  meant  that  Intel  had  to  focus  on  an  improved  microarchitecture  for  ALL  of  the
performance  gains.  This  guided  tour  describes  how  multiple  architectural  techniques  -
some  proven  in  mainframe  computers,  some  proposed  in  academia  and  some  we
innovated  ourselves  -  were  carefully  interwoven,  modified,  enhanced,  tuned  and
implemented to produce the P6 microprocessor. This unique combination of architectural
features, which Intel describes as Dynamic Execution, enabled the first P6 silicon to exceed
the original performance goal.

Building from an already high platform
The  Pentium  processor  set  an  impressive  performance  standard  with  its  pipelined,
superscalar microarchitecture. The Pentium processor’s pipelined implementation uses five
stages to extract high throughput from the silicon - the P6 moves to a decoupled, 12-stage,
superpipelined implementation, trading less work per pipestage for more stages. The P6
reduced  its  pipestage  time  by  33  percent,  compared  with  a  Pentium  processor,  which
means  that  from  a  semiconductor  manufacturing  process  (i.e.,  transistor  speed)
perspective a 133MHz P6 and a 100MHz Pentium processor are equivalent
The  Pentium  processor’s  superscalar  microarchitecture,  with  its  ability  to  execute  two
instructions  per  clock,  would  be  difficult  to  exceed  without  a  new  approach.  The  new
approach used by the P6 removes the constraint of linear instruction sequencing between
the traditional “fetch” and “execute” phases, and opens up a wide instruction window using
an instruction pool. This approach allows the “execute” phase of the P6 to have much more
visibility into the program’s instruction stream so that better scheduling may take place. It
requires  the  instruction  “fetch/decode”  phase  of  the  P6 to be  much  more intelligent  in
terms  of  predicting  program  flow.  Optimized  scheduling  requires  the  fundamental
“execute” phase to be replaced by decoupled “dispatch/execute” and “retire” phases. This
allows  instructions  to  be  started  in  any  order  but  always  be  completed  in  the  original
program  order.  The  P6  is  implemented  as  three  independent  engines  coupled  with  an
instruction pool as shown in Figure 1.
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Figure 1.  The P6 is implemented as three independent engines
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that communicate using an instruction pool.
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What is the fundamental problem to solve?
Before starting our tour on how the P6 achieves its high performance it is important to note
why  this  three-independent-engine  approach  was  taken.  A  fundamental  fact  of  today’s
microprocessor  implementations  must  be  appreciated:  most  CPU  cores  are  not  fully
utilized. Consider the code fragment in Figure 2:

r1 <=  mem [r0] /* Instruction 1 */
r2 <=  r1 + r2 /* Instruction 2 */
r5 <=  r5 + 1 /* Instruction 3 */
r6 <=  r6 - r3 /* Instruction 4 */

Figure 2. A typical code fragment.

The first instruction in this example is a load of r1 that, at run time, causes a cache miss. A
traditional CPU core must wait for its bus interface unit to read this data from main memory
and return it before moving on to instruction 2. This CPU stalls while waiting for this data
and is thus being under-utilized.
While  CPU  speeds  have  increased  10-fold  over  the  past  10  years,  the  speed  of  main
memory  devices  has  only  increased  by  60  percent.  This  increasing  memory  latency,
relative to the CPU core speed, is a fundamental problem that the P6 set out to solve. One
approach  would  be  to  place  the  burdon  of  this  problem  onto  the  chipset  but  a  high-
performance CPU that needs very high  speed, specialized,  support components is not a
good solution for a volume production system.
A brute-force approach to this problem is, of course, increasing the size of the L2 cache to
reduce  the  miss  ratio.  While  effective,  this  is  another  expensive  solution,  especially
considering the speed requirements of today’s L2 cache SRAM components. Instead, the P6
is  designed  from an overall  system implementation  perspective  which  will  allow higher
performance systems to be designed with cheaper memory subsystem designs.

