
IMPLEMENTING FUZZY ARITHMETIC

A. M. ANILE, S. DEODATO, AND G. PRIVITERA

June 1994

Abstract. This paper presents the authors’ efforts towards the development of an
effective and friendly working tool for fuzzy arithmetic. It describes the two pro-
gramming libraries currently produced. The first, implemented using the Fortran
language, provides high precision computational capabilities, to demonstrate the
feasibility and the correctness of a practical use of fuzzy arithmetic. The second,
implemented in an object-oriented environmente using the C++ language, aims at
being a powerful, friendly and highly portable tool to support generic users needing
to manage imprecise data. Moreover, a simple application to environmental impact
analysis is described to show the advantages deriving from the practical use of fuzzy
arithmetic.

1. Introduction

The introduction of Fuzzy Sets Theory has changed the way ambiguity and im-
precision are considered. In traditional theories we force our world representations
to comply to extremely precise models, avoiding and rejecting imprecision as a per-
turbative factor. Nevertheless, imprecision is a very important way to represent in-
formation in real processes, where the increase in precision would otherwise become
unmanageable. Fuzzy Set Theory allows the formalization of approximate reasoning,
and preserves the original information contents of imprecision [11].
Any crisp theory can be fuzzified by generalizing sets within that theory to fuzzy

sets. In particular, it is possible to introduce the concept of Fuzzy Number as the nu-
merical representation of an imprecise knowledge about numerical quantities. Next,
traditional arithmetic can be extended in order to deal with computations with fuzzy
numbers. The resulting Fuzzy Arithmetic is now a well-formalized theory [5] that
allows users to correctly manage uncertain values, such as those occurring in choosing
among different alternatives, or those produced by the real-world measurement tools,
or those resulting from subjective judgements of experts.

Key words and phrases. Fuzzy Arithmetic, Interval Analysis, Environmental Impact Analysis.
Submitted to Fuzzy Sets and Systems

1

2 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

Fuzzy Arithmetic applications are not widespread yet, mainly because of the lack
of practical tools. However, several research fields may gain by using these compu-
tational methods. Some interesting areas where research is already growing are:

• Optimization related to engineering design [9].
• Image analysis and processing [8].
• Robotics [6].
• Environmental impact analysis [1].

In the following we will describe our implementation of some Fuzzy Arithmetic
computational tools, together with an application to the field of environmental im-
pact analysis. The fundamental questions arising in this context will be extensively
investigated.

2. High Accuracy Fuzzy Arithmetic subroutines: a prototype

Our first implementation of a fuzzy arithmetic library was aimed at providing a
prototype in order to support operations in high accuracy precision. This prototype
can be used in order to check the correctness of fuzzy arithmetic codes in practical
applications. The chosen working environment was an IBM ES9000 running a Fortran
compiler with the IMSL/Math libraries. All the routines has been developed both in
single and in double precision.

2.1. Fuzzy number definition. We define fuzzy numbers making use of interval
analysis. In particular, we will relate two objects: confidence intervals and pre-
sumption levels [5]. A confidence interval is an interval of the reals that provides a
representation for an imprecise numerical value by means of its sharpest enclosing
range. A presumption level is an estimated truth value about some knowledge. Pre-
sumption levels belong to the [0, 1] interval: we suppose the maximum of estimated
truth to be at level 1, while we suppose the minimum at level 0. Once these def-
initions are provided, we represent a fuzzy number as an ordered set of confidence
intervals, each of them providing the related numerical value at a given presumption
level α ∈ [0, 1]. These confidence intervals should comply with the relation

α′ > α =⇒ Aα′ ⊂ Aα

where α, α′ ∈ [0, 1] and Aα, Aα′ are the confidence intervals at presumption levels α
and α′.
This definition follows the natural, often implicit, mechanism of human thinking

in the subjective estimation of a numerical value when reasoning in one dimension.

