
nop_1 ; 01 47 copy loop template COPY LOOP OF 80AAA

nop_0 ; 00 48 copy loop template

nop_1 ; 01 49 copy loop template

nop_0 ; 00 50 copy loop template

mov_iab ; 1a 51 move contents of [bx] to [ax] (copy instruction)

dec_c ; 0a 52 decrement cx

if_cz ; 05 53 if cx = 0 perform next instruction, otherwise skip it

jmp ; 14 54 jump to template below (copy procedure exit)

nop_0 ; 00 55 copy procedure exit compliment

nop_1 ; 01 56 copy procedure exit compliment

nop_0 ; 00 57 copy procedure exit compliment

nop_0 ; 00 58 copy procedure exit compliment

inc_a ; 08 59 increment ax (point to next instruction of daughter)

inc_b ; 09 60 increment bx (point to next instruction of mother)

jmp ; 14 61 jump to template below (copy loop)

nop_0 ; 00 62 copy loop compliment

nop_1 ; 01 63 copy loop compliment

nop_0 ; 00 64 copy loop compliment

nop_1 ; 01 65 copy loop compliment (10 instructions executed per loop)

shl ; 000 03 12 shift left cx COPY LOOP OF 72ETQ

mal ; 000 1e 13 allocate daughter cell

nop_0 ; 000 00 14 top of loop

mov_iab ; 000 1a 15 copy instruction

dec_c ; 000 0a 16 decrement cx

dec_c ; 000 0a 17 decrement cx

jmpb ; 000 15 18 junk

dec_c ; 000 0a 19 decrement cx

inc_a ; 000 08 20 increment ax

inc_b ; 000 09 21 increment bx

mov_iab ; 000 1a 22 copy instruction

dec_c ; 000 0a 23 decrement cx

inc_a ; 000 08 24 increment ax

inc_b ; 000 09 25 increment bx

mov_iab ; 000 1a 26 copy instruction

dec_c ; 000 0a 27 decrement cx

or1 ; 000 02 28 flip low order bit of cx

if_cz ; 000 05 29 if cx == 0 do next instruction

ret ; 000 17 30 exit loop

inc_a ; 000 08 31 increment ax

inc_b ; 000 09 32 increment bx

jmpb ; 000 15 33 go to top of loop (6 instructions per copy)

nop_1 ; 000 01 34 bottom of loop (18 instructions executed per loop)
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APPENDIX E

Assembler code for the central copy loop of the ancestor (80aaa) and decendant after

�fteen billion instructions (72etq). Within the loop, the ancestor does each of the following

operations once: copy instruction (51), decrement cx (52), increment ax (59) and increment

bx (60). The decendant performs each of the following operations three times within the

loop: copy instruction (15, 22, 26), increment ax (20, 24, 31) and increment bx (21, 25,

32). The decrement cx operation occurs �ve times within the loop (16, 17, 19, 23, 27).

Instruction 28 
ips the low order bit of the cx register. Whenever this latter instruction is

reached, the value of the low order bit is one, so this amounts to a sixth instance of decrement

cx. This means that there are two decrements for every increment. The reason for this is

related to another adaptation of this creature. When it calculates its size, it shifts left (12)

before allocating space for the daughter (13). This has the e�ect of allocating twice as much

space as is actually needed to accomodate the genome. The genome of the creature is 36

instructions long, but it allocates a space of 72 instructions. This occurred in an environment

where the slice size was set equal to the size of the cell. In this way the creatures were able

to garner twice as much energy. However, they had to compliment this change by doubling

the number of decrements in the loop.
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APPENDIX D

Assembler source code for the smallest self-replicating creature.

genotype: 0022abn parent genotype: 0022aak

1st_daughter: flags: 1 inst: 146 mov_daught: 22 breed_true: 1

2nd_daughter: flags: 0 inst: 142 mov_daught: 22 breed_true: 1

InstExecC: 437 InstExec: 625954 origin: 662865379 Wed Jan 2 20:16:19 1991

MaxPropPop: 0.1231 MaxPropInst: 0.0568

nop_0 ; 00 0

adrb ; 1c 1 find beginning

nop_1 ; 01 2

divide ; 1f 3 fails the first time it is executed

sub_ac ; 07 4

mov_ab ; 19 5

adrf ; 1d 6 find end

nop_0 ; 00 7

inc_a ; 08 8 to include final dummy statement

sub_ab ; 06 9 calculate size

mal ; 1e 10

push_bx ; 0d 11 save beginning address on stack in order to `return' there

nop_0 ; 00 12 top of copy loop

mov_iab ; 1a 13

dec_c ; 0a 14

if_cz ; 05 15

ret ; 17 16 jump to beginning, address saved on stack

inc_a ; 08 17

inc_b ; 09 18

jmpb ; 15 19 bottom of copy loop (6 instructions executed per loop)

nop_1 ; 01 20

mov_iab ; 1a 21 dummy statement to terminate template
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nop_1 ; 01 67 copy procedure exit template

nop_0 ; 00 68 copy procedure exit template

nop_1 ; 01 69 copy procedure exit template

nop_1 ; 01 70 copy procedure exit template

pop_cx ; 12 71 pop cx off stack

pop_bx ; 11 72 pop bx off stack

pop_ax ; 10 73 pop ax off stack

ret ; 17 74 return from copy procedure

nop_1 ; 01 75 end template

nop_1 ; 01 76 end template

nop_1 ; 01 77 end template

nop_0 ; 00 78 end template

if_cz ; 05 79 dummy statement to separate creatures
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nop_1 ; 01 24 reproduction loop template

nop_0 ; 00 25 reproduction loop template

nop_1 ; 01 26 reproduction loop template

mal ; 1e 27 allocate memory for daughter cell, address to ax

; ax = start of daughter bx = start of mother

; cx = size of mother dx = template size

call ; 16 28 call template below (copy procedure)

nop_0 ; 00 29 copy procedure compliment

nop_0 ; 00 30 copy procedure compliment

nop_1 ; 01 31 copy procedure compliment

nop_1 ; 01 32 copy procedure compliment

divide ; 1f 33 create independent daughter cell

jmp ; 14 34 jump to template below (reproduction loop, above)

nop_0 ; 00 35 reproduction loop compliment

nop_0 ; 00 36 reproduction loop compliment

nop_1 ; 01 37 reproduction loop compliment

nop_0 ; 00 38 reproduction loop compliment

if_cz ; 05 39 this is a dummy instruction to separate templates

; begin copy procedure

nop_1 ; 01 40 copy procedure template

nop_1 ; 01 41 copy procedure template

nop_0 ; 00 42 copy procedure template

nop_0 ; 00 43 copy procedure template

push_ax ; 0c 44 push ax onto stack

push_bx ; 0d 45 push bx onto stack

push_cx ; 0e 46 push cx onto stack

nop_1 ; 01 47 copy loop template

nop_0 ; 00 48 copy loop template

nop_1 ; 01 49 copy loop template

nop_0 ; 00 50 copy loop template

mov_iab ; 1a 51 move contents of [bx] to [ax]

dec_c ; 0a 52 decrement cx

if_cz ; 05 53 if cx == 0 perform next instruction, otherwise skip it

jmp ; 14 54 jump to template below (copy procedure exit)

nop_0 ; 00 55 copy procedure exit compliment

nop_1 ; 01 56 copy procedure exit compliment

nop_0 ; 00 57 copy procedure exit compliment

nop_0 ; 00 58 copy procedure exit compliment

inc_a ; 08 59 increment ax

inc_b ; 09 60 increment bx

jmp ; 14 61 jump to template below (copy loop)

nop_0 ; 00 62 copy loop compliment

nop_1 ; 01 63 copy loop compliment

nop_0 ; 00 64 copy loop compliment

nop_1 ; 01 65 copy loop compliment

if_cz ; 05 66 this is a dummy instruction, to separate templates
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APPENDIX C

Assembler source code for the ancestral creature.

genotype: 80 aaa origin: 1-1-1990 00:00:00:00 ancestor

parent genotype: human

1st_daughter: flags: 0 inst: 839 mov_daught: 80

2nd_daughter: flags: 0 inst: 813 mov_daught: 80

nop_1 ; 01 0 beginning template

nop_1 ; 01 1 beginning template

nop_1 ; 01 2 beginning template

nop_1 ; 01 3 beginning template

zero ; 04 4 put zero in cx

or1 ; 02 5 put 1 in first bit of cx

shl ; 03 6 shift left cx

shl ; 03 7 shift left cx, now cx = 4

; ax = bx =

; cx = template size dx =

mov_cd ; 18 8 move template size to dx

; ax = bx =

; cx = template size dx = template size

adrb ; 1c 9 get (backward) address of beginning template

nop_0 ; 00 10 compliment to beginning template

nop_0 ; 00 11 compliment to beginning template

nop_0 ; 00 12 compliment to beginning template

nop_0 ; 00 13 compliment to beginning template

; ax = start of mother + 4 bx =

; cx = template size dx = template size

sub_ac ; 07 14 subtract cx from ax

; ax = start of mother bx =

; cx = template size dx = template size

mov_ab ; 19 15 move start address to bx

; ax = start of mother bx = start of mother

; cx = template size dx = template size

adrf ; 1d 16 get (forward) address of end template

nop_0 ; 00 17 compliment to end template

nop_0 ; 00 18 compliment to end template

nop_0 ; 00 19 compliment to end template

nop_1 ; 01 20 compliment to end template

; ax = end of mother bx = start of mother

; cx = template size dx = template size

inc_a ; 08 21 to include dummy statement to separate creatures

sub_ab ; 06 22 subtract start address from end address to get size

; ax = end of mother bx = start of mother

; cx = size of mother dx = template size

nop_1 ; 01 23 reproduction loop template
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system_work(); /* opportunity to extract information */

