
Visual Basic 3.0 pro 1

DoDi's Visual Basic Tools
(State October 1995)

These tools shall help develop programs with Microsoft's Visual Basic 3.0 (VB). They group around a 
project management system, with extensions for the optimisation of programs.

I missed the following functions in VB and started to write my own tools for the following tasks:

- Viewer for modules saved in binary format
- Crossreference of data types, variables and subroutines
- Conditional compilation of the sources
- Version information in the executables
- Nationalisation of applications
- Comparison of source modules
- Management of all files needed to develop and execute a program
- Optimisation of programs
- Protection against Discompilers
- Protection against setup programs

- Resource editor for executables
- Protected source modules
- Conversion of applications to new VB versions
- Translation from VB into other languages (C++) to simplify the development of DLLs

Now the following VB-Tools exist:
VBDis3 Discompiler for VB 2.0/3.0
VBMDis3 Optimisation tool for VB 2.0/3.0
VBCtrl2 Custom control analyser (for the Discompiler)
VBDiff Comparison tool for VB modules
VBMap Project browser, viewer for binary modules
VBPro2 Project manager and pre-processor
VBXlock Protection for system configuration and VBX files against setup programs
SetDown Application installer, bypassing the setup programs

The following files contain detailed descriptions:

File Programs
STATE.WRI last minute changes
VBTOOL_E.WRI overview (this file)
REGISTER.WRI license information and registration form
VBPRO_E.WRI VBPro
VBMAP_E.WRI VBDiff, VBMap 
VBDIS_E.WRI VBDis
VBMDIS_E.WRI VBMDis, VBCtrl

All programs were written by Doktor H.-P. Diettrich (DoDi). The restricted demo versions may and 
shall be copied and distributed. Registered users receive the unrestricted versions for their own use, 
refer to REGISTER.WRI for details.

The names of the files may differ from the documentation. Some programs have a digit appended to 
their names to denote new and incompatible versions, English versions have an appended 'e'.

Some of the shareware programs are Lite versions, with less features than the according professional
versions. The professional versions are not distributed as shareware and are not yet available.

Due to the demand for the professional versions, a preliminary upgrade is available until the 
professional edition becomes available. This upgrade consists only of the enhanced programs, no 
other features are available (online help, manuals...).



Visual Basic 3.0 pro 2

Installation
The programs need no special installation, no modifications are required in your INI files. Simply copy 
all the files into your VB directory or a new directory (recommended for the Discompiler with the many 
data files). If you got archives, unpack these into the desired directory.



Visual Basic 3.0 pro 3
Now to the description of the already implemented features:

Conditional Compilation
With VB it's hard to develop modules for use in different applications. Changes made for one 
application may cause malfunction in other applications. We need some mechanism to create different
versions from the same sources, that can be accordingly selected for every application. This concept 
includes different versions of the same application (restricted/unrestricted...), and nationalised 
versions.

State:
The project manager VBPro contains a pre-processor, that recognises simple conditional expressions 
(If/Else/ElseIf/EndIf) and omits the False parts of the blocks. The conditions can also be evaluated at
runtime, so it is possible to test all branches and to switch debug code on and off. The pre-processor 
can be instructed to copy either the selected parts only or the whole conditional blocks to the new 
source files. Nested conditions are implemented, too. Undefined conditions are trapped and the user 
can enter the appropriate value in a dialogue box.

Version Comparison
It may be difficult to detect all changes made to VB source modules, because the interpreter may 
rearrange subroutines in the source files, the case of names may change and so forth. This behaviour
must be considered by an appropriate file comparison tool.

State:
VBDiff compares text files and shows differences in two windows. The search must be restarted with 
two identical lines marked by the user. For rearranged subroutines, a double click on a Sub or 
Function definition searches for the same routine in the other file and resumes the comparison. Parts 
of the sources shown can be copied to the clipboard.

Protection against Discompilers
The analysis of the EXE files created with VB 3.0 has revealed a lot of informations from the source 
files, that are intentionally put into the executables. These informations don't affect program execution,
but they make it very easy to reconstruct the sources with many details, like the exact names of every 
control and the indentation of all lines. If it is so easy to look into any program, there may exist more 
than one Discompiler, so some protection is needed against such tools.

State:
Provisions are implemented in the project manager, to remove the names of all controls and do 
some other changes while copying the executables to a diskette.

Crossreference
With big projects, the declarations of variables and data types may be spread over many modules. VB
allows to jump directly to the definition of a subroutine, but other informations can be found only with a
full text search. VB also hides the path of the modules of a project, and sometimes modified modules 
are placed in different directories without notification.

State:
VBMap analyses the modules of a project and displays a list of all subroutines, variables, constants 
and user defined Types. From that list you can directly go to the source text where such a symbol is 
defined.



Visual Basic 3.0 pro 4

Viewing Modules
In the development environment, access to modules from other projects may be impossible, if these 
are saved in binary format. It should be possible to view any module at any time, and to copy parts of 
it to other modules.

State:
VBMap shows modules just like the interpreter does, even if they are saved in binary format. 
Selected lines can be copied to the clipboard.



Visual Basic 3.0 pro 5

Project Management
The project manager VBPro allows to create different applications based on shared source modules. 
Even from one make file, different versions of an application may be created.

These steps may be necessary to create an application:
1. Create a project with the interpreter
2. Test the new application
3. Add data files required to run the program
4. Create customised versions, using conditions and shared source modules
5. Test the customised versions
6. Add required changes to the shared modules
7. Remove debug code
8. Compile the program
9. Create nationalised versions
10. Create diskettes with the protected program

Here is what you do in these steps:

1. Create a project with the interpreter
The program is developed as usual with the interpreter. The shared modules can be configured with 
global conditions (variables or constants).