2.2. Fuzzy arithmetic implementation. Once we have defined fuzzy numbers by
means of confidence intervals, we can describe operations among fuzzy numbers as
sequences of operations among confidence intervals.
In particular, let Ã and B̃ be fuzzy numbers and let ⋄ be a generic arithmetic

operator. The fuzzy number Ã ⋄ B̃ will be built by computing the operation Aα ⋄Bα

IMPLEMENTING FUZZY ARITHMETIC 3

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

B̃

Hansen and

Hansen

Kaufmann

Kaufmann
✲✛

✛

✛❫

Figure 1. Different values of B̃2, with B̃ = [−1, 1, 1.5] TFN, computed
by using the Hansen and Kaufmann versions of the power operator.

for each α ∈ [0, 1], where Aα and Bα are the confidence interval of Ã and B̃ at
presumption level α. It is proved that such a method complies with the extension
principle of Zadeh [5].

2.2.1. The interval arithmetic library. First at all we have implemented a library
for interval arithmetic. We based our work on Hansen’s definitions [4], even if the
literature about this subject is rather extensive and different definitions are often
given for the same functions [5] [7]. When needed, these different definitions have
been critically examined. In particular their related implementation have been widely
tested and their relative performances have been assessed (e.g., the power function
was implemented following either the Hansen and the Kaufmann definitions, see
Figure 1).
In general, assuming X and Y to be intervals of reals and ⋄ to be one of the binary

arithmetical operators, the correspondent interval operation is defined as

X ⋄ Y = {x ⋄ y : x ∈ X, y ∈ Y }.

That is, the resulting interval X ⋄Y should contain all the possible values computable
by ⋄ on items belonging to X and items belonging to Y.
Besides the traditional arithmetic operations, we introduced the cancellation op-

eration [4] as

X \ Y = [a− c, b− d]

with X = [a, b] and Y = [c, d] confidence intervals. This operation evaluates 0 when
X = Y , while the interval subtraction does not (see Figure 2), but otherwise it does
not always produce a confidence interval as output.

4 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

ÃÃ − Ã

✴s

Figure 2. The computed value of Ã − Ã, with Ã = [1, 2, 3] TFN.

2.2.2. The fuzzy arithmetic library. We can represent a fuzzy number by means of
a sequence of number NLIV of confidence intervals, or by explicitly providing its
membership function. In the latter case we have implemented a function FZLIV
that computes the required NLIV confidence intervals, as we use them to internally
represent a fuzzy number. To achieve the maximum available precision, this function
uses the IMSL routines UVMIF (to compute the maximum of the given membership
function) and ZBREN (to compute the zeroes of the given membership funtion). The
lower and upper bounds of the used confidence intervals are stored into two arrays,
called A1 and A2. Each arithmetic operation among fuzzy numbers is computed by
applying the given operation, once at a time, to all the confidence intervals used to
represent the fuzzy operands.
Figures 3 and 4 shows some applications of the main arithmetic operators to fuzzy

numbers.

2.3. Computing fuzzy functions. Arithmetic operations are simple functions de-
fined on the real domain. As we want to provide users with the capability of com-
puting generic real functions applied to fuzzy arguments, we need to classify these
functions as [5]:

regular functions: the general monotonic increasing functions.
Let X̃ be a fuzzy number and let f : R −→ R be a regular function, then

∀α ∈ [0, 1] f(Xα) = [f(a(α)), f(b(α))]

where Xα = [a(α), b(α)] is the generic confidence interval used to represent X̃
at the α presumption level.

non-regular functions: the general monotonic decreasing functions.

IMPLEMENTING FUZZY ARITHMETIC 5

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

Ã

B̃

Ã+ B̃
◗
◗
◗
◗◗s

✛ ❄

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

Ã

B̃

Ã − B̃
◗
◗
◗
◗◗s

✛ ❄

Figure 3. Some simple applications of fuzzy arithmetic operators.

6 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

Ã B̃
Ã × B̃

❘

✌

✁✁☛

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ã

B̃

B̃ ÷ Ã

✎

✛ ✠

Figure 4. Some simple applications of fuzzy arithmetic operators.

