
 SECTION III - Advanced Topics

 CHAPTER 11

Advanced Features
 11.1 Using Soft-ICE with other Debuggers
 11.1.1 Debuggers that Use DOS
 11.1.2 ACTION Command with other Debuggers
 11.1.3 Special Considerations
 11.1.4 Using Soft-ICE with CODEVIEW
 11.1.5 Debuggers that Use 80386 Break Point
 Registers
 11.2 User-Qualified Break Points
 11.2.1 Example of a User-Qualified Break Point
 11.3 The Window in Graphics Mode
 11.4 Expanded Memory Debugging Features
 11.5 Extended Memory Debugging Features

209

11.1 Using Soft-ICE with other Debuggers

Soft-ICE was designed to work well with other debuggers. Each debugger offers
different features, and therefore can require special treatment. This section will
describe some ways to use several debuggers effectively.

11.1.1 Debuggers that Use DOS

Many debuggers use DOS and ROM BIOS to perform their display and keyboard I/O.
Special consideration must be taken when using these debuggers with Soft-ICE (e.g.,
DEBUG, SYMDEB, and CODEVIEW), because DOS and ROM BIOS are not fully re-entrant.
If a break point occurs while code is executing in DOS or BIOS, a re-entrancy problem
can occur.

Soft-ICE provides optional re-entrancy warning, which is activated with the WARN
command. When WARN mode is on, Soft-ICE checks for DOS or ROM BIOS re-entrancy
before generating the ACTION that wakes up the host debugger. When a re-entrancy
problem is detected, Soft-ICE displays a warning message and offers you the choice of
continuing to execute the code or returning to Soft-ICE.

Note that Soft-ICE itself does not use DOS or ROM BIOS calls in its debugging
commands. This means that you can use Soft-ICE any time, without the worry of re-
entrancy problems.

For more information on the WARN command, see section 5.4.

11.1.2 ACTION Command with other Debuggers

Different debuggers use different methods of activation For a description of these
methods see section 13.1.

210

If you want to return to your debugger after a break point reached, you must change
the ACTION (see section 5.4) to work with your debugger.

In most cases, the action that should be taken after a break point is reached is INT3. For
instance, DEBUG and SYMDEB will work best with ACTION set to INT3.

If INT3 doesn't work with your debugger, try INT1 or NMI. CODEVIEW works best with
ACTION set to NMI.

11.1.3 Special Considerations

When a break point is set, you must be careful not to set off the break point
unintentionally. For instance, if you set a memory break point at 0:0, then use your
debugger to dump memory location 0:0, Soft-ICE will be triggered. If ACTION is set to go
to your debugger, then your debugger will be triggered by itself. Since some debuggers
cannot be re-entrant, this could be a fatal problem. This problem can also occur with
other debugging functions, such as editing or unassembling.

For this reason, it is a good practice to disable the Soft-ICE break points once Soft-ICE
has helped you get to the point where you want to look around with your debugger.

11.1.4 Using Soft-ICE with CODEVIEW

Soft-ICE works best with CODEVIEW when CODEVIEW is either in Assembler mode or
Mixed mode. When CODEVIEW is in Source mode with higher-level languages it does
not always break correctly.
It is always best to use ACTION NMI when you want Soft-ICE to wake up CODEVIEW.

211

11.1.5 Debuggers that Use 80386 Break Point Registers

The 80386 has 4 break point registers that are available for use by debuggers. Soft-ICE
uses these for its memory byte, word and double word break points. If the debugger
you are using Soft-ICE with uses these debug registers there will be a conflict. There are
two ways to handle this problem.