}

}

void execute(int di, int ci)

{ switch(di)

{ case 0x00: nop_0(ci); break; /* no operation */

case 0x01: nop_1(ci); break; /* no operation */

case 0x02: or1(ci); break; /* flip low order bit of cx, cx ^= 1 */

case 0x03: shl(ci); break; /* shift left cx register, cx <<= 1 */

case 0x04: zero(ci); break; /* set cx register to zero, cx = 0 */

case 0x05: if_cz(ci); break; /* if cx==0 execute next instruction */

case 0x06: sub_ab(ci); break; /* subtract bx from ax, cx = ax - bx */

case 0x07: sub_ac(ci); break; /* subtract cx from ax, ax = ax - cx */

case 0x08: inc_a(ci); break; /* increment ax, ax = ax + 1 */

case 0x09: inc_b(ci); break; /* increment bx, bx = bx + 1 */

case 0x0a: dec_c(ci); break; /* decrement cx, cx = cx - 1 */

case 0x0b: inc_c(ci); break; /* increment cx, cx = cx + 1 */

case 0x0c: push_ax(ci); break; /* push ax on stack */

case 0x0d: push_bx(ci); break; /* push bx on stack */

case 0x0e: push_cx(ci); break; /* push cx on stack */

case 0x0f: push_dx(ci); break; /* push dx on stack */

case 0x10: pop_ax(ci); break; /* pop top of stack into ax */

case 0x11: pop_bx(ci); break; /* pop top of stack into bx */

case 0x12: pop_cx(ci); break; /* pop top of stack into cx */

case 0x13: pop_dx(ci); break; /* pop top of stack into dx */

case 0x14: jmp(ci); break; /* move ip to template */

case 0x15: jmpb(ci); break; /* move ip backward to template */

case 0x16: call(ci); break; /* call a procedure */

case 0x17: ret(ci); break; /* return from a procedure */

case 0x18: mov_cd(ci); break; /* move cx to dx, dx = cx */

case 0x19: mov_ab(ci); break; /* move ax to bx, bx = ax */

case 0x1a: mov_iab(ci); break; /* move instruction at address in bx

to address in ax */

case 0x1b: adr(ci); break; /* address of nearest template to ax */

case 0x1c: adrb(ci); break; /* search backward for template */

case 0x1d: adrf(ci); break; /* search forward for template */

case 0x1e: mal(ci); break; /* allocate memory for daughter cell */

case 0x1f: divide(ci); break; /* cell division */

}

inst_exec_c++;

}
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APPENDIX A

Structure de�nition to implement the Tierra virtual CPU. The complete source code for

the Tierra Simulator can be obtained by contacting the author by email.

struct cpu { /* structure for registers of virtual cpu */

int ax; /* address register */

int bx; /* address register */

int cx; /* numerical register */

int dx; /* numerical register */

char fl; /* flag */

char sp; /* stack pointer */

int st[10]; /* stack */

int ip; /* instruction pointer */

} ;

APPENDIX B

Abbreviated code for implementing the CPU cycle of the Tierra Simulator.

void main(void)

{ get_soup();

life();

write_soup();

}

void life(void) /* doles out time slices and death */

{ while(inst_exec_c < alive) /* control the length of the run */

{ time_slice(this_slice); /* this_slice is current cell in queue */

incr_slice_queue(); /* increment this_slice to next cell in queue */

while(free_mem_current < free_mem_prop * soup_size)

reaper(); /* if memory is full to threshold, reap some cells */

}

}

void time_slice(int ci)

{ Pcells ce; /* pointer to the array of cell structures */

char i; /* instruction from soup */

int di; /* decoded instruction */

int j, size_slice;

ce = cells + ci;

for(j = 0; j < size_slice; j++)

{ i = fetch(ce->c.ip); /* fetch instruction from soup, at address ip */

di = decode(i); /* decode the fetched instruction */

execute(di, ci); /* execute the decoded instruction */

increment_ip(di,ce); /* move instruction pointer to next instruction */
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0082 384 0135 1 0194 4 0343 1 1631 1 10676 1

0083 886 0136 1 0195 11 0351 1 1645 3 11366 5

0084 1672 0137 1 0196 19 0352 3 2266 1 11900 1

0085 1531 0138 1 0197 2 0386 1 2615 2 12212 2

0086 901 0139 2 0198 3 0388 2 2617 9 15717 3

0087 944 0141 6 0199 35 0401 3 2671 7 16355 1

0088 517 0143 1 0200 1 0407 1 3069 3 17356 3

0089 449 0144 4 0201 84 0411 22 4241 1 18532 1

0090 543 0146 1 0203 1 0412 3 5101 15 23134 14

0091 354 0149 1 0204 1 0416 1 5157 9
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Table 1: Genebank. Table of numbers of size classes in the genebank. Left column is size

class, right column is number of self-replicating genotypes of that size class. 305 sizes, 29,275

genotypes.

0034 1 0092 362 0150 2 0205 5 0418 1 5213 2

0041 2 0093 261 0151 1 0207 3 0442 10 5229 4

0043 12 0094 241 0152 2 0208 2 0443 1 5254 1

0044 7 0095 211 0153 1 0209 1 0444 61 5888 36

0045 191 0096 232 0154 2 0210 9 0445 1 5988 1

0046 7 0097 173 0155 3 0211 4 0456 2 6006 2

0047 5 0098 92 0156 77 0212 4 0465 6 6014 1

0048 4 0099 117 0157 270 0213 5 0472 6 6330 1

0049 8 0100 77 0158 938 0214 47 0483 1 6529 1

0050 13 0101 62 0159 836 0218 1 0484 8 6640 1

0051 2 0102 62 0160 3229 0219 1 0485 3 6901 5

0052 11 0103 27 0161 1417 0220 2 0486 9 6971 1

0053 4 0104 25 0162 174 0223 3 0487 2 7158 2

0054 2 0105 28 0163 187 0226 2 0493 2 7293 3

0055 2 0106 19 0164 46 0227 7 0511 2 7331 1

0056 4 0107 3 0165 183 0231 1 0513 1 7422 70

0057 1 0108 8 0166 81 0232 1 0519 1 7458 1

0058 8 0109 2 0167 71 0236 1 0522 6 7460 7

0059 8 0110 8 0168 9 0238 1 0553 1 7488 1

0060 3 0111 71 0169 15 0240 3 0568 6 7598 1

0061 1 0112 19 0170 99 0241 1 0578 1 7627 63

0062 2 0113 10 0171 40 0242 1 0581 3 7695 1

0063 2 0114 3 0172 44 0250 1 0582 1 7733 1

0064 1 0115 3 0173 34 0251 1 0600 1 7768 2

0065 4 0116 5 0174 15 0260 2 0683 1 7860 25

0066 1 0117 3 0175 22 0261 1 0689 1 7912 1

0067 1 0118 1 0176 137 0265 2 0757 6 8082 3

0068 2 0119 3 0177 13 0268 1 0804 2 8340 1

0069 1 0120 2 0178 3 0269 1 0813 1 8366 1

0070 7 0121 60 0179 1 0284 16 0881 6 8405 5

0071 5 0122 9 0180 16 0306 1 0888 1 8406 2

0072 17 0123 3 0181 5 0312 1 0940 2 8649 2

0073 2 0124 11 0182 27 0314 1 1006 6 8750 1

0074 80 0125 6 0184 3 0316 2 1016 1 8951 1

0075 56 0126 11 0185 21 0318 3 1077 5 8978 3

0076 21 0127 1 0186 9 0319 2 1116 1 9011 3

0077 28 0130 3 0187 3 0320 23 1186 1 9507 3

0078 409 0131 2 0188 11 0321 5 1294 7 9564 3

0079 850 0132 5 0190 20 0322 21 1322 7 9612 1

0080 7399 0133 2 0192 12 0330 1 1335 1 9968 1

0081 590 0134 7 0193 4 0342 5 1365 11 10259 31
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Figure 5. Variation in evolutionary optimization under constant conditions.

Based on a mutation rate of four generations per move mutation, all other parameters as in

Fig. 4. The plots are otherwise as described for Fig. 4.
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Figure 4. Evolutionary optimization at eight sets of mutation rates. In each run,

the three mutation rates: move mutations (copy error), 
aws and background mutations

(cosmic rays) are set relative to the generation time. In each case, the background mutation

rate is the lowest, a�ecting a cell once in twice as many generations as the move mutation

rate. The 
aw rate is intermediate, a�ecting a cell once in 1.5 times as many generations

as the move mutation rate. For example in one run, the move mutation will a�ect a cell

line on the average once every 4 generations, the 
aw will occur once every 6 generations,

and the background mutation once every 8 generations. The horizontal axis shows elapsed

time in hundreds of millions of instructions executed by the system. The vertical axis shows

genome size in instructions. Each point indicates the �rst appearance of a new genotype

which crossed the abundance thresholds of either 2% of the population of cells in the soup, or

occupation of 2% of the memory. The number of generations per move mutation is indicated

by a number in the upper right hand corner of each graph.
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Figure 3. Metabolic 
ow chart for obligate symbionts and their interactions.

Symbols are as described for Fig. 1. Neither creature is able to self-replicate in isolation.

However, when cultured together, each is able to replicate by using information provided by

the other.
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Figure 2. Metabolic 
ow chart for social hyper-parasites, their associated hyper-

hyper-parasite cheaters, and their interactions. Symbols are as described for Fig. 1.

Horizontal dashed lines indicate the boundaries between individual creatures. On both the

left and right, above the dashed line at the top of the �gure is the lowermost fragment of a

social-hyper-parasite. Note (on the left) that neighboring social hyper-parasites cooperate

in returning the 
ow of execution to the beginning of the creature for self-re-examination.