IMPLEMENTING FUZZY ARITHMETIC 7

0

0.2

0.4

0.6

0.8

1

-1 0 1 2 3 4 5

Ã exp(Ã)

◆

✴

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

Ã
log(Ã)

✴

◆

Figure 5. Some simple applications of fuzzy functions.

Let X̃ be a fuzzy number and let f : R −→ R be a non-regular function,
then

∀α ∈ [0, 1] f(Xα) = [f(b(α)), f(a(α))]

where Xα = [a(α), b(α)] is the generic confidence interval used to represent X̃
at the α presumption level.

irregular functions: otherwise.
Let X̃ be a fuzzy number and let f : R −→ R be an irregular function. In
this case the f(Xα) confidence intervals have to be computed one by one, by
searching the absolute minimum and maximum of the function for the given
interval.

By this way we have implemented the basic trigonometric functions, the logarithm
function and the exponential function (see Figure 5).

8 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

2.4. The multiple occurrence problem. The main problem with computing
fuzzy functions arises when calculating algebraic expressions containing multiple oc-
currences of the same fuzzy variables. In this case, different occurrences of the same
variable will be considered as different variables, and the resulting fuzzy number will
be less sharp than how it should be (See Figure 2). The problem arises from the
interval analysis definitions which, assuming X to be a confidence interval and ⋄ to
be a generic arithmetic operator, define

X ⋄X = {x ⋄ y : x ∈ X, y ∈ X}

instead of

X ⋄X = {x ⋄ x : x ∈ X}

The problem is well-known and several solutions have been discussed to fully solve
it under particular conditions [2] [9] [10] or to limit its drawbacks [3].

2.4.1. The Fuzzy Weighted Averages algorithm. The FWA algorithm [2] provides us
with a consistent way to consider only once the repeated values, using combinatorial
arithmetic analysis to exactly compute fuzzy functions.
Let f : Rn −→ R be a given function and let X̃i, i = 1, ..., n, be n fuzzy variables,

each of them occurring as many times as we want into the definition of the f function.
The FWA algorithm computes the Ỹ = f(X̃1, ..., X̃n) fuzzy value by means of the
following steps:

(1) First at all discretize the [0, 1] interval into m levels αj , j = 1, ..., m. The
refinement used in discretization will affect approximation accuracy of the
resulting fuzzy value.

(2) Represent each variable X̃i, i = 1, ..., n as a sequence of confidence intervals
computed at the chosen αj presumption levels, j = 1, ..., m.

(3) For each chosen αj, j = 1, ..., m, compute the 2n vectors (x1, ..., xn) obtained
by permutation from the lower and upper bounds of all the confidence intervals
resulting from the discretization of the X̃i, i = 1, ..., n, at the given αj level.

Each fuzzy variable X̃i will appear only once in this process, whatever is the
number of times it appears into the definition of the f function.

(4) For each chosen αj, j = 1, ..., m, evaluate the function f(x1, ..., xn) for each of
the obtained 2n vectors, computing 2n values yk, k = 1, ..., 2n.

(5) Compute the Yj confidence interval representing the Ỹ fuzzy value at the
αj presumption level by getting as its lower (upper) bound the minimum
(maximum) of the yk values computed for the given αj.

The FWA algorithm can be used only for regular and non-regular functions, be-
cause it considers only the bounding values of the used confidence intervals. Never-
theless, this algorithm can be improved in order both to reduce its complexity and
to apply to some irregular functions [9].

IMPLEMENTING FUZZY ARITHMETIC 9

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

f(Ã, B̃)

Figure 6. Evaluation of the function f(X̃1, X̃2) = X̃ 2
1 −X̃1X̃2+ X̃2+8

on the fuzzy numbers Ã = [−1, 1, 2] and B̃ = [4, 8, 9], TFNs.

We have implemented the basic FWA algorithm as a routine, called FZWA, that
works on the definition of a fuzzy function and on the related set of fuzzy arguments.