 1. Disable the use of 80386 break point registers in the
 debugger you are using Soft-ICE with. Check the
 documentation of your other debugger for a
 description of how to do this.
 2. Some debuggers automatically use the break point
 registers if they detect an 80386 processor with no
 method of turning them off (some versions of
 SYMDEB do this). For these debuggers do the
 following:
 * Bring up the Soft-ICE window before you start
 the other debugger.
 * Turn on Soft-ICE's break mode with the
 BREAK command (you may want to do this in
 the INIT statement of S-ICE.DAT if you are
 doing this frequently).
 * Start up your other debugger.
 * You may now pop up the Soft-ICE window and
 turn the Soft-ICE break mode off if desired.

11.2 User-Qualified Break Points

Occasionally you may have the need for a very specific set of break point conditions. If
the special conditions require qualifying register values or memory values, you can
write a break point qualification routine.

212

Soft-ICE contains a very general mechanism for calling user-written break point
qualification routines: the ACTION command. When you use the ACTION command, Soft-
ICE can route all break points through special interrupt vector. However, before break
points can be routed, the qualification routine must be placed in memory, and the
interrupt vector must be pointing to the qualification routine.

All registers are identical to the values when the Soft-ICE break point occurred. It is the
responsibility of the qualification routine to save and restore the registers. If your
qualification routine detects a match of break point conditions, it can do a variety of
activities. Some examples of useful activities that a routine can do when a match is
found are:

 * store information for later
 * send the information directly to a printer or serial
 terminal
 * issue an INT 3 instruction to bring up Soft-ICE
 The command 13HERE must be turned on in order
 for the INT 3 to bring up Soft-ICE (see section 5.4).

If conditions do not match, the qualification routine in should execute an IRET
instruction. To summarize:

 1. Create a break point qualification routine in your
 code space, or anywhere in free memory. The
 routine must preserve registers. After comparing
 the desired conditions, the routine can execute
 either an INT 3 to bring up Soft-ICE, or an IRET
 to continue.
 2. Point an unused interrupt vector to your
 qualification routine. This can be done either
 within your code or from Soft-ICE.

213

 3. In Soft-ICE, set ACTION to the interrupt- number
 that was used to point to your qualification routine.
 4. In Soft-ICE, set 13HERE on. This is necessary to
 bring up Soft-ICE after the conditions have been
 met.
 5. Set the Soft-ICE general break point conditions.
 When any of these break point conditions are met,
 your qualification routine will be called.

11.2.1 Example of a User-Qualified Break Point

This section contains an example of a user-qualified break point that compares for the
conditions of U = 3, BX = 4 and CX = 5 when a break point goes off.

First, we create the qualification routine. For the purposes of this example, we will
assemble the command directly into memory with the Soft-ICE interactive assembler.
For this example we will arbitrarily assemble the routine at location 9000:0H. The
following statements are entered into Soft-ICE:

 A 9000:0
 9000:0 CMP AX,3
 9000:3 JNE 10
 9000:5 CMP BX,4
 9000:7 JNE 10
 9000:A CMP CX,5
 9000:D JNE 10
 9000:F INT3
 9000:10 IRET

Now that the routine is in memory, you must point an interrupt vector to the routine.

For this example, we arbitrarily pick INT 99H. To place 9000:0H in the INT 99H vector
enter:

 ED 0:99*4 9000:0

214

Set the ACTION command so that Soft-ICE will call your break point qualification routine
on every break point.

 ACTION 99

Set 13HERE on so the qualification routine can activate Soft-ICE when the conditions
occur.

 13HERE ON

Now you need to set the break points. For this example, we are just interested when the
registers are: U = 3, BX = 4, CX = 5 in a specific program, and we do not want any
further qualification. To do this, use a range break point on memory read:

 BPR segment:starting-offset segment:ending-offset

This will cause your break point qualification routine to be called after every instruction
is executed in the specified memory range. When the register conditions do not match,
then the IRET instruction is executed. When the conditions finally match the specified
qualifications, the INT 3 is executed and Soft-ICE is popped up.