Execution jumps back to the end of the creature above, but then falls o� the end of the

creature without executing any instructions of consequence, and enters the top of the creature

below. On the right, a cheater is inserted between the two social-hyper-parasites. The cheater

captures control of execution when it passes between the social individuals. It sets the CPU

registers with its own location and size, and then skips over the self-examination step when

it returns control of execution to the social creature below.
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Figure 1. Metabolic 
ow chart for the ancestor, parasite, hyper-parasite, and

their interactions: ax, bx and cx refer to CPU registers where location and size information

are stored. [ax] and [bx] refer to locations in the soup indicated by the values in the ax

and bx registers. Patterns such as 1101 are complementary templates used for addressing.

Arrows outside of boxes indicate jumps in the 
ow of execution of the programs. The

dotted-line arrows indicate 
ow of execution between creatures. The parasite lacks the

copy procedure, however, if it is within the search limit of the copy procedure of a host, it

can locate, call and execute that procedure, thereby obtaining the information needed to

complete its replication. The host is not adversely a�ected by this informational parasitism,

except through competition with the parasite, which is a superior competitor. Note that the

parasite calls the copy procedure of its host with the expectation that control will return

to the parasite when the copy procedure returns. However, the hyper-parasite jumps out

of the copy procedure rather than returning, thereby seizing control from the parasite. It

then proceeds to reset the CPU registers of the parasite with the location and size of the

hyper-parasite, causing the parasite to replicate the hyper-parasite genome thereafter.
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of using it as a generative process in addition to an optimization procedure. There may also

be some potential application in the areas of machine learning or adaptive programming.

Another long term objective is to use digital organisms evolving freely or under arti�cial

selection, as a source of new paradigms for the programming of massively parallel machines.

The virtual computer that supports digital evolution is a parallel machine of the MIMD

(multiple instruction multiple data) type. One of the biggest problems facing computer

science today is the development of techniques of parallel programming. Digital organisms

program themselves, using evolution. They have discovered on their own, known program-

ming techniques such as unrolling loops. They will discover techniques that are naturally

e�cient on parallel machines, and we should be able to learn from their innovations.

The kinds of ecological interactions already observed in digital communities could in an-

other light, be viewed as optimization techniques for parallel programming (e.g., the sharing

of code fragments). However, these interactions evolve in a \jungle"-like environment where

most interactions are of an adversarial nature. When evolving large parallel application

programs, the most viable model would be a multi-cellular one, where many cells would

cooperate on a common problem. A multi-cellular model is under development. In the end,

evolution may prove to be the best method of programming massively parallel machines.

Biological: I plan to move the biological model ahead of its present state. This will

primarly involve the incorporation of facilities to support diploidy, organized sexuality, and

multi-cellularity. The methods for these advances have already been conceptually worked

out, and the implementation has begun. When these improvements are made, the long term

biological goals are to use the model to test ecological and evolutionary theory, in such areas

as: the evolution of sex, selection across hierarchical levels, and factors a�ecting diversity of

ecological communities. It is hoped that it will be possible to engineer the system up to a

condition analagous to the threshold of the Cambrian explosion of diversity, and then just

allow the complexity and diversity of the digital system to explode spontaneously.

Educational: I wish to distribute both source and executables for use as an educational

and research tool. However, some additional work is needed to make the program fully

portable and to provide a user friendly graphic user interface. This work is underway at a

slow pace.
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complexity, ecological comparisons must be made in the broadest of terms.

Trained biologists will tend to view synthetic life in the same terms that they have come

to know organic life. Having been trained as an ecologist and evolutionist, I have seen in

my synthetic communities, many of the ecological and evolutionary properties that are well

known from natural communities. Biologists trained in other specialties will likely observe

other familiar properties. It seems that what we see is what we know. It is likely to take

longer before we appreciate the unique properties of these new life forms.

4.5 FUTURE DIRECTIONS

For the immediate future, my research will involve three main thrusts:

Computational: The computational issue is how to design a computer architecutre and

operating system that will support the natural evolution of machine code. Von Neumann

style machine codes are considered to be brittle, in the sense that they are not robust to

the genetic operations of mutation and recombination. Any random change in a program is

almost 100% certain to break the program.

The most signi�cant accomplishment of my work to date is �nding a way to overcome this

brittleness with only a slight modi�cation of standard machine codes. However, this success

was achieved in the �rst attempt. Therefore it is not known what features are essential for

evolvability, and I certainly do not know what is the optimal architecture.

The primary computational objective then is to experiment with a large number of vari-

ations on the successful architecture in order to �nd the optimal balance of computational

power and evolvability. This work has begun but needs to be scaled up.

There are however, other important computational goals. We must experiment with

arti�cial selection on application programs. So far all work has involved natural selection on

\wild" algorithms that do no useful work. I want to develop an analog to genetic engineering,

in which application codes are inserted into the genomes of digital organisms and evolved to

greater optimality or new functionality.

It should be possible to develop cross-assemblers between Tierran architectures and real

assembler languages. Application code written and compiled to run on real machines could

be cross-assembled into the new Tierran languages. Each procedure could then be inserted

into the genome of a creature. Creatures could be rewarded with CPU time in proportion

to the e�cacy and e�ciency of the evolving inserted code. In this way, arti�cial selection

would lead to the optimization of the inserted code, which could then be cross-assembled

back into the real machine code.

If arti�cial selection of application programs proved to be practical, it would be worth-

while to render the best Tierran virtual instruction sets in silicon, thereby greatly accelerating

the process. At present, maximum optimization can be achieved in a few hours of running

the Tierran virtual computer. If a real computer were based on the architectural principals

of the Tierran computer, the speed would be multiplied by about two orders of magnitude.

If the real machine were massively parallel, there could be additional gains of �ve to six

orders of magnitude. If machine code could evolve that quickly, then there is the possibility
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the evolution in the system consists of the creatures discovering ways to exploit one-another.

The creatures invent their own �tness functions through adaptation to their biotic (\living")

environment. These ecological interactions are not programmed into the system, but emerge

spontaneously as the creatures discover each other and invent their own games.

In the Tierran world, creatures which initially do not interact, discover means to exploit

one another, and in response, means to avoid exploitation. The original �tness landscape

of the ancestor consists only of the e�ciency parameters of the replication algorithm, in the

context of the properties of the reaper and slicer queues. When by chance, genotypes appear

that exploit other creatures, selection acts to perfect the mechanisms of exploitation, and

mechanisms of defense to that exploitation. The original �tness landscape was based only on

adaptations of the organism to its physical environment. The new �tness landscape retains

those features, but adds to it adaptations to the biotic environment, the other creatures.

Because the �tness landscape includes an ever increasing realm of adaptations to other crea-

tures which are themselves evolving, it can facilitate an auto-catalytic increase in complexity

and diversity of organisms.

Evolutionary theory suggests that adaptation to the biotic environment (other organisms)

rather than to the physical environment is the primary force driving the auto-catalytic

diversi�cation of organisms (Stanley [34]). It is encouraging to discover that the process

has already begun in the Tierran world. It is worth noting that the results presented here

are based on evolution of the �rst creature that I designed, written in the �rst instruction

set that I designed. Comparison to the creatures that have evolved shows that the one I

designed is not a particularly clever one. Also, the instruction set that the creatures are

based on is certainly not very powerful (apart from those special features incorporated to

enhance its evolvability). It would appear then that it is rather easy to create life. Evidently,

virtual life is out there, waiting for us to provide environments in which it may evolve.

4.4 SYNTHETIC BIOLOGY

One of the most uncanny of evolutionary phenomena is the ecological convergence of

biota living on di�erent continents or in di�erent epochs. When a lineage of organisms

undergoes an adaptive radiation (diversi�cation), it leads to an array of relatively stable

ecological forms. The speci�c ecological forms are often recognizable from lineage to lineage.

For example among dinosaurs, the Pterosaur, Triceratops, Tyrannosaurus and Ichthyosaur

are ecological parallels respectively, to the bat, rhinoceros, lion and porpoise of modern

mammals. Similarly, among modern placental mammals, the gray wolf, 
ying squirrel, great

anteater and common mole are ecological parallels respectively, to the Tasmanian wolf, honey

glider, banded anteater and marsupial mole of the marsupial mammals of Australia.

Given these evidently powerful convergent forces, it should perhaps not be surprising

that as adaptive radiations proceed among digital organisms, we encounter recognizable

ecological forms, in spite of the fundamentally distinct physics and chemistry on which they

are based. Ideally, comparisons should be made among organisms of comparable complexity.

It may not be appropriate to compare viruses to mammals. Unfortunately, the organic

creatures most comparable to digital organisms, the RNA creatures, are no longer with us.

Since digital organisms are being compared to modern organic creatures of much greater
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with normal (self-replicating) creatures. These parasites execute some parts of the code of

their hosts, but cause them no direct harm, except as competitors. Some potential hosts

have evolved immunity to the parasites, and some parasites have evolved to circumvent this

immunity.

In addition, facultative hyper-parasites have evolved, which can self-replicate in isolated

culture, but when subjected to parasitism, subvert the parasites energy metabolism to aug-

ment their own reproduction. Hyper-parasites drive parasites to extinction, resulting in

complete domination of the communities. The relatively high degrees of genetic relatedness

within the hyper-parasite dominated communities leads to the evolution of sociality in the

sense of creatures that can only replicate when they occur in aggregations. These social

aggregations are then invaded by hyper-hyper-parasite cheaters.