2.4.2. The Yang-Yao-Dewey algorithm. Yang, Yao and Dewey [10] provide a more
effective FWA based algorithm to compute functions of fuzzy numbers. The basic
FWA algorithm works on the permutations of the lower and upper bounds of the
confidence intervals introduced by discretizing the [0, 1] presumption interval. By
this way it misses the possible minimal or maximal values that are internal into
the examined confidence intervals (this algorithm works on regular and non-regular
functions only). The Yang and al. algorithm overcomes this problem by working on
particular values, called poles, that are candidate to be extremal points for the given
function.
Let f : Rn −→ R be a given function and let X̃i, i = 1, ..., n, be n fuzzy variables,

each of them occurring as many times as we want into the definition of the f function.
If we discretize the [0, 1] presumption interval into a set of α levels, the core of the
FWA algorithm is to solve the relations

Yα = f(X1α, ..., Xnα) = [yL, yR]

for each α ∈ [0, 1], where yL and yR are the global minimum and maximum in the
Xα = X1α × ... × Xnα space. Yang et al. introduced the following classification on
Xα spaces:

uniform spaces: when Xα has no subspace in which Φi = 0, i = 1, ..., n, with
Φi partial first derivative of the given function.
The global minimum (maximum) of the given f function in the Xα space
is the (x1, ..., xn) vector where each xi is the lower (upper) bound of the Xi

10 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

interval if Φi > 0, or its upper (lower) bound if Φi < 0.
quasi-uniform spaces: when Xα has some subspaces in which Φi = 0, i =
1, ..., n, with Φi partial first derivative of the given function and independent
of the xi variable.
The global minimum and maximum of the given f function in the Xα space
are computed by the standard FWA argorithm.

non-uniform spaces: otherwise.
The global minimum and maximum of the given f function in the Xα space
have to be computed solving a non-linear optimization problem. Neverthe-
less, if the given f function is a polynomial of degree less than three, we
have implemented an algorithm that computes the extremal values without
solving a non-linear problem (see Figure 6).

3. A working tool for fuzzy arithmetic

Using fuzzy arithmetic can be made simpler and more popular if supported by an
adequate working tool. As a fuzzy number is just another type of numerical object,
users should manage it as any other number (e.g., integers or reals). That is, what
the users’ community needs is a nice working tool to define and use the fuzzy number
new data type.
This working tool for fuzzy arithmetic has to provide users with all the numerical

operations and functions they need for fuzzy numbers (e.g., arithmetical operators,
trigonometrical functions, and so on). Moreover, this working tool has to provide
users with a set of functionalities related to fuzzy numbers own features (e.g., I/O
functionalities, graphic representation and manipulation functionalities, and so on).
At the same time, this working tool has to hide the implementation of these func-
tionalities and the underlying internal structure used to represent fuzzy numbers. By
such a working tool, users could really manage fuzzy numbers in a very simple and
transparent way, exactly as they do with other traditional numbers.
The best environment to produce such a working tool is an object-oriented pro-

gramming one. This environment allows us to easily define new abstract data types,
to cleanly manage them by overloading standard language operators, and to power-
fully extend them by inheritance mechanisms. In this context, the C++ programming
language is a worldwide supported industry standard to produce highly maintainable
and portable products. So, we choose the C ++ programming language to build our
implementation of a programmers’ library defining a fuzzy number new data type.

3.1. New data types definitions. We represent a fuzzy number as an ordered set
(of fixed cardinality) of confidence intervals [5]. Each of these intervals is the value of
the number at a given presumption level α ∈ [0, 1], with the condition that the lower
(upper) bound value of the intervals is a monotonic increasing (decreasing) functions
of α. By this way we can reduce computations on fuzzy numbers to sequences of

IMPLEMENTING FUZZY ARITHMETIC 11

equivalent computations on the correspondent sets of confidence intervals. Thus, our
library should contain at least two new data type implementation: fuzzy numbers
and confidence intervals.