When Soft-ICE pops up, the instruction pointer will be pointing at the INT3 in your
qualification routine (9OOO:FH in our example). To get to the instruction after the one
that caused the break point, you must change the instruction pointer to point to the
IRET instruction (F000: 10H in the example) and single step one time. This is
accomplished with the following Soft-ICE commands

 RIP IP + 1
 T

After your break conditions have gone off, remember to change the ACTION command
back to ACTION HERE that subsequent break points do not go through your qualification
routine.

215

11.3 The Window in Graphics Mode

The screen is switched to text mode when Soft-ICE is invoked. If the screen was in

graphics mode or 40-column mode, the graphics display is not visible while the window
is up. For users who must see the graphics display while debugging, three features are
provided. The first feature allows the Soft-ICE window to display on a second monitor
(see the ALTSCR command, section 5.9). The second feature allows you to restore the
screen while you are doing P or T instruction step commands (see the FLASH command,
section 5.9). The third feature allows you to restore the program screen temporarily
(see the RS command, section 5.9).

If Soft-ICE does not seem to be following your program into graphics mode, try turning
WATCHV on (see section 5.9 for details).

11.4 Expanded Memory Debugging Features

A range break point or a break point on memory that is set in an EMM mappable area
will stay at that address no matter which EMM page is mapped in.

When debugging EMM programs, the EMMMAP command may also be very useful. See
section 5.6 for more information.

The D, E, S, F, and C commands can be used to view or modify any allocated EMM
handle page. The page does not have to be currently mapped in. The syntax of these
commands is similar to that of the commands when being used for non-EMM pages,
except for the following:
 * In the D, E, S, and F commands, the address
 portion of the command must be specified in the
 following way:
 Hhandle# Ppage# offset

216

 where handle is a number specifying which EMM
 handle to use, page is a number specifying which
 EMM page to use, and offset is a number from 0 to
 4000H, specifying the offset from the beginning of
 the page.
 Example:

 DB H1 P3 0

 This command will dump bytes from page 3 of
 handle 1, starting at offset 0.

 * The C command must be specified in the following
 way:

 C Hhandle# Ppage# offset1 L length offset2

 where handle and page are the same as above.
 offset1 is a number from 0 to 4000H, specifying the
 offset from the beginning of the page, where the
 first data block to be compared is located.
 offset2 is a number from 0 to 4000H, specifying the
 offset from the beginning of the page, where the
 second data block to be compared is located.
 Example:

 C H2 P4 00 L10 1000

 This command will compare the first 10 bytes of
 memory located at offset 0 of page 4 of handle 2
 with the first 10 bytes of memory located at offset
 1000 of page 4 of handle 2.

Note:
Subsequent uses of the D, E, S, F, and C commands will continue to use the handle and
page last specified. To get back to conventional memory, use one of the above

217

commands with a segment specified in the address field, for example:
 D 0:0

11.5 Extended Memory Debugging Features

The D, E, S, F, and C commands can be used to view or modify extended memory.
Extended memory reserved by Soft-ICE can not be displayed. The syntax of these
commands is similar to that of the commands when being used for conventional
memory:

 * In the D, E, S, and F commands, the address
 portion of the command must be specified in the
 following way:
 M megabyte address
 where megabyte is a number specifying which
 megabyte to use, and address specifies the address
 in the specified megabyte.
 Example:
 DB M 2 0:0
 This command will dump bytes from start of the
 megabyte starting at linear address 200000H.
 * The C command must be specified in the following
 way:

 C M megabyte address1 L length address2
 where megabyte and address1 are the same as above.
 address2 specifies the address in the specified
 megabyte, where the second data block to be
 compared is located.

218

 Example:

 C M 3 1000:2000 L10 3000:4000

 This command will compare the first 10 bytes of
 memory located at 1000:2000 with the first 10 bytes
 of memory located at 3000:4000.

Note:
Subsequent uses of the D, E, S, F, and C commands will continue to use the last
megabyte specified. To get back to megabyte 0 (conventional memory), use one of the
above commands with 0 specified as the megabyte, for example:

 D M 0

219

Page 220 is BLANK

220