Mutations and the ensuing replication errors lead to an increasing diversity of sizes and

genotypes of self-replicating creatures in the soup. Within the �rst 100 million instructions

of elapsed time, the soup evolves to a state in which about a dozen more-or-less persistent

size classes coexist. The relative abundances and speci�c list of the size classes varies over

time. Each size class consists of a number of distinct genotypes which also vary over time.

The rate of evolution increases with the mutation rate until the system becomes unsta-

ble, and the community dies at rates above one mutation per four generations. Ecological

interactions are richer and more sustained at slightly lower rates, one mutation per eight

or 16 generations. At mutation rates of one per four generations, under selection for small

sizes, creatures will optimize to a genome size in the 22 to 30 instruction size range within

as little as 300 million instructions of elapsed time. Each of these runs will reach a local

optima which it evidently cannot escape from, although it may not be the global optima.

4.2 INCREASING COMPLEXITY

The unrolled loop (section 3.1.1.8) is an example of the ability of evolution to produce an

increase in complexity, gradually over a long period of time. The interesting thing about the

loop unrolling optimization technique is that it requires more complex code. The resulting

creature has a genome size of 36, compared to its ancestor of size 80, yet it has packed a

much more complex algorithm into less than half the space (Appendix E).

This is a classic example of intricate design in evolution. One wonders how it could have

arisen through random bit 
ips, as every component of the code must be in place in order for

the algorithm to function. Yet the code includes a classic mix of apparent intelligent design,

and the chaotic hand of evolution. The optimization technique is a very clever one invented

by humans, yet it is implemented in a mixed up but functional style that no human would

use (unless perhaps very intoxicated).

4.3 EMERGENCE

The \physical" environment presented by the simulator is quite simple, consisting of

the energy resource (CPU time) doled out rather uniformly by the time slicer, and memory

space which is completely uniform and always available. In light of the nature of the physical

environment, the implicit �tness function would presumably favor the evolution of creatures

which are able to replicate with less CPU time, and this does in fact occur. However, much of
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of death of the community. At the �ve lower mutation rates, 8, 16, 32, 64 and 128, we see

successively lower rates of optimization.

Additional replicates were made of the runs at the mutation rate of four (Fig. 5). The

replicates di�er only in the seed of the random number generator, all other parameters

being identical. These runs vary in some details such as whether progress is continuous and

gradual, or comes in bursts. Also, each run decreases to a size limit which it can not proceed

past even if it is allowed to run much longer. However, di�erent runs reach di�erent plateaus

of e�ciency. The smallest limiting genome size seen has been 22 instructions, while other

runs reached limits of 27 and 30 instructions. Evidently, the system can reach a local optima

from which it can not easily evolve to the global optima.

The increase in e�ciency of the replicating algorithms is even greater than the decrease

in the size of the code. The ancestor is 80 instructions long and requires 839 CPU cycles

to replicate. The creature of size 22 only requires 146 CPU cycles to replicate, a 5.75{fold

di�erence in e�ciency. The algorithm of one of these creatures is listed in Appendix D.

Although optimization of the algorithm is maximized at the highest mutation rate that

does not cause instability, ecological interactions appear to be richer at slightly lower muta-

tion rates. At the rates of eight or 16, we �nd the diversity of coexisting size classes to be

the greatest, and to persist the longest. The smaller size classes tend to be various forms of

parasites, thus a diversity of size classes indicates a rich ecology.

An example of even greater optimization is illustrated in Appendix E and discussed

above in section 3.1.1.8. Unrolling of the loop results in a loop which uses 18 CPU cycles

to copy three instructions, or six CPU cycles executed per instruction copied, compared to

10 for the ancestor. The creature of size 22 also uses six CPU cycles per instruction copied.

However, the creature of Appendix E uses three extra CPU cycles per loop to compensate

for a separate adaptation that allows it to double its share of CPU time from the global pool

(in essence meaning that relatively speaking, it uses only three CPU cycles per instruction

copied). Without this compensation it would use only �ve CPU cycles per instruction copied.

4 SUMMARY

4.1 GENERAL BEHAVIOR OF THE SYSTEM

Once the soup is full of replicating creatures, individuals are initially short lived, generally

reproducing only once before dying, thus individuals turn over very rapidly. More slowly,

there appear new genotypes of size 80, and then new size classes. There are changes in

the genetic composition of each size class, as new mutants appear, some of which increase

signi�cantly in frequency, eventually replacing the original genotype. The size classes which

dominate the community also change through time, as new size classes appear, some of which

competitively exclude sizes present earlier. Once the community becomes diverse, there is a

greater variance in the longevity and fecundity of individuals.

In addition to an increase in the raw diversity of genotypes and genome sizes, there

is an increase in the ecological diversity. Obligate commensal parasites evolve, which are

not capable of self-replication in isolated culture, but which can replicate when cultured
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tage). This pattern was repeated for the next several size classes, until size 90, where a

marked asymmetry of the chaotic attractor was evident, favoring size 79. The run of size

79 against size 93 showed a brief stable period of about a million instructions, which then

moved to a chaotic phase without an attractor, which spiraled slowly down until size 93

became extinct, after an elapsed time of about 6 million instructions.

An interesting exception to this pattern was the interaction between size 79 and size

89. Size 89 is considered to be a \metabolic cripple", because although it is capable of

self-replicating, it executes about 40% more instructions than normal to replicate. It was

eliminated in competition with size 79, with no loops in the trajectory, after an elapsed time

of under one million instructions.

In an experiment to determine the e�ects of the presence of parasites on community

diversity, a community consisting of twenty size classes of hosts was created and allowed to

run for 30 million instructions, at which time only the eight smallest size classes remained.

The same community was then regenerated, but a single genotype (0045aaa) of parasite

was also introduced. After 30 million instructions, 16 size classes remained, including the

parasite. This seems to be an example of a \keystone" parasite e�ect (Paine [28]).

Symbiotic relationships are also possible. The ancestor was manually dissected into

two creatures, one of size 46 which contained only the code for self-examination and the

copy loop, and one of size 64 which contained only the code for self-examination and the

copy procedure (Figure 3). Neither could replicate when cultured alone, but when cultured

together, they both replicated, forming a stable mutualistic relationship. It is not known if

such relationships have evolved spontaneously.

3.4 EVOLUTIONARY OPTIMIZATION

In order to compare the process of evolution between runs of the simulator, a simple

objective quantitative measure of evolution is needed. One such measure is the degree

to which creatures improve their e�ciency through evolution. This provides not only an

objective measure of progress in evolution, but also sheds light on the potential application

of synthetic life systems to the problem of the optimization of machine code.

The e�ciency of the creature can be indexed in two ways: the size of the genome, and

the number of CPU cycles needed to execute one replication. Clearly, smaller genomes can

be replicated with less CPU time, however, during evolution, creatures also decrease the

ratio of instructions executed in one replication, to genome size. The number of instructions

executed per instruction copied, drops substantially.

Figure 4 shows the changes in genome size over a time period of 500 million instructions

executed by the system, for eight sets of mutation rates di�ering by factors of two. Mutation

rates are measured in terms of 1 in N individuals being a�ected by a mutation in each

generation. At the highest two sets of rates tested, one and two, either each (one) or one-

half (two) of the individuals are hit by mutation in each generation. At these rates the system

is unstable. The genomes melt under the heat of the high mutation rates. The community

often dies out, although some runs survived the 500 million instruction runs used in this

study. The next lower rate, four, yields the highest rate of optimization without the risk
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Each size class consists of a number of distinct genotypes which also vary over time.

There exists the potential for great genetic diversity within a size class. There are 32

80

distinct genotypes of size 80, but how many of those are viable self-replicating creatures?

This question remains unanswered, however some information has been gathered through

the use of the automated genebank manager.

In several days of running the genebanker, over 29,000 self-replicating genotypes of over

300 size classes accumulated. The size classes and the number of unique genotypes banked

for each size are listed in Table 1. The genotypes saved to disk can be used to inoculate

new soups individually, or collections of these banked genotypes may be used to assemble

\ecological communities". In \ecological" runs, the mutation rates can be set to zero in

order to inhibit evolution.

3.3 ECOLOGY

The only communities whose ecology has been explored in detail are those that operate

under selection for small sizes. These communities generally include a large number of para-

sites, which do not have functional copy procedures, and which execute the copy procedures

of other creatures within the search limit. In exploring ecological interactions, the mutation

rate is set at zero, which e�ectively throws the simulation into ecological time by stopping

evolution. When parasites are present, it is also necessary to stipulate that creatures must

breed true, since parasites have a tendency to scramble genomes, leading to evolution in the

absence of mutation.

0045aaa is a \metabolic parasite". Its genome does not include the copy procedure,

however it executes the copy procedure code of a normal host, such as the ancestor. In an

environment favoring small creatures, 0045aaa has a competitive advantage over the ancestor,

however, the relationship is density dependent. When the hosts become scarce, most of the

parasites are not within the search limit of a copy procedure, and are not able to reproduce.

Their calls to the copy procedure fail and generate errors, causing them to rise to the top of

the reaper queue and die. When the parasites die o�, the host population rebounds. Hosts

and parasites cultured together demonstrate Lotka-Volterra population cycling (Lotka [25];

Volterra [35]; Wilson & Bossert [36]).

A number of experiments have been conducted to explore the factors a�ecting diversity

of size classes in these communities. Competitive exclusion trials were conducted with a

series of self-replicating (non-parasitic) genotypes of di�erent size classes. The experimental

soups were initially inoculated with one individual of each size. A genotype of size 79 was

tested against a genotype of size 80, and then against successively larger size classes. The

interactions were observed by plotting the population of the size 79 class on the x axis,

and the population of the other size class on the y axis. Sizes 79 and 80 were found to

be competitively matched such that neither was eliminated from the soup. They quickly

entered a stable cycle, which exactly repeated a small orbit. The same general pattern was

found in the interaction between sizes 79 and 81.