P6 takes an innovative approach
To avoid this memory latency problem the P6  “looks-ahead” into its instruction pool  at
subsequent instructions and will do useful work rather than be stalled. In the example in
Figure 2, instruction 2 is not executable since it depends upon the result of instruction 1;
however  both  instructions  3  and  4  are  executable.  The  P6  speculatively  executes
instructions  3  and  4.  We  cannot  commit  the  results  of  this  speculative  execution  to
permanent machine state (i.e., the programmer-visible registers) since we must maintain
the original  program order, so the results are instead stored back in the instruction pool
awaiting  in-order  retirement.  The  core  executes  instructions  depending  upon  their
readiness to execute and not on their original program order (it is a true dataflow engine).
This approach has the side effect that instructions are typically executed out-of-order.
The cache miss on instruction 1 will take many internal clocks, so the P6 core continues to
look  ahead  for  other  instructions  that  could  be  speculatively  executed  and  is  typically
looking  20  to  30  instructions  in  front  of  the  program  counter.  Within  this  20-  to  30-
instruction window there will be, on average, five branches that the fetch/decode unit must
correctly predict if the dispatch/execute unit is to do useful work. The sparse register set of
an Intel Architecture (IA) processor will create many false dependencies on registers so the
dispatch/execute unit will  rename the IA registers to enable additional  forward progress.
The  retire  unit  owns  the  physical  IA  register  set  and  results  are  only  committed  to
permanent machine state when it removes completed instructions from the pool in original
program order.
Dynamic  Execution  technology  can  be  summarized  as  optimally  adjusting  instruction
execution by predicting program flow, analysing the program’s dataflow graph to choose
the best order to execute the instructions, then having the ability to speculatively execute
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instructions in the preferred order.  The P6 dynamically adjusts its work, as defined by the
incoming instruction stream, to minimize overall execution time.
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Overview of the stops on the tour
We have previewed how the P6 takes an innovative approach to overcome a key system
constraint.  Now let’s  take a  closer  look inside  the  P6 to  understand  how it  implements
Dynamic  Execution.  Figure 3 extends the basic  block diagram to include the cache and
memory  interfaces  -  these will  also  be  stops  on  our  tour.  We shall  travel  down the  P6
pipeline to understand the role of each unit:
The  FETCH/DECODE  unit:  An  in-order  unit  that  takes  as  input  the  user  program

instruction stream from the instruction cache, and decodes them into a series of
micro-operations (uops) that represent the dataflow of that instruction stream. The
program pre-fetch is itself speculative.

The  DISPATCH/EXECUTE  unit:  An  out-of-order  unit  that  accepts  the  dataflow stream,
schedules  execution  of  the  uops  subject  to  data  dependencies  and  resource
availability and temporarily stores the results of these speculative executions.

The RETIRE unit: An in-order unit that knows how and when to commit (“retire”) the
temporary, speculative results to permanent architectural state.

The BUS INTERFACE unit: A partially ordered unit responsible for connecting the three
internal units to the real world. The bus interface unit communicates directly with
the L2 cache supporting up to four concurrent cache accesses. The bus interface
unit  also  controls  a  transaction  bus,  with  MESI  snooping  protocol,  to  system
memory.
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Figure 3. The three core engines interface with the memory
subsystem using 8K/8K unified caches.
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Tour stop #1: The FETCH/DECODE unit.
Figure 4 shows a more detailed view of the fetch/decode unit:
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Figure 4: Looking inside the Fetch/Decode Unit
Let’s start the tour at the ICache, a nearby place for instructions to reside so that they can
be  looked  up  quickly  when the  CPU needs  them.  The  Next_IP  unit  provides  the  ICache
index,  based  on  inputs  from the  Branch  Target  Buffer  (BTB),  trap/interrupt  status,  and
branch-misprediction  indications  from the integer  execution  section.  The  512 entry  BTB
uses  an  extension  of  Yeh’s  algorithm  to  provide  greater  than  90  percent  prediction
accuracy. For now, let’s assume that nothing exceptional is happening, and that the BTB is
correct in its predictions. (The P6 integrates features that allow for the rapid recovery from
a mis-prediction, but more of that later.)
The ICache fetches the cache line corresponding to the index from the Next_IP, and the
next line, and presents 16 aligned bytes to the decoder. Two lines are read because the IA
instruction stream is byte-aligned, and code often branches to the middle or end of a cache
line.  This part of the pipeline takes three clocks, including the time to rotate the prefetched
bytes so that they are justified for the instruction decoders (ID). The beginning and end of
the IA instructions are marked.
Three  parallel  decoders  accept  this  stream of  marked  bytes,  and  proceed  to  find  and
decode the IA instructions contained therein. The decoder converts the IA instructions into
triadic uops (two logical sources, one logical destination per uop). Most IA instructions are
converted directly into single uops, some instructions are decoded into one-to-four uops
and  the  complex  instructions   require  microcode  (the  box  labeled  MIS in  Figure  4,  this
microcode is just a set of preprogrammed sequences of normal uops). Some instructions,
called prefix bytes, modify the following instruction giving the decoder a lot of work to do.
The uops are enqueued, and sent to the Register Alias Table (RAT) unit, where the logical
IA-based register references are converted into P6 physical register references, and to the
Allocator  stage,  which  adds  status  information  to  the  uops  and  enters  them  into  the
instruction pool. The instruction pool is implemented as an array of Content Addressable
Memory called the ReOrder Buffer (ROB).
We have now reached the end of the in-order pipe.