3.1.1. The confidence interval data type. Confidence intervals are the first abstract
data type we need to define. The generic confidence interval representation is triv-
ial, as we need to know only its lower and upper bound values. Initializing these
objects is very simple and conversion functions from singletons to intervals are easily
provided. Rules for performing interval arithmetic and interval analysis are well-
formalized [4] [5] [7] and not difficult to implement. In general, when applying a
function to a given set of intervals, the lower (upper) bound of the resulting interval
will be the minimum (maximum) value computed applying that function to all the
possible combination of the values belonging to the argument intervals.
Our current implementation of the confidence interval new data type provides all

the basic arithmetic unary and binary operators and the basic trigonometric func-
tions. In particular, the arithmetic operators work either on couples of confidence
intervals or on couples of confidence intervals and singletons. Additional functionali-
ties are provided to compute the minimum and the maximum between two confidence
intervals, and to evaluate the distance between them. Other functions (such as power,
square root, exponential, logarithm, and so on) are not difficult to compute and will
be implemented as soon as needed.
Moreover, our current implementation manages only finite confidence intervals. A

version able to manage also infinite confidence intervals can be easily produced, using
tools which support the IEEE standard for floating-point arithmetic. This standard
provides a representation of the +∞ and −∞ values and then we will only have to
modify our code to correctly manage these values [4].

3.1.2. The fuzzy number data type. Once defined the confidence interval data type,
we can define the fuzzy number data type. The fuzzy number internal representation
is not very complex, and is described by a fixed-length ordered set (i.e., an array)
of confidence intervals, one for each considered presumption level α ∈ [0, 1]. The
number of used presumption levels and the corresponding α values have to be the
same for all the objects belonging to the fuzzy number data type. Moreover, this
number of used presumption levels must be large enough to give a comprehensive
description of the whole represented fuzzy number.
Initializing such an internal structure is not a simple task, as we do not want

to force users to provide all the values for the required confidence intervals. Our
tool should be so friendly to allow users to specify only the values they want, and
so powerful to derive the missing data from the provided ones. Using the C + +
name overloading capabilities we can get this result by simply implementing as many
initializing functions as we need. Each of these functions will allow users to specify
only a particular subset of the required data, and will correctly use them to initialize

12 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

the whole structure. At the moment we have implemented such functions to convert
singletons to fuzzy numbers and to initialize TFNs (Triangular Fuzzy Numbers).
More general initializing functions would require adequate interpolation routines and
will be implemented as soon as needed.
When applying a function to a given set of fuzzy numbers, the resulting fuzzy

number will be built computing, one by one, its values of presumption levels. Each
of these values will be computed applying the correspondent interval function to the
confidence intervals of each operand at the given presumption level. Thus, our imple-
mentation of operators and functionalities available for the fuzzy number data type
reflects the confidence interval data type one. In particular, we provide all the basic
arithmetic unary and binary operators and the basic trigonometric functions. The
arithmetic binary operators work either on couples of fuzzy numbers or on couples
of fuzzy numbers and singletons. Additional functionalities are provided to com-
pute the minimum and the maximum between two fuzzy numbers, and to evaluate a
dissemblance index between them. Other functions (such as power, square root, ex-
ponential, logarithm, and so on) are not difficult to compute and will be implemented
as soon as needed.

3.2. Goodies and blames. The definitions of the confidence interval and fuzzy
number data type are the core of our working tool for fuzzy arithmetic. Even without
adding any other functionality, the resulting C + + library will provide users with
all the necessary features for the required working tool. To fully understand the
powerness and the friendliness of this tool, let us look at the following code fragment:

...

#include "fuzzy.h"

...

Fuzzy fzNum1, fzNum2;

Fuzzy fzNum3(2, 3.5, 6.8);

...

fzNum1 = Fuzzy(3.8, 4.2, 4.9);

...

fzNum2 = sin(3 * fzNum1);

...

fzNum2 = fzNum1 - fzNum3;

...