When size 79 was tested against size 82, they initially entered a stable cycle, but after

about 4 million instructions they shook out of stability and the trajectory became chaotic

with an attractor that was symmetric about the diagonal (neither size showed any advan-
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three times within the loop, as illustrated in Appendix E, which compares the copy loop of

the ancestor with that of its decendant.

3.1.2 Macro-Evolution

When the simulator is run over long periods of time, hundreds of millions or billions of

instructions, various patterns emerge. Under selection for small sizes there is a proliferation of

small parasites and a rather interesting ecology (see below). Selection for large creatures has

usually lead to continuous incrementally increasing sizes (but not to a trivial concatenation of

creatures end-to-end) until a plateau in the upper hundreds is reached. In one run, selection

for large size lead to apparently open ended size increase, evolving genomes larger than

23,000 instructions in length. These evolutionary patterns might be described as phyletic

gradualism.

The most thoroughly studied case for long runs is where selection, as determined by the

slicer function, is size neutral. The longest runs to date (as much as 2.86 billion Tierran

instructions) have been in a size neutral environment, with a search limit of 10,000, which

would allow large creatures to evolve if there were some algorithmic advantage to be gained

from larger size. These long runs illustrate a pattern which could be described as periods

of stasis punctuated by periods of rapid evolutionary change, which appears to parallel the

pattern of punctuated equilibrium described by Eldredge & Gould [15] and Gould & Eldredge

[19].

Initially these communities are dominated by creatures with genome sizes in the eighties.

This represents a period of relative stasis, which has lasted from 178 million to 1.44 billion

instructions in the several long runs conducted to date. The systems then very abruptly (in

a span of 1 or 2 million instructions) evolve into communities dominated by sizes ranging

from about 400 to about 800. These communities have not yet been seen to evolve into

communities dominated by either smaller or substantially larger size ranges.

The communities of creatures in the 400 to 800 size range also show a long-term pattern of

punctuated equilibrium. These communities regularly come to be dominated by one or two

size classes, and remain in that condition for long periods of time. However, they inevitably

break out of that stasis and enter a period where no size class dominates. These periods of

rapid evolutionary change may be very chaotic. Close observations indicate that at least at

some of these times, no genotypes breed true. Many self-replicating genotypes will coexist

in the soup at these times, but at the most chaotic times, none will produce o�spring which

are even their same size. Eventually the system will settle down to another period of stasis

dominated by one or a few size classes which breed true.

3.2 DIVERSITY

Most observations on the diversity of Tierran creatures have been based on the diversity

of size classes. Creatures of di�erent sizes are clearly genetically di�erent, as their genomes

are of di�erent sizes. Di�erent sized creatures would have some di�culty engaging in re-

combination if they were sexual, thus it is likely that they would be di�erent species. In a

run of 526 million instructions, 366 size classes were generated, 93 of which achieved abun-

dances of �ve or more individuals. In a run of 2.56 billion instructions, 1180 size classes were

generated, 367 of which achieved abundances of �ve or more.
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self-examination, it jumps to a template that occurs at the end rather than the beginning

of its genome. If the creature is 
anked by a similar genome, the jump will �nd the target

template in the tail of the neighbor, and execution will then pass into the beginning of the

active creature's genome. The algorithm will fail unless a similar genome occurs just before

the active creature in memory. Neighboring creatures cooperate by catching and passing on

jumps of the instruction pointer.

It appears that the selection pressure for the evolution of sociality is that it facilitates size

reduction. The social species are 24% smaller than the ancestor. They have achieved this size

reduction in part by shrinking their templates from four instructions to three instructions.

This means that there are only eight templates available to them, and catching each others

jumps allows them to deal with some of the consequences of this limitation as well as to

make dual use of some templates.

3.1.1.6 cheaters: hyper-hyper-parasites

The cooperative social system of hyper-parasites is subject to cheating, and is eventually

invaded by hyper-hyper-parasites (Fig. 2). These cheaters (e.g., 0027aab) position themselves

between aggregating hyper-parasites so that when the instruction pointer is passed between

them, they capture it.

3.1.1.7 a novel self-examination

All creatures discussed thus far mark their beginning and end with templates. They then

locate the addresses of the two templates and determine their genome size by subtracting

them. In one run, creatures evolved without a template marking their end. These creatures

located the address of the template marking their beginning, and then the address of a

template in the middle of their genome. These two addresses were then subtracted to

calculate half of their size, and this value was multiplied by two (by shifting left) to calculate

their full size.

3.1.1.8 an intricate adaptation

The arms race described in the paragraphs above took place over a period of a billion

instructions executed by the system. Another run was allowed to continue for �fteen billion

instructions, but was not examined in detail. A creature present at the end of the run

was examined and found to have evolved an intricate adaptation. The adaptation is an

optimization technique known as \unrolling the loop".

The central loop of the copy procedure performs the following operations: 1) copies an

instruction from the mother to the daughter, 2) decrements the cx register which initially

contains the size of the parent genome, 3) tests to see if cx is equal to zero, if so it exits the

loop, if not it remains in the loop, 4) increment the ax register which contains the address

in the daughter where the next instruction will be copied to, 5) increment the bx register

which contains the address in the mother where the next instruction will be copied from, 6)

jump back to the top of the loop.

The work of the loop is contained in steps 1, 2, 4 and 5. Steps 3 and 6 are overhead. The

e�ciency of the loop can be increased by duplicating the work steps within the loop, thereby

saving on overhead. The creature from the end of the long run had repeated the work steps
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may match templates with code in the allocated memory of other creatures, and may even

execute that code. Therefore, if creature 0045aaa is grown in mixed culture with 0080aaa,

when it attempts to call the copy procedure, it will not �nd the template within its own

genome, but if it is within the search limit (generally set at 200{400 instructions) of the

copy procedure of a creature of genotype 0080aaa, it will match templates, and send its

instruction pointer to the copy code of 0080aaa. Thus a parasitic relationship is established

(see ECOLOGY below). Typically, parasites begin to emerge within the �rst few million

instructions of elapsed time in a run.

3.1.1.2 immunity to parasites

At least some of the size 79 genotypes demonstrate some measure of resistance to para-

sites. If genotype 45aaa is introduced into a soup, 
anked on each side with one individual of

genotype 0079aab, 0045aaa will initially reproduce somewhat, but will be quickly eliminated

from the soup. When the same experiment is conducted with 0045aaa and the ancestor, they

enter a stable cycle in which both genotypes coexist inde�nitely. Freely evolving systems

have been observed to become dominated by size 79 genotypes for long periods, during which

parasitic genotypes repeatedly appear, but fail to invade.

3.1.1.3 circumvention of immunity to parasites

Occasionally these evolving systems dominated by size 79 were successfully invaded by

parasites of size 51. When the immune genotype 0079aab was tested with 0051aao (a direct,

one step, descendant of 0045aaa in which instruction 39 is replaced by an insertion of seven

instructions of unknown origin), they were found to enter a stable cycle. Evidently 0051aao

has evolved some way to circumvent the immunity to parasites possessed by 0079aab. The

fourteen genotypes 0051aaa through 0051aan were also tested with 0079aab, and none were

able to invade.

3.1.1.4 hyper-parasites

Hyper-parasite have been discovered, (e.g., 0080gai, which di�ers by 19 instructions from

the ancestor, Fig. 1). Their ability to subvert the energy metabolism of parasites is based

on two changes. The copy procedure does not return, but jumps back directly to the proper

address of the reproduction loop. In this way it e�ectively seizes the instruction pointer

from the parasite. However it is another change which delivers the coup de grâce: after each

reproduction, the hyper-parasite re-examines itself, resetting the bx register with its location

and the cx register with its size. After the instruction pointer of the parasite passes through

this code, the CPU of the parasite contains the location and size of the hyper-parasite and

the parasite thereafter replicates the hyper-parasite genome.

3.1.1.5 social hyper-parasites

Hyper-parasites drive the parasites to extinction. This results in a community with a

relatively high level of genetic uniformity, and therefore high genetic relationship between

individuals in the community. These are the conditions that support the evolution of social-

ity, and social hyper-parasites soon dominate the community. Social hyper-parasites (Fig.

2) appear in the 61 instruction size class. For example, 0061acg is social in the sense that it

can only self-replicate when it occurs in aggregations. When it jumps back to the code for
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3 RESULTS

3.1 EVOLUTION

Evolutionary runs of the simulator are begun by inoculating the soup of about 60,000

instructions with a single individual of the 80 instruction ancestral genotype. The passage

of time in a run is measured in terms of how many Tierran instructions have been executed

by the simulator. The original ancestral cell executes 839 instructions in its �rst replication,

and 813 for each additional replication. The initial cell and its replicating daughters rapidly

�ll the soup memory to the threshold level of 80% which starts the reaper. Typically, the

system executes about 400,000 instructions in �lling up the soup with about 375 individuals

of size 80 (and their gestating daughter cells). Once the reaper begins, the memory remains

roughly 80% �lled with creatures for the remainder of the run.

3.1.1 Micro-Evolution

If there were no mutations at the outset of the run, there would be no evolution. However,

the bits 
ipped as a result of copy errors or background mutations result in creatures whose

list of 80 instructions (genotype) di�ers from the ancestor, usually by a single bit di�erence

in a single instruction.

Mutations in and of themselves, can not result in a change in the size of a creature, they

can only alter the instructions in its genome. However, by altering the genotype, mutations

may a�ect the process whereby the creature examines itself and calculates its size, potentially

causing it to produce an o�spring that di�ers in size from itself.