Page 6



Tour stop #2: The DISPATCH/EXECUTE unit
The dispatch unit selects uops from the instruction pool depending upon their status. If the
status indicates that a uop has all of its operands then the dispatch unit checks to see if the
execution resource needed by that uop is also available. If both are true, it removes that
uop and sends it to the resource where it is executed.  The results  of  the uop are later
returned  to  the  pool.  There  are  five  ports  on  the  Reservation  Station  and  the  multiple
resources are accessed as shown in Figure 5:
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Figure 5: Looking inside the Dispatch/Execute Unit

The P6 can schedule at a peak rate of 5 uops per clock, one to each resource port, but a
sustained rate of 3 uops per clock is typical.  The activity of this scheduling process is the
quintessential out-of-order process; uops are dispatched to the execution resources strictly
according to dataflow constraints and resource availability, without regard to the original
ordering of the program.
Note that the actual  algorithm employed  by  this  execution-scheduling  process  is  vitally
important  to  performance.  If  only  one  uop  per  resource  becomes  data-ready  per  clock
cycle, then there is no choice. But if several are available, which should it choose? It could
choose randomly, or first-come-first-served. Ideally it would choose whichever uop would
shorten the overall dataflow graph of the program being run. Since there is no way to really
know  that  at  run-time,  it  approximates  by  using  a  pseudo  FIFO  scheduling  algorithm
favoring back-to-back uops.
Note that many of the uops are branches, because many IA instructions are branches. The
Branch Target Buffer will  correctly predict  most of  these branches  but  it  can’t correctly
predict  them all.  Consider  a BTB that’s  correctly predicting  the backward branch at the
bottom of a loop: eventually that loop is going to terminate, and when it does, that branch
will be mispredicted. Branch uops are tagged (in the in-order pipeline) with their fallthrough
address and the destination that was predicted for them. When the branch executes, what
the branch actually did is compared against what the prediction hardware said it would do.
If  those  coincide,  then  the  branch  eventually  retires,  and  most  of  the  speculatively
executed work behind it in the instruction pool is good.
But  if  they  do  not  coincide  (a  branch  was  predicted  as  taken  but  fell  through,  or  was
predicted as not taken and it actually did take the branch) then the Jump Execution Unit
(JEU) changes the status of all  of the uops behind the branch to remove them from the
instruction pool. In that case the proper branch destination is provided to the BTB which
restarts the whole pipeline from the new target address.
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Tour stop #3: The RETIRE unit
Figure 6 shows a more detailed view of the retire unit:
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Figure 6: Looking inside the Retire Unit

The retire unit is also checking the status of uops in the instruction pool - it is looking for
uops  that have executed and can be removed from the pool.  Once removed,  the uops’
original architectural target is written as per the original IA instruction. The retirement unit
must not only notice which uops are complete, it must also re-impose the original program
order on them. It must also do this in the face of interrupts, traps, faults, breakpoints and
mis-predictions.
There are two clock cycles devoted to the retirement process. The retirement unit must first
read  the  instruction  pool  to  find  the  potential  candidates  for  retirement  and  determine
which of these candidates are next in the original program order. Then it writes the results
of this cycle’s retirements to both the Instruction Pool and the RRF.  The retirement unit is
capable of retiring 3 uops per clock.
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Tour stop #4: BUS INTERFACE unit
Figure 7 shows a more detailed view of the bus interface unit:
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Figure 7: Looking inside the Bus Interface Unit
There are two types of memory access: loads and stores. Loads only need to specify the
memory address to be accessed, the width of the data being retrieved, and the destination
register. Loads are encoded into a single uop.
Stores need to provide a memory address, a data width, and the data to be written. Stores
therefore require two uops, one to generate the address, one to generate the data. These
uops are scheduled independently to maximize their concurrency, but must re-combine in
the store buffer for the store to complete.
Stores are never performed speculatively, there being no transparent way to undo them.
Stores are also never re-ordered among themselves. The Store Buffer dispatches a store
only  when  the  store  has  both  its  address  and  its  data,  and  there  are  no  older  stores
awaiting dispatch.
What impact will  a speculative core have on the real  world? Early in the P6 project, we
studied  the  importance  of  memory  access  reordering.   The  basic  conclusions  were  as
follows:
• Stores must  be constrained from passing  other stores,  for  only  a small  impact  on
performance.
• Stores can be constrained from passing  loads,  for an inconsequential  performance
loss.
•  Constraining  loads  from  passing  other  loads  or  from  passing  stores  creates  a
significant impact on performance.
So what we need is a memory subsystem architecture that allows loads to pass stores. And
we need  to  make  it  possible  for  loads  to  pass  loads. The  Memory  Order  Buffer  (MOB)
accomplishes this task by acting like a reservation station and ReOrder Buffer, in that it
holds  suspended  loads  and  stores,  redispatching  them  when  the  blocking  condition
(dependency or resource) disappears.

Tour Summary
It  is  the  unique  combination  of  improved  branch  prediction  (to  offer  the  core  many
instructions),  data  flow  analysis  (choosing  the  best  instructions  to  operate  upon),  and
speculative execution (executing instructions in the preferred  order) that enables the P6 to
deliver  twice  the  performance  of  a  Pentium  processor  on  the  same  semiconductor
manufacturing  process.  This  unique  combination  is  called  Dynamic  Execution  and  it  is
similar in impact as “Superscalar” was to previous generation Intel Architecture processors.

And  while  our  architects  have  been  honing  the  P6  microarchitecture,  our  silicon
technologists have been working on the next Intel process - this 0.35 micron process will
enable future P6 CPU core speeds in excess of  200MHz.
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