It is not necessary to be either a C++ guru or an expert programmer to understand
it: first the new data type definitions are included into the program (first line); then,
some instructions later, three objects are declared belonging to the fuzzy number
data type, two without any explicit initialization (second line) and one initialized
with a TFN value (third line); next, a TFN value is assigned to a fuzzy number
variable (fourth line); at last, some simple computation involving fuzzy numbers and

IMPLEMENTING FUZZY ARITHMETIC 13

α interval value
0.0 [1.0, 7.0]
0.3 [2.0, 6.0]
0.7 [3.0, 5.0]
1.0 [4.0, 4.0]

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Figure 7. A simple numerical representation of a fuzzy number and
some different graphical representations that comply with it.

an integer value are performed (fifth and sixth lines). All a generic user needs to know
to understand or to produce such a code is what is a TFN. All the used functions
and arithmetic operators keep their original syntax and semantics. No knowledge at
all is needed about internal representation of generic fuzzy numbers and TFNs.
The only problem we experimented with our tool is something inherent in the

definition itself of interval arithmetic. When computing an algebraic expression where
the same variable appears more than once, the identity of this variable in its different
occurrences is lost and the resulting interval is wider than it should be, although it
contains the correct interval [4]. The problem is well-known in interval analysis and
some algorithms have been developed to reduce this effect [2] [3] [10] (we implemented
many of them in our early high accuracy fuzzy arithmetic subroutines). However, all
these algorithms require a pre-processing of the whole algebraic expression, while our
tool is not able to do that as each operator is evaluated by itself and not as a part of
an expression.
Clearly, this problem limits the application range of our tool and we plan to de-

velop a companion library to provide sharper computational methods when needed.
Nevertheless, there are many applications that can be managed by our current tool
without running into such a problem. For all these cases the described library will

14 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

provide users with a simple and effective way to manage imprecision.

3.3. The graphical interface. To fully manage imprecise knowledge about nu-
merical quantities we not only need to provide users with computational capabilities
for fuzzy numbers, but we also need to implement some utilities to allow users to
loosely manipulate these objects. Indeed, there are many circumstances in which the
concept of fuzzy number is better managed by a vague visual representation rather
than by a rigid numerical one.
As a case in point, let us to examine the initialization of a fuzzy number. Generally,

users do not know all the required values for the used presumption levels, so we
introduced some functionalities able to derive the missing values from the provided
ones. Nevertheless, users’ knowledge about a fuzzy number is often enhanced by
some vague information on the shape of the membership function of that number.
This knowledge is not characterizable by any numerical value and there is no way
to effectively represent such a kind of information other than by using a graphical
environment (see Figure 7). Thus, what users need to really exploit all the knowledge
they have about a fuzzy number is a set of graphical utilities to input the values of
the known presumption levels, to visualize the resulting membership function after
deriving the missing values, and to modify it in order to comply to the expected shape.
Once introduced, these graphical utilities will be useful not only for initialization of
fuzzy numbers, but also in all cases involving loosely manipulations of these values.
To make our tool as powerful and user-friendly as possible we have to add these

graphical utilities to the defined new data types. In particular, we need to provide
each fuzzy number with the capabilities of drawing itself on a given canvas and,
more generally, of complying to the behaviour of the given canvas (i.e., the graphical
representation of a fuzzy number has to adjust itself to some varying parameters of
the used canvas, such as the canvas size or the canvas scale factors). Moreover, we
need to provide users with functionalities to graphically initialize and manipulate a
fuzzy number by means of a mouse or an equivalent pointing device.
Using an object-oriented environment we can enhance our fuzzy number data type

without redefining it. The inheritance mechanisms allow us to define a new data
type, a graphical fuzzy number data type, by derivation from the early defined one.
This new graphical fuzzy number data type will provide users with the same com-
putational capabilities of the original fuzzy number data type; in addition, it will
provide all the functionalities required to graphically manage the fuzzy number. The
early fuzzy number data type definition will be the only repository of the fuzzy num-
ber numerical representation and all the related computational capabilities. The new
graphical fuzzy number data type definition will be the only repository of the fuzzy
number graphical representation and all the related manipulation capabilities, and
will automatically refer to the early fuzzy number data type definition for the nu-
merical calculations. Users interested in pure numerical computations can refer to

IMPLEMENTING FUZZY ARITHMETIC 15

the simple fuzzy number data type definition, while user interested in graphical ma-
nipulation have to refer to the graphical fuzzy number data type definition, getting
at the same time all the computational capabilities.
At the moment our graphical extensions of the fuzzy number working tool are at

an advanced development stage. As we want to build a very general programming
tool, we don’t like to closely rely on any existing GUI environment, but we want to
let the user free to use its preferred one. So, we have chosen to work on a general
application framework that assures us the platform independence of the produced
code. By this way, we hope to make soon available a graphical version of our working
tool for the main existing GUI environments.