2. Test the new application
Test the program with the interpreter, setting the conditions as appropriate to cover all versions of the 
program. Debug code may be added freely, but it should be flagged for omission from the final 
versions. Use separate forms and modules for functions that are used only while debugging the 
application.

3. Add data files required to run the program
Pass the make file of the application to the project manager to create a project description. Add data 
files and other documents to the description. Define the appropriate conditions for the pre-processor.

4. Create customised versions, using conditions and shared source modules
The project manager copies all required files into a new directory, removing parts of the source code 
as defined by the condition settings.

5. Test the customised versions
With parts of the sources conditionally omitted from the sources, the interpreter may encounter 
undefined variables and subroutines. Rearrange the missing parts in the original sources, until 
needed and unneeded parts are clearly separated.
Minor changes can be done on the fly. The pre-processor can be instructed to copy all excluded lines 
from the sources into comments, so you can find all missing declarations, and uncomment them.

6. Add required changes to the shared modules
If in the previous step changes were made in the copied sources, you must introduce these changes 
to the original files. Best you rename the directory with the changed files, and create the same project 
again as reference. Then start VBDiff to compare both versions, and copy the changed parts to the 
original sources (using the interpreter or any editor).

7. Remove debug code
In the preceding steps you may have used debug code to test the program, including forms to view 
dumps or other stuff only needed while debugging. Now you create one ore more final versions of 
your project. In the project manager, copy the debug version, change the conditions to exclude the 
debug code, and mark all modules that shall be excluded from the final programs.

8. Compile the program
With the project manager, create the final versions and compile them with VB. If errors occur due to 
the omitted debug code, correct this as shown in step 5.



Visual Basic 3.0 pro 6
9. Create nationalised versions
Translating a program to different languages requires some changes to the sources. Replace all text 
strings with string constants, and collect them in a single module as global constants. Translate all 
strings in this module and save it under a different name, which you enter as BaseFile in the project 
description.

The strings in caption and text properties of the forms and controls can be replaced with the 
Translation option of the project manager. All these strings are displayed in a grid control, where you 
can enter the translated strings in a separate column.

10. Create diskettes with the protected program
Now the project manager can copy the program and the additional files (documentation, DLLs...) to 
diskettes. While copying the executable, changes are applied to make it smaller and better protected 
against illegal copies and Discompilers. You may also add a version information resource with 
the name of the user, which you retrieve from the integrated user database of the project manager.



Visual Basic 3.0 pro 7

Optimising your Programs

An optimising tool shall detect unused variables and subroutines, and make suggestions to improve 
the performance of the program. Unneeded information must be removed from the executable, 
making it smaller, faster and better protected against Discompilers.

State:
VBMDis helps to optimise your source code. The tokens of the source modules and the executable 
are displayed, so you can find unwanted type conversions, and unused variables or subroutines. You 
can apply the appropriate changes to your source files.
VBPro removes unneeded names from the executable, making them significantly smaller. Together 
with other modifications, the program will better withstand attacks from a Discompiler.

Optimising with Native Code

VB programs can run considerably faster, if time consuming calculations are done in native code in a 
DLL. Required is assistance for writing the code for a DLL, or direct inline compilation of parts of a 
program. Even VB 4.0 has no such features.

State:
It is possible to display VB modules in C++, but this is not yet implemented. Similar programs are 
announced by several suppliers, so my priority for that feature is low.

However, newest investigations revealed a chance to recompile parts of the executable, it should be 
possible to include the native code directly into the program. It might be possible to optimise any 
existing application this way!

Protection against Setup Programs
When I had to re-install VB for the third time, because a setup program had overwritten VBX and DLL 
files with old versions, and modified CONFIG.SYS, AUTOEXEC.BAT and INI files that I couldn't even 
boot my system, I sat down and wrote some tools to outwit such viral programs.

State:
VBXlock absolutely protects the standard VBXs and DLLs of VB 3.0, and prevents changes to other 
system files.
SetDown is a dumb installation program, that expands all the files shipped with a VB application to a 
single directory. After this, most applications can be run and easily removed by deleting that directory.
If the application won't run without an installation, I use VBDis to create the sources from the 
SETUP1.EXE and run it in the interpreter. There I can skip over all unwanted steps, an in-depth 
analysis of the program is not required. For older versions of VB, the setup programs are shipped as 
source files, so VBDis is not needed.

As long as Visual Basic has similar deficiencies in its setup kit, I'll publish Discompilers for all 
new VB versions, too, that at least can crack the setup programs.



Visual Basic 3.0 pro 8
The following features are not yet implemented. There was no demand for them till now, therefore the 
development is delayed until VB 4.0 is available and analysed, then the priorities of these projects are
rearranged.

Resource Editor

Many programs are not designed to run with monochrome (LCD) displays or a different graphics 
resolution. It should be possible to extract the forms form the executables, edit them in the interpreter 
and compile them back into the executable.

State:
VBDis creates all forms from an EXE file. The opposite direction is possible, too, but with the sources 
the program can be rebuilt as well.

Converting Old VB Applications

Executables from earlier VB versions (using VBRUN100/200) should be converted to VB 3.0, to 
overcome errors in the old libraries.

State:
The file formats of the executables are partially known. VBDis3 also handles VB 2.0 executables, so 
these can be recompiled with VB 3.0. For VB 1.0, there seems to be no great interest in such a 
feature. A conversion from VB 2.0 to 3.0 seems to be possible on the EXE level, too.