Four out of the �ve possible mutations in a no-operation instruction convert it into

another kind of instruction, while one out of �ve converts it into the complementary no-

operation. Therefore 80% of mutations in templates destroy or change the size of the tem-

plate, while one in �ve alters the template pattern. An altered template may cause the

creature to make mistakes in self examination, procedure calls, or looping or jumps of the

instruction pointer, all of which use templates for addressing.

3.1.1.1 parasites

An example of the kind of error that can result from a mutation in a template is a

mutation of the low order bit of instruction 42 of the ancestor (Appendix C). Instruction 42

is a NOP 0, the third component of the copy procedure template. A mutation in the low

order bit would convert it into NOP 1, thus changing the template from 1 1 0 0 to: 1 1 1 0.

This would then be recognized as the template used to mark the end of the creature, rather

than the copy procedure.

A creature born with a mutation in the low order bit of instruction 42 would calculate its

size as 45. It would allocate a daughter cell of size 45 and copy only instructions 0 through

44 into the daughter cell. The daughter cell then, would not include the copy procedure.

This daughter genotype, consisting of 45 instructions, is named 0045aaa.

Genotype 0045aaa (Fig. 1) is not able to self-replicate in isolated culture. However, the

semi-permeable membrane of memory allocation only protects write privileges. Creatures
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the time and date of origin; \metabolic" data including the number of instructions executed

in the �rst and second reproduction, the number of errors generated in the �rst and second

reproduction, and the number of instructions copied into the daughter cell in the �rst and

second reproductions (see Appendix C, D); some environmental parameters at the time of

origin including the search limit for addressing, and the slicer power, both of which a�ect

selection for size.

2.5 THE TIERRAN ANCESTOR

I have used the Tierran language to write a single self-replicating program which is 80

instructions long. This program is referred to as the \ancestor", or alternatively as genotype

0080aaa (Fig. 1). The ancestor is a minimal self-replicating algorithm which was originally

written for use during the debugging of the simulator. No functionality was designed into

the ancestor beyond the ability to self-replicate, nor was any speci�c evolutionary poten-

tial designed in. The commented Tierran assembler and machine code for this program is

presented in Appendix C.

The ancestor examines itself to determine where in memory it begins and ends. The

ancestor's beginning is marked with the four no-operation template: 1 1 1 1, and its ending

is marked with 1 1 1 0. The ancestor locates its beginning with the �ve instructions: ADRB,

NOP 0, NOP 0, NOP 0, NOP 0. This series of instructions causes the system to search

backwards from the ADRB instruction for a template complementary to the four NOP 0

instructions, and to place the address of the complementary template (the beginning) in the

ax register of the CPU (see Appendix A). A similar method is used to locate the end.

Having determined the address of its beginning and its end, it subtracts the two to

calculate its size, and allocates a block of memory of this size for a daughter cell. It then

calls the copy procedure which copies the entire genome into the daughter cell memory,

one instruction at a time. The beginning of the copy procedure is marked by the four no-

operation template: 1 1 0 0. Therefore the call to the copy procedure is accomplished with

the �ve instructions: CALL, NOP 0, NOP 0, NOP 1, NOP 1.

When the genome has been copied, it executes the DIVIDE instruction, which causes the

creature to lose write privileges on the daughter cell memory, and gives an instruction pointer

to the daughter cell (it also enters the daughter cell into the slicer and reaper queues). After

this �rst replication, the mother cell does not examine itself again; it proceeds directly to

the allocation of another daughter cell, then the copy procedure is followed by cell division,

in an endless loop.

Fourty-eight of the eighty instructions in the ancestor are no-operations. Groups of four

no-operation instructions are used as complementary templates to mark twelve sites for

internal addressing, so that the creature can locate its beginning and end, call the copy

procedure, and mark addresses for loops and jumps in the code, etc. The functions of these

templates are commented in the listing in Appendix C.
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2.4.4 Mutation

In order for evolution to occur, there must be some change in the genome of the creatures.

This may occur within the lifespan of an individual, or there may be errors in passing along

the genome to o�spring. In order to insure that there is genetic change, the operating system

randomly 
ips bits in the soup, and the instructions of the Tierran language are imperfectly

executed.

Mutations occur in two circumstances. At some background rate, bits are randomly

selected from the entire soup (e.g., 60,000 instructions totaling 300,000 bits) and 
ipped.

This is analogous to mutations caused by cosmic rays, and has the e�ect of preventing

any creature from being immortal, as it will eventually mutate to death. The background

mutation rate has generally been set at about one bit 
ipped for every 10,000 Tierran

instructions executed by the system.

In addition, while copying instructions during the replication of creatures, bits are ran-

domly 
ipped at some rate in the copies. The copy mutation rate is the higher of the two,

and results in replication errors. The copy mutation rate has generally been set at about

one bit 
ipped for every 1,000 to 2,500 instructions moved. In both classes of mutation, the

interval between mutations varies randomly within a certain range to avoid possible periodic

e�ects.

In addition to mutations, the execution of Tierran instructions is 
awed at a low rate. For

most of the 32 instructions, the result is o� by plus or minus one at some low frequency. For

example, the increment instruction normally adds one to its register, but it sometimes adds

two or zero. The bit 
ipping instruction normally 
ips the low order bit, but it sometimes


ips the next higher bit or no bit. The shift left instruction normally shifts all bits one bit

to the left, but it sometimes shifts left by two bits, or not at all. In this way, the behavior

of the Tierran instructions is probabilistic, not fully deterministic.

It turns out that bit 
ipping mutations and 
aws in instructions are not necessary to gen-

erate genetic change and evolution, once the community reaches a certain state of complexity.

Genetic parasites evolve which are sloppy replicators, and have the e�ect of moving pieces

of code around between creatures, causing rather massive rearrangements of the genomes.

The mechanism of this ad hoc sexuality has not been worked out, but is likely due to the

parasites' inability to discriminate between live, dead or embryonic code.

Mutations result in the appearance of new genotypes, which are watched by an automated

genebank manager. In one implementation of the manager, when new genotypes replicate

twice, producing a genetically identical o�spring at least once, they are given a unique name

and saved to disk. Each genotype name contains two parts, a number and a three letter

code. The number represents the number of instructions in the genome. The three letter

code is used as a base 26 numbering system for assigning a unique label to each genotype in

a size class. The �rst genotype to appear in a size class is assigned the label aaa, the second

is assigned the label aab, and so on. Thus the ancestor is named 80aaa, and the �rst mutant

of size 80 is named 80aab. The �rst creature of size 45 is named 45aaa.

The genebanker saves some additional information with each genome: the genotype name

of its immediate ancestor which makes possible the reconstruction of the entire phylogeny;
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When Tierran creatures \divide", the mother cell loses write privileges on the space of

the daughter cell, but is then free to allocate another block of memory. At the moment of

division, the daughter cell is given its own instruction pointer, and is free to allocate its own

second block of memory.

2.4.2 Time Sharing | The Slicer

The Tierran operating system must be multi-tasking (or parallel) in order for a commu-

nity of individual creatures to live in the soup simultaneously. The system doles out small

slices of CPU time to each creature in the soup in turn. The system maintains a circular

queue called the \slicer queue". As each creature is born, a virtual CPU is created for it,

and it enters the slicer queue just ahead of its mother, which is the active creature at that

time. Thus the newborn will be the last creature in the soup to get another time slice after

the mother, and the mother will get the next slice after its daughter. As long as the slice

size is small relative to the generation time of the creatures, the time sharing system causes

the world to approximate parallelism. In actuality, we have a population of virtual CPUs,

each of which gets a slice of the real CPU's time as it comes up in the queue.

The number of instructions to be executed in each time slice may be set proportional

to the size of the genome of the creature being executed, raised to a power. If the \slicer

power" is equal to one, then the slicer is size neutral, the probability of an instruction being

executed does not depend on the size of the creature in which it occurs. If the power is

greater than one, large creatures get more CPU cycles per instruction than small creatures.

If the power is less than one, small creatures get more CPU cycles per instruction. The

power determines if selection favors large or small creatures, or is size neutral. A constant

slice size selects for small creatures.

2.4.3 Mortality | The Reaper

Self-replicating creatures in a �xed size soup would rapidly �ll the soup and lock up the

system. To prevent this from occurring, it is necessary to include mortality. The Tierran

operating system includes a \reaper" which begins \killing" creatures from a queue when the

memory �lls to some speci�ed level (e.g., 80%). Creatures are killed by deallocating their

memory, and removing them from both the reaper and slicer queues. Their \dead" code is

not removed from the soup.

In the present system, the reaper uses a linear queue. When a creature is born it enters the

bottom of the queue. The reaper always kills the creature at the top of the queue. However,

individuals may move up or down in the reaper queue according to their success or failure

at executing certain instructions. When a creature executes an instruction that generates

an error condition, it moves one position up the queue, as long as the individual ahead of it

in the queue has not accumulated a greater number of errors. Two of the instructions are

somewhat di�cult to execute without generating an error, therefore successful execution of

these instructions moves the creature down the reaper queue one position, as long as it has

not accumulated more errors than the creature below it.

The e�ect of the reaper queue is to cause algorithms which are fundamentally 
awed to

rise to the top of the queue and die. Vigorous algorithms have a greater longevity, but in

general, the probability of death increases with age.
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pattern: NOP 1 NOP 1 NOP 1 NOP 0. If the pattern is found, the instruction pointer will

move to the end of the complementary pattern and resume execution. If the pattern is

not found, an error condition (
ag) will be set and the JMP instruction will be ignored (in

practice, a limit is placed on how far the system may search for the pattern).

The Tierran language is characterized by two unique features: a truly small instruction

set without numeric operands, and addressing by template. Otherwise, the language consists

of familiar instructions typical of most machine languages, e.g., MOV, CALL, RET, POP,

PUSH etc. The complete instruction set is listed in Appendix B.