4. A simple application to environmental impact analysis

Environmental Impact Analysis provides us a good case in point to test the pow-
erness and the effectiveness of practical use of fuzzy arithmetic (in general) and our
tool (in particular). To briefly describe it, this analysis is a technical procedure to
evaluate how human buildings (from the simple ones, such as an irrigation system,
to the very complex ones, such as a hydroelectric central) will affect the natural and
social environment in which they will be realized. Environmental Impact Analysis
is now widely accepted around the world, and many states issued specific laws to
require and to regulate its application. In particular, when necessary, we will refer to
the italian laws about this subject. The described approach to the problem is more
deeply discussed in [1].
The core of an environmental impact analysis process is the construction and the

evaluation of a particular Leopold matrix, a bidimensional check-list relating the
main actions of a given project and their considered effects on some analyzed envi-
ronmental components. Each item Am,n of this matrix describes the impact of the
m-th action for the n-th effect. Null items stand for unrelated couples of actions
and effects, while non-null items provide evaluations for the related ones. For each
impact evaluation there are four parameters to be considered: sign, magnitude, pos-
sibility, and persistence in time. The degree of an impact is computed as the product
(with its given sign, used to point out positivity or negativity of the impact) of its
correspondent magnitude, possibility and persistence. Once computed all the items
of the matrix, it is necessary to aggregate them to get a global evaluation of the
environmental impact of the given project. Usually, this is obtained by computing
the mean values of the columns (rows) of the matrix, getting an evaluation vector for
the considered effects (actions) on the analyzed environmental factors. This vector
is the final output of the whole process.
Environmental Impact Analysis is a very complex procedure, involving contribu-

tions from several technical, economic and human sciences. The evaluation of a
Leopold matrix is based on the subjective judgement of an expert. The parameters
required to compute impact evaluations have imprecise value and are often expressed

16 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

developing social free
farming properties agreement time prevention

irrigation positive positive positive positive positive
middle middle middle low low
certain certain likely likely unlikely

permanent permanent permanent permanent permanent
drinking positive positive positive positive positive
water low high high middle low

likely certain certain likely unlikely
permanent permanent permanent permanent permanent

river positive positive positive positive positive
controlling middle middle middle low high

certain certain likely unlikely certain
permanent permanent permanent permanenet permanent

sports positive positive positive positive positive
and middle low middle middle low

recreative likely likely certain certain unlikely
use permanent permanent permanent permanenet permanent

environmental positive positive positive positive positive
use low middle middle middle middle

likely likely certain certain certain
permanent permanent permanent permanenet permanent

Figure 8. A Leopold sub-matrix that estimates the effects of river’s
use on economic and social factors.

using linguistic values such as high, middle or low. Using traditional computational
tecniques we have to choose a crisp value in the [0, 1] interval for each used linguistic
value. As these choices will influence final results, it is very important to determine
the results’ sensitivity to their change. This process is computationally heavy as we
have to change the chosen values (one by one or by groups, using a random number
generator if possible), to compute each time the evaluation vector, and to compare
all the resulting vectors by adequate metrics. Using fuzzy arithmetic, instead, we
can manage the used linguistic values with numerical values that transparently take
into account the imprecison due to a subjective judgement. That is, we can evaluate
the Leopold matrix getting a resulting vector of fuzzy numbers that keeps all the
hints of the original subjective judgements. If the used fuzzy arithmetic tool pro-
vides graphical representation too, the whole process of building and evaluating the
Leopold matrix can be realized in a very simple, effective and user-friendly way.

