
VBMDis - DoDi's VB Make Discompiler

VBMDis is a direct descendent of VBDis, designed to help you optimising your programs. It allows the
comparison of both your sources and the compiled program. Examining the tokens shown and the
definitions of the variables found in the EXE, you can find how your program may become smaller and
faster. In revision 3.38 support was extended from VB 3.0 to VB 2.0, but some methods may be
handled incorrect for VB 2.0.

Installation of VBMDis is easy, simply copy the whole directory to your hard disk or expand the
archive in a new directory. No setup program overwrites your VBXs and DLLs, and your INI files are
not touched. To remove VBMDis, delete the directory, and it disappears without leaving a trace.

Usage

Compile your VB program and open the make file in VBMDis. Then the Discompiler starts (just like
with VBDis), after this you'll get two windows with the modules in your sources and in the executable.
The windows contain combo boxes to select a module and a subroutine, and list boxes to show the
source text and the tokens for any line. You may adjust the height of the listboxes just as with the
interpreter, the mouse pointer changes its shape over the regions designed for this.

The sources must be saved in binary format, to allow the display of the tokens.

If you use to save your projects as text (as is required with VBPro), you're recommended to create a
copy of your project, using VBPro's option Project|Create|Copy, and use VB to save all modules in
binary format.

The Windows of VBMDis

The main window is a MDI window, after opening a project you'll find there two windows with your
source modules and the executable. In the menu, you can open a third window with any text file. While
analysing the executable, the window known from VBDis appears, and you can open two more
windows with the descriptions of the global and local variables in the executable.

The menu option Window|Wide toggles the arrangement of the make and exe windows in the MDI
window. You can see long lines better with the windows below each other (with the full width of the
main window), and better find matching lines if they are arranged side by side.

You select modules and subroutines separately for both windows, in the exe window you'll find an
additional module with all global declarations, that cannot be assigned to a specific module. The lower
part of each window shows the text of the subroutines and declarations. If you select a line from it, the
tokens forming the line are shown in the list box above the text. Every token line contains the name of
the token and its arguments (in hex). In the exe window, no tokens are available for the declarations
section and the declarations of subroutines and local variables and constants (you find such
informations in the separate definition windows). Instead, for the same line you may find more tokens
in the exe window than in the source window. These tokens are added by the compiler, sometimes
they are only named exe, but you may also find added type conversions (C<type>).

The exe tokens have an added description of the runtime stack and the changes occurring when the
token is executed. In addition to the type chars of VB (%&!#@$), the token arguments may be of the
types Array, Object, Type or variant. Pointers are prefixed with a caret (^), but arrays, types, objects
and strings are always handled by implicit pointers (not flagged). If a string is passed ByVal to a
subroutine, a pointer to a copy of the string is passed as argument. That's why the Discompiler cannot
decide whether a string is passed ByVal or ByRef, if the subroutine is never called.

The stack arguments and operations of a token are listed in the second column, in a function-like
notation. The 'name' of the function is the data type pushed to the stack, the 'arguments' are the
arguments' types popped off the stack.

Example

v($,%) means a string and an integer are popped off the stack, and a variant is pushed instead.

More information is given if a token uses a variable or calls a function. Both such arguments are
shown with its scope and offset, the characters meaning global, module, parameter or local variables.
For parameters, pv denotes a ByVal parameter. The hex number following the type char is the offset
of the description of the variable or function in the modules declarations. With a double click on such a
line you can view that description in the separate module declaration window.

Example
l1234%() means that a local integer variable at offset &H1234 is accessed.

Access to a module variable or constant goes straight to the offset shown. For global variables or
constants however, there stands the offset into the global declarations. For parameter or local
variables, there stands the offset into the execution stack, relative to the subroutines base offset. For
locals and ByVal parameters there stands the value, for ByRef parameters again a pointer to the
value is stored there. So I think, using a module variable (Dim or Static) should give the fastest
access, while locals and ByVal parameters need one more step, and access to ByRef parameters is
the slowest, with a double indirection. An exception is found with local and parameter strings, marked
with positive odd offsets, presumable in another segment. Variants include a normally invisible string,
whose number is appended to the variants description.

Unused local variables and parameters can be recognised by an offset 0000.

In the stack display you may find superfluous type conversions, as shown with Mid and Mid$:

The assignment
s$ = Mid$(x$, y%)

directly pushes a string, whereas
s$ = Mid(x$, y%)

first pushes a string, because only Mid$() is implemented in the runtime system. That string is then
converted to a variant (shown as v($)), what were the result of Mid(). Before the assignment to the
string variable can be made, another conversion (shown as $(v)) is needed.

Unnecessary conversions may occur with constants and Single variables, too. You may find the best
coding by putting different versions of a statement in sequential lines of your source and examining the
tokens created by the compiler. Variables of type Single are useful only in arrays, to save space. Such
variables are always pushed as Doubles, you may encounter additional type conversions (shown as
#(!), !(#) or C<type>).

Buttons in the Code Windows
The sequence of the modules may be different in the make file and the executable file. In the make
window, there are two buttons named match. The upper one beneath the module combo box copies
the name of the module and all subroutines to the exe window, the lower button copies the name of
the selected subroutine, if required. Normally the order of the modules is the same in both windows,
with the exception of the start form that occurs in the first place in the make window. The names of all
forms are retained in the executable, so only other modules may produce problems. You can put a
constant string with the module name into every module, that will be displayed in the declaration
section of the exe modules.