2.4 THE TIERRAN OPERATING SYSTEM

The Tierran virtual computer needs a virtual operating system that will be hospitable to

digital organisms. The operating system will determine the mechanisms of interprocess com-

munication, memory allocation, and the allocation of CPU time among competing processes.

Algorithms will evolve so as to exploit these features to their advantage. More than being a

mere aspect of the environment, the operating system together with the instruction set will

determine the topology of possible interactions between individuals, such as the ability of

pairs of individuals to exhibit predator-prey, parasite-host or mutualistic relationships.

2.4.1 Memory Allocation | Cellularity

The Tierran computer operates on a block of RAM of the real computer which is set

aside for the purpose. This block of RAM is referred to as the \soup". In most of the work

described here the soup consisted of about 60,000 bytes, which can hold the same number of

Tierran machine instructions. Each \creature" occupies some block of memory in this soup.

Cellularity is one of the fundamental properties of organic life, and can be recognized

in the fossil record as far back as 3.6 billion years (Barbieri [4]). The cell is the original

individual, with the cell membrane de�ning its limits and preserving its chemical integrity.

An analog to the cell membrane is needed in digital organisms in order to preserve the

integrity of the informational structure from being disrupted easily by the activity of other

organisms. The need for this can be seen in Arti�cial Life models such as cellular automata

where virtual state machines pass through one another (Langton [22, 23]), or in core wars type

simulations where coherent structures demolish one another when they come into contact

(Dewdney [10, 13]; Rasmussen et al. [31]).

Tierran creatures are considered to be cellular in the sense that they are protected by a

\semi-permeable membrane" of memory allocation. The Tierran operating system provides

memory allocation services. Each creature has exclusive write privileges within its allocated

block of memory. The \size" of a creature is just the size of its allocated block (e.g., 80

instructions). This usually corresponds to the size of the genome. This \membrane" is

described as \semi-permeable" because while write privileges are protected, read and execute

privileges are not. A creature may examine the code of another creature, and even execute

it, but it can not write over it. Each creature may have exclusive write privileges in at most

two blocks of memory: the one that it is born with which is referred to as the \mother

cell", and a second block which it may obtain through the execution of the MAL (memory

allocation) instruction. The second block, referred to as the \daughter cell", may be used to

grow or reproduce into.
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approach in this study has been to loosen up the machine code in a \virtual bio-computer",

in order to create a computational system based on a hybrid between biological and classical

von Neumann processes.

In developing this new virtual language, which is called \Tierran", close attention has

been paid to the structural and functional properties of the informational system of biological

molecules: DNA, RNA and proteins. Two features have been borrowed from the biological

world which are considered to be critical to the evolvability of the Tierran language.

First, the instruction set of the Tierran language has been de�ned to be of a size that is

the same order of magnitude as the genetic code. Information is encoded into DNA through

64 codons, which are translated into 20 amino acids. In its present manifestation, the Tierran

language consists of 32 instructions, which can be represented by �ve bits, operands included.

Emphasis is placed on this last point because some instruction sets are deceptively small.

Some versions of the redcode language of Core Wars (Dewdney [10, 13]; Rasmussen et al.

[31]) for example are de�ned to have ten operation codes. It might appear on the surface

then that the instruction set is of size ten. However, most of the ten instructions have one

or two operands. Each operand has four addressing modes, and then an integer. When we

consider that these operands are embedded into the machine code, we realize that they are

in fact a part of the instruction set, and this set works out to be about 10

11

in size. Similarly,

RISC machines may have only a few opcodes, but they probably all use 32 bit instructions,

so from a mutational point of view, they really have 2

32

instructions. Inclusion of numeric

operands will make any instruction set extremely large in comparison to the genetic code.

In order to make a machine code with a truly small instruction set, we must eliminate

numeric operands. This can be accomplished by allowing the CPU registers and the stack

to be the only operands of the instructions. When we need to encode an integer for some

purpose, we can create it in a numeric register through bit manipulations: 
ipping the low

order bit and shifting left. The program can contain the proper sequence of bit 
ipping

and shifting instructions to synthesize the desired number, and the instruction set need not

include all possible integers.

A second feature that has been borrowed from molecular biology in the design of the

Tierran language is the addressing mode, which is called \address by template". In most

machine codes, when a piece of data is addressed, or the IP jumps to another piece of code, the

exact numeric address of the data or target code is speci�ed in the machine code. Consider

that in the biological system by contrast, in order for protein molecule A in the cytoplasm of

a cell to interact with protein molecule B, it does not specify the exact coordinates where B

is located. Instead, molecule A presents a template on its surface which is complementary to

some surface on B. Di�usion brings the two together, and the complementary conformations

allow them to interact.

Addressing by template is illustrated by the Tierran JMP (jump) instruction. Each JMP

instruction is followed by a sequence of NOP (no-operation) instructions, of which there are

two kinds: NOP 0 and NOP 1. Suppose we have a piece of code with �ve instruction in the

following order: JMP NOP 0 NOP 0 NOP 0 NOP 1. The system will search outward in both

directions from the JMP instruction looking for the nearest occurrence of the complementary
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Another reason to avoid developing digital organisms in the machine code of a real

computer is that the arti�cial system would be tied to the hardware and would become

obsolete as quickly as the particular machine it was developed on. In contrast, an arti�cial

system developed on a virtual machine could be easily ported to new real machines as they

become available.

A third issue, which potentially makes the �rst two moot, is that the machine languages

of real machines are not designed to be evolvable, and in fact might not support signi�cant

evolution. Von Neuman type machine languages are considered to be \brittle", meaning

that the ratio of viable programs to possible programs is virtually zero. Any mutation or

recombination event in a real machine code is almost certain to produce a non-functional

program. The problem of brittleness can be mitigated by designing a virtual computer

whose machine code is designed with evolution in mind. Farmer & Belin [17] have suggested

that overcoming this brittleness and \Discovering how to make such self-replicating patterns

more robust so that they evolve to increasingly more complex states is probably the central

problem in the study of arti�cial life."

The work described here takes place on a virtual computer known as Tierra (Spanish for

Earth). Tierra is a parallel computer of the MIMD (multiple instruction, multiple data) type,

with a processor (CPU) for each creature. Parallelism is imperfectly emulated by allowing

each CPU to execute a small time slice in turn. Each CPU of this virtual computer contains

two address registers, two numeric registers, a 
ags register to indicate error conditions, a

stack pointer, a ten word stack, and an instruction pointer. Each virtual CPU is implemented

via the C structure listed in Appendix A. Computations performed by the Tierran CPUs

are probabilistic due to 
aws that occur at a low frequency (see Mutation below).

The instruction set of a CPU typically performs simple arithmetic operations or bit

manipulations, within the small set of registers contained in the CPU. Some instructions

move data between the registers in the CPU, or between the CPU registers and the RAM

(main) memory. Other instructions control the location and movement of an \instruction

pointer" (IP). The IP indicates an address in RAM, where the machine code of the executing

program (in this case a digital organism) is located.

The CPU perpetually performs a fetch-decode-execute-increment IP cycle: The machine

code instruction currently addressed by the IP is fetched into the CPU, its bit pattern is

decoded to determine which instruction it corresponds to, and the instruction is executed.

Then the IP is incremented to point sequentially to the next position in RAM, from which

the next instruction will be fetched. However, some instructions like JMP, CALL and RET

directly manipulate the IP, causing execution to jump to some other sequence of instructions

in the RAM. In the Tierra Simulator this CPU cycle is implemented through the time slice

routine listed in Appendix B.

2.3 THE TIERRAN LANGUAGE

Before attempting to set up a synthetic life system, careful thought must be given to

how the representation of a programming language a�ects its adaptability in the sense of

being robust to genetic operations such as mutation and recombination. The nature of the

virtual computer is de�ned in large part by the instruction set of its machine language. The
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frequency. Digital life evolves through the same process, as replicating algorithms compete

for CPU time and memory space, and organisms evolve strategies to exploit one another.

CPU time is thought of as the analog of the energy resource, and memory as the analog of

the spatial resource.

The memory, the CPU and the computer's operating system are viewed as elements

of the \abiotic" (physical) environment. A \creature" is then designed to be speci�cally

adapted to the features of the computational environment. The creature consists of a self-

replicating assembler language program. Assembler languages are merely mnemonics for

the machine codes that are directly executed by the CPU. These machine codes have the

characteristic that they directly invoke the instruction set of the CPU and services provided

by the operating system.

All programs, regardless of the language they are written in, are converted into machine

code before they are executed. Machine code is the natural language of the machine, and

machine instructions are viewed by this author as the \atomic units" of computing. It is

felt that machine instructions provide the most natural basis for an arti�cial chemistry of

creatures designed to live in the computer.

In the biological analogy, the machine instructions are considered to be more like the

amino acids than the nucleic acids, because they are \chemically active". They actively

manipulate bits, bytes, CPU registers, and the movements of the instruction pointer (see

below). The digital creatures discussed here are entirely constructed of machine instructions.

They are considered analogous to creatures of the RNA world, because the same structures

bear the \genetic" information and carry out the \metabolic" activity.

A block of RAM memory (random access memory, also known as \main" or \core"

memory) in the computer is designated as a \soup" which can be inoculated with creatures.

The \genome" of the creatures consists of the sequence of machine instructions that make

up the creature's self-replicating algorithm. The prototype creature consists of 80 machine

instructions, thus the size of the genome of this creature is 80 instructions, and its \genotype"

is the speci�c sequence of those 80 instructions (Appendix C).