IMPLEMENTING FUZZY ARITHMETIC 17

4.1. A practical case in point. Let us suppose to evaluate an environmetal impact
analysis related to some fluvial building. One of the main subset of possible actions
will be the one related to the river’s use, while one of the main subset of possible
effects will be the one related to the economic and social factors. To illustrate the use
of fuzzy arithmetic into environmental impact analysis, we will evaluate the Leopold
sub-matrix that estimates the effects of river’s use on economic and social factors
(see Figure 8).
Once we have built the Leopold matrix, in order to evaluate it we need to assign

a numerical value to each used linguistic value. The used fuzzy numbers are shown
in Figure 9.
Then we can use fuzzy arithmetic to compute the evaluation vector (see Figure

10).

5. Conclusions

Fuzzy arithmetic provides users with the instruments to effectively manage im-
precise knowledge about numerical quantities. Our experience in designing, imple-
menting and using the described working tools has proved the feasibility and the
suitability of practical use of fuzzy arithmetic. The planned integration between
computational capabilities and graphical representation will furtherly increment the
power and the friendliness of fuzzy arithmetic working tools, extending the number
of potential users too.

References

1. A. M. Anile, G. Cammarata and A. M. Greco, Metodologia della teoria degli insiemi fuzzy per le

elaborazioni di valutazioni di impatto ambientale in Proceedings of the Conference ”Metodologia

della teoria degli insiemi fuzzy per le elaborazioni di impatto ambientale”, Accademia Gioenia
di Scienze Naturali, Catania, 1993.

2. W. M. Dong and F. S. Wong, Fuzzy weighted averages and implementation of the extension

principle, Fuzzy Sets and Systems 21 (1987) 183-199.
3. E. R. Hansen, A generalized interval arithmetic in K. L. Nickel (ed.), Interval Mathematics,

Springer-Verlag, New York, 1975.
4. E. R. Hansen, Global optimization using interval analysis, Marcel Dekker, Inc., New York, 1992.
5. A. Kaufmann and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications,

Van Nostrand Reinhold, New York, 1991
6. W. J. Kim, J. H. Ko and M. J. Chung, Uncertain robot environment modelling using fuzzy

numbers, Fuzzy Sets and Systems 61 (1994) 55-62.
7. R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
8. S. K. Pal and A. Ghosh, Fuzzy Geometry in image analysis, Fuzzy Sets and Systems 48 (1992)

23-40.
9. K. L. Wood, K. N. Otto and E. K. Antonsson, Engineering design calculations with fuzzy

parameters, Fuzzy Sets and Systems 52 (1992) 1-20.
10. H. Q. Yang, H. Yao and J. D. Jones, Calculating functions of fuzzy numbers, Fuzzy Sets and

Systems 55 (1993) 273-283.

18 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

magnitude values

low

middle
high

✠

❘

❯

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

possibility values

unlikely

likely
certain

◆
✇

❫

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

persistence values

temporary permanent

❘

❯

Figure 9. The fuzzy numbers chosen to quantify the linguistic values
used in the considered Leopold matrix.

IMPLEMENTING FUZZY ARITHMETIC 19

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

river’s use/farming

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

river’s use/developing properties

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

river’s use/social agreement

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

river’s use/free time

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

river’s use/prevention

Figure 10. The components of the computed evaluation vector for
the considered effects of river’s use on economic and social factors.

20 A. M. ANILE, S. DEODATO, AND G. PRIVITERA

11. L. A. Zadeh, Fuzzy Logic, Neural Networks and Soft Computing, Communication of the ACM,
March 1994/Vol. 37, No. 3.

Dipartimento di Matematica, Universitá degli Studi di Catania, viale Andrea Do-
ria 6, I-95125 Catania (Italy)

E-mail address : anile@dipmat.unict.it

Dipartimento di Matematica, Universitá degli Studi di Catania, viale Andrea Do-
ria 6, I-95125 Catania (Italy)

E-mail address : deodato@dipmat.unict.it

Co.Ri.M.Me., stradale Primo Sole 50, I-95100 Catania (Italy)
E-mail address : guido@dipmat.unict.it