The Rename button in the exe window assigns the current module the name you entered in the text
field of the module combo box. The Variables button opens and refreshes the window with the
description of the module's variables, the global descriptions are accessible in the menu Window|
Globals.

Declaration Windows
The windows with the global and module specific declarations are very similar. The list on the left
contains all declarations, details of the selected entry appear in the window header, and a dump of its

description is given in the right list. The module declaration of a variable can be shown with a double
click on an exe token. In the left list you find the offset of the variable, its value, the number of the
subroutine that contains a local variable, and its name. At the top of the module declarations all
Functions in the module are listed, the global declarations include the descriptions of all user defined
types.

The names of variables cannot be copied from the sources to the exe display, because the compiler
may reorder or even drop subroutines, but you can assign the variable names manually. To do so, you
select the variable in the listbox, enter the name in the edit field above and assign it to the variable
with the Return key or the Name button.

Changing the type of a variable is somewhat more complicated. You select the scope (global,
module, local...) and the type and assign it with the As button. For arrays, fixed strings, types and
objects, VBMDis can evaluate the exact type, provided your guess is correct. The '-' and '+' signs with
some types mean that additional informations are stored before or after the location pointed to by the
variables offset.

The dump in the right list shows all information about the selected variable, so multiple words may be
shown even for simple variables. Small arrays with fixed dimensions are often allocated in the
description, so these arrays may be initialised in the exe file with an appropriate tool!

Undefined variable types almost come from unused variables and constants, then the Discompiler
cannot evaluate its location and type. You can remove all these declarations from your sources,
including unused parameters and locals. Unused subroutines almost have a funny parameter list
(p,p,p), unused locals and parameters and even function results always have 0000 in the value
column.

Global variables and constants are described in the modules by the offset into the global data area.
Module constants have the value stored in the module description, whereas ordinary module variables
have all zeros there. String constants are represented by pointers into the global string segment.

Storing Informations
In the registered version, all names and types are stored and will be restored whenever you start
VBMDis. Just like with VBDis, you should give each program its own directory, where the descriptions
will be stored. If you recompile the program, you should also delete these files or simply the whole
directory, else the Discompiler may be fooled by the old and therefore unusable informations from the
last analysis.

Custom Controls
In the registered version, VBCtrl can be used to analyse custom controls (VBX files) and store the
descriptions for use by VBMDis.

Each time the Discompiler encounters an unknown custom control, a MsgBox comes up. At this point,
start VBCtrl and store the description of the control. Then you select Retry in the MsgBox to continue
with the description just created. To make this work, VBMDis and VBCtrl should reside in the same
directory, else you must copy the descriptions (*.300) to the directory of VBMDis.

VBCtrl - DoDi's Custom Control Tool

VBCtrl analyses VBX files and extracts the properties and events of the included controls. The
operation requires some knowledge that I want to impart to you now on the rush.

Start VBCtrl and open the desired file from the menu or by double-clicking on it. You can also
associate VBCtrl with all VBX files and then open a custom control with a double click on the VBX file
in the file manager. The file will automatically be analysed, and the References window with several
lists will be displayed. The list on the left ('Symbol to find') shows all possible entry points of the file.
Your task is now to find all procedures belonging to the custom controls.

You can recognise the control procedures in most VBXs by the name xxxCTRLPROC (if the VBX
developer followed MS' guidelines given in the CDK). Click on the first of these names, and the
program displays all references to that procedure in the middle list (titled 'Reference to display'). One
of these addresses should be the desired control table. If you can't find a corresponding name, or if the
supposed tables can't be interpreted properly, try all (even unnamed) entry points one after another,
and somewhere you should also find what you're looking for.

Now choose a reference address from the middle list to display the supposed table in the list on the
right. In case of error messages popping up, it is very unlikely that you have found a control table.
Pay attention to the Class Names (CN) and the Default Control Names (DN), here should appear
"readable" text. The first entry (V) allows you to determine the VB Version (100=VB1.0, 200=VB2.0,
300=VB3.0). For details about the other entries shown, please consult the CDK; each line of the list
corresponds to one entry in the Control Model structure, the characters on the beginning of each line
are abbreviations for the corresponding elements of that structure. If you find multiple tables with
identical Class Names (CN), choose the table with the highest Version number.

Pressing the 'Load as Control' button will collect all information related to this control and display it in
the Control Catalogue window. There you can examine all properties and events, pressing the Help
button calls WinHelp to show information concerning the selected event. Then close this window with
the OK button, and look for more controls in the References window.

If you finally found all controls of a VBX and added them to the Control Catalogue, you can save the
definitions and close the References window with the OK button. Doing so, you're asked whether to
save the definitions, but
the definitions are really saved only in the registered version of VBCtrl.

The definitions are written to a file named like the VBX, with the extension '300'. This file will be used
by VBMDis to handle all parts of a program referring to this VBX. The format of the descriptions was
reviewed to need less space than before, but only VBMDis can handle this new format. You should
never overwrite the detailed descriptions shipped with the Discompiler, they are needed by both
VBMDis and VBDis!