2.2 THE VIRTUAL COMPUTER | TIERRA SIMULATOR

The computers we use are general purpose computers, which means, among other things,

that they are capable of emulating through software, the behavior of any other computer

that ever has been built or that could be built (Aho et al. [2]; Minsky [26]; Langton [24]).

We can utilize this 
exibility to design a computer that would be especially hospitable to

synthetic life.

There are several good reasons why it is not wise to attempt to synthesize digital or-

ganisms that exploit the machine codes and operating systems of real computers. The most

urgent is the potential threat of natural evolution of machine codes leading to virus or worm

type of programs that could be di�cult to eradicate due to their changing \genotypes".

This potential argues strongly for creating evolution exclusively in programs that run only

on virtual computers and their virtual operating systems. Such programs would be nothing

more than data on a real computer, and therefore would present no more threat than the

data in a data base or the text �le of a word processor.
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another event in the history of life that is less well known but of comparable signi�cance:

the origin of biological diversity and macroscopic multicellular life during the Cambrian

explosion 600 million years ago. This event involved a riotous diversi�cation of life forms.

Dozens of phyla appeared suddenly, many existing only 
eetingly, as diverse and sometimes

bizarre ways of life were explored in a relative ecological void (Gould [18]; Morris [27]).

The work presented here aims to parallel the second major event in the history of life,

the origin of diversity. Rather than attempting to create prebiotic conditions from which

life may emerge, this approach involves engineering over the early history of life to design

complex evolvable organisms, and then attempting to create the conditions that will set o� a

spontaneous evolutionary process of increasing diversity and complexity of organisms. This

work represents a �rst step in this direction, creating an arti�cial world which may roughly

parallel the RNA world of self-replicating molecules (still falling far short of the Cambrian

explosion).

The approach has generated rapidly diversifying communities of self-replicating organisms

exhibiting open-ended evolution by natural selection. From a single rudimentary ancestral

creature containing only the code for self-replication, interactions such as parasitism, im-

munity, hyper-parasitism, sociality and cheating have emerged spontaneously. This paper

presents a methodology and some �rst results.

Apart from its value as a tool for the study or teaching of ecology and evolution, synthetic

life may have commercial applications. Evolution of machine code provides a new approach

to the design and optimization of computer programs. In an analogy to genetic engineering,

pieces of application code may be inserted into the genomes of digital organisms, and then

evolved to new functionality or greater e�ciency.

Here was a world of simplicity and certainty... a world based on the one and

zero of life and death. Minimal, beautiful. The patterns of lives and deaths....

weightless, invisible chains of electronic presence or absence. If patterns of ones

and zeros were \like" patterns of human lives and deaths, if everything about an

individual could be represented in a computer record by a long string of ones and

zeros, then what kind of creature would be represented by a long string of lives

and deaths? It would have to be up one level at least | an angel, a minor god,

something in a UFO.

| Thomas Pynchon, Vineland.

2 METHODS

2.1 THE METAPHOR

Organic life is viewed as utilizing energy, mostly derived from the sun, to organize matter.

By analogy, digital life can be viewed as using CPU (central processing unit) time, to organize

memory. Organic life evolves through natural selection as individuals compete for resources

(light, food, space, etc.) such that genotypes which leave the most descendants increase in
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more easily in the synthetic system. \Evolution in a bottle" provides a valuable tool for the

experimental study of evolution and ecology.

The intent of this work is to synthesize rather than simulate life. This approach starts

with hand crafted organisms already capable of replication and open-ended evolution, and

aims to generate increasing diversity and complexity in a parallel to the Cambrian explosion.

To state such a goal leads to semantic problems, because life must be de�ned in a way that

does not restrict it to carbon based forms. It is unlikely that there could be general agreement

on such a de�nition, or even on the proposition that life need not be carbon based. Therefore,

I will simply state my conception of life in its most general sense. I would consider a system

to be living if it is self-replicating, and capable of open-ended evolution. Synthetic life should

self-replicate, and evolve structures or processes that were not designed-in or pre-conceived

by the creator (Pattee [30]; Cariani [5]).

Core Wars programs, computer viruses, and worms (Cohen [6]; Dewdney [10, 11, 13,

14]; Denning [9]; Rheingold [32]; Spa�ord et al. [33]) are capable of self-replication, but

fortunately, not evolution. It is unlikely that such programs will ever become fully living,

because they are not likely to be able to evolve.

Most evolutionary simulations are not open-ended. Their potential is limited by the

structure of the model, which generally endows each individual with a genome consisting

of a set of pre-de�ned genes, each of which may exist in a pre-de�ned set of allelic forms

(Holland [20]; Dewdney [12]; Dawkins [7, 8]; Packard [29]; Ackley & Littman [1]). The object

being evolved is generally a data structure representing the genome, which the simulator

program mutates and/or recombines, selects, and replicates according to criteria designed

into the simulator. The data structures do not contain the mechanism for replication, they

are simply copied by the simulator if they survive the selection phase.

Self-replication is critical to synthetic life because without it, the mechanisms of selection

must also be pre-determined by the simulator. Such arti�cial selection can never be as

creative as natural selection. The organisms are not free to invent their own �tness functions.

Freely evolving creatures will discover means of mutual exploitation and associated implicit

�tness functions that we would never think of. Simulations constrained to evolve with pre-

de�ned genes, alleles and �tness functions are dead ended, not alive.

The approach presented here does not have such constraints. Although the model is

limited to the evolution of creatures based on sequences of machine instructions, this may

have a potential comparable to evolution based on sequences of organic molecules. Sets of

machine instructions similar to those used in the Tierra Simulator have been shown to be

capable of \universal computation" (Aho et al. [2]; Minsky [26]; Langton [24]). This suggests

that evolving machine codes should be able to generate any level of complexity.

Other examples of the synthetic approach to life can be seen in the work of Holland [21],

Farmer et al. [16], Langton [22], Rasmussen et al. [31], and Bagley et al. [3]. A character-

istic these e�orts generally have in common is that they parallel the origin of life event by

attempting to create prebiotic conditions from which life may emerge spontaneously and

evolve in an open ended fashion.

While the origin of life is generally recognized as an event of the �rst order, there is
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Marcel, a mechanical chessplayer... his exquisite 19th-century brainwork | the

human art it took to build which has been 
at lost, lost as the dodo bird ...

But where inside Marcel is the midget Grandmaster, the little Johann Allgeier?

where's the pantograph, and the magnets? Nowhere. Marcel really is a mechan-

ical chessplayer. No fakery inside to give him any touch of humanity at all.

| Thomas Pynchon, Gravity's Rainbow.

1 INTRODUCTION

Ideally, the science of biology should embrace all forms of life. However in practice, it

has been restricted to the study of a single instance of life, life on earth. Life on earth is

very diverse, but it is presumably all part of a single phylogeny. Because biology is based

on a sample size of one, we can not know what features of life are peculiar to earth, and

what features are general, characteristic of all life. A truly comparative natural biology

would require inter-planetary travel, which is light years away. The ideal experimental

evolutionary biology would involve creation of multiple planetary systems, some essentially

identical, others varying by a parameter of interest, and observing them for billions of years.

A practical alternative to an inter-planetary or mythical biology is to create synthetic

life in a computer. The objective is not necessarily to create life forms that would serve

as models for the study of natural life, but rather to create radically di�erent life forms,

based on a completely di�erent physics and chemistry, and let these life forms evolve their

own phylogeny, leading to whatever forms are natural to their unique physical basis. These

truly independent instances of life may then serve as a basis for comparison, to gain some

insight into what is general and what is peculiar in biology. Those aspects of life that prove

to be general enough to occur in both natural and synthetic systems can then be studied
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Evolution and Optimization of Digital Organisms

Digital organisms have been synthesized based on a computer metaphor of organic life in

which CPU time is the \energy" resource and memory is the \material" resource. Memory

is organized into informational \genetic" patterns that exploit CPU time for self-replication.

Mutation generates new forms, and evolution proceeds by natural selection as di�erent \geno-

types" compete for CPU time and memory space. In addition, new genotypes appear which

exploit other \creatures" for informational or energetic resources.

The digital organisms are self-replicating computer programs, however, they can not es-

cape because they run exclusively on a virtual computer in its unique machine language.

From a single ancestral \creature" there have evolved tens of thousands of self-replicating

genotypes of hundreds of genome size classes. Parasites evolved, then creatures that were im-

mune to parasites, and then parasites that could circumvent the immunity. Hyper-parasites

evolved which subvert parasites to their own reproduction and drive them to extinction.

The resulting genetically uniform communities evolve sociality in the sense of creatures that

can only reproduce in cooperative aggregations, and these aggregations are then invaded by

cheating hyper-hyper-parasites.

Diverse ecological communities have emerged. These digital communities have been used

to experimentally study ecological and evolutionary processes: e.g., competitive exclusion

and coexistance, symbiosis, host/parasite density dependent population regulation, the ef-

fect of parasites in enhancing community diversity, evolutionary arms races, punctuated

equilibrium, and the role of chance and historical factors in evolution. It is possible to

extract information on any aspect of the system without disturbing it, from phylogeny or

community structure through time to the \genetic makeup" and \metabolic processes" of

individuals. Digital life demonstrates the power of the computational approach to science

as a complement to the traditional approaches of experiment, and theory based on analysis

through calculus and di�erential equations.

Optimization experiments have shown that freely evolving digital organisms can optimize

their algorithms by a factor of 5.75 in a few hours of real time. In addition, evolution

discovered the optimization technique of \unrolling the loop". Evolution may provide a new

method for the optimization or generation of application programs. This method may prove

particularly useful for programming massively parallel machines.

evolution, ecology, arti�cial life, synthetic life, emergence, self-replication, diversity, adapta-

tion, coevolution, optimization


