
WinG Programmer's Reference BETA VERSION
Please read the readme.txt file installed with the WinG Development Kit for important late-breaking
news and known bugs before reporting any bugs you find!

Click Here to read the WinG beta readme file.

Philosophy and Overview of WinG
An introduction to the philosophy and design of WinG: what it is and why it was created.

Why WinG?
Frequently Asked Questions

Programming With WinG
Documentation of the WinG API and helpful articles about how best to use them.

WinG API Documentation
Off-screen Drawing With WinG
Using GDI With WinGDCs
Halftoning With WinG
Maximizing Performance with WinG
DIB Orientation
Managing Palettes in a WinG Application
Compiling WinG Applications
Debugging WinG Applications
DISPDIB and WinG
Further Reading

The WinG Development Kit
Information on shipping a WinG application and discussion of the sample code included in the WinG
Development Kit.

Shipping a Product With WinG
WinG SDK Code Samples

Copyright

Managing Palettes in a WinG Application
DOS executes only one application at a time, so every DOS application has the freedom to modify the
hardware palette on palette devices (such as VGA) without interfering with other active applications.
In the multitasking Windows environment, applications must modify the palette through the Palette
Manager to ensure friendly interoperability of applications.

The most common programming error in palettized Windows applications is that the system selects
the stock system palette in devices acquired through GetDC or through a WM_PAINT message. The
application must call SelectPalette and RealizePalette to set and activate a palette in these DCs, and
the palette information survives in the DC only in the time between GetDC and ReleaseDC calls.

The following code snippet will result in an image mapped to the static colors:

HDC hdc = GetDC(hwnd);
SelectPalette(hdc, hpal, FALSE);
RealizePalette(hdc);
ReleaseDC(hwnd, hdc); // Palette information lost!!
...
hdc = GetDC(hwnd); // DC with stock palette selected!!
BitBlt(hdc, x,y,width,height, source, 0,0, SRCCOPY);
ReleaseDC(hwnd, hdc);

Ron Gerys article The Palette Manager: How and Why (Microsoft Technical Article, 23 March 1992)
describes the mechanisms of the Palette Manager in depth. The following articles discuss optimizing
Palette Manager use in WinG applications.

Using an Identity Palette
Palette Animation With WinG
Accessing a Full Palette Using SYSPAL_NOSTATIC

Why WinG?
Although business applications such as word processors and spreadsheets have moved almost
exclusively to Windows, DOS remains the operating system of choice for high-volume, high-performance
action games and innovative graphics applications for PCs. These applications have not made the
transition to Windows because of restrictions placed on the programmer by GDI's device independence,
by the windowed environment, and by the inability of general graphics libraries to provide the necessary
speed.

The display techniques used by high-performance graphics applications have two common
characteristics. First, the application hides the frame composition process by double-buffering in software
or hardware. Second, programmers use knowledge specific to the problem at hand to optimize their
graphics routines in ways a general graphics library can not.

Hiding frame composition eliminates flicker by presenting only completed frames to the user. Under DOS,
a VGA card can accomplish the display in hardware by page flipping, or the buffer can reside in main
memory which is copied to the screen. Some applications further optimize display access by copying only
the areas of the buffer that have changed since the last frame, a process called dirty rectangle animation.
Today, high-performance DOS games use all of these techniques.

In short, most DOS games programmers use knowledge specific to their application and their hardware to
write optimized graphics routines. Until now, Windows programmers could not use such methods because
GDI prevents access to device-specific surfaces; programmers can not draw directly onto the surface of a
GDI device context.

WinG (pronounced "Win Gee") is an optimized library designed to enable these high-performance
graphics techniques under Windows 3.1, Win32s, and future Windows releases. WinG allows the
programmer to create a GDI-compatible HBITMAP with a Device Independent Bitmap (DIB) as the
drawing surface. Programmers can use GDI or their own code to draw onto this bitmap, then use WinG to
transfer it quickly to the screen. WinG also provides halftoning APIs that use the standard Microsoft
halftone palette to support simulation of true color on palette devices.

Off-screen Drawing With WinG
WinG introduces a new type of device context, the WinGDC, that can be used like any other device
context. Unlike other DCs, programmers can retrieve a pointer directly to the WinGDC drawing surface,
its BITMAPINFOHEADER, and its color table. They can also create and select new drawing surfaces for
the WinGDC or modify the color table of an existing surface. DIBs become as easy to use as device-
specific bitmaps and compatible DCs, and programmers can also draw into them using their own routines.

Most often, applications will use WinGCreateDC to create a single WinGDC and will use
WinGCreateBitmap to create one or more WinGBitmaps into which they compose an image. The
application will typically draw into this buffer using DIB copy operations, GDI calls, WinG calls, and
custom drawing routines, as shown here.

A double-buffering architecture for WinG
Once drawing, DIB composition, and sprite composition for the current frame is complete, the application
will copy the WinGDC buffer to the screen using WinGStretchBlt or WinGBitBlt. This double-buffering
architecture minimizes flicker and provides smooth screen updates.

Many games and animation applications draw their characters using sprites. On arcade machines, sprite
operations are performed in hardware. Under DOS with a VGA, games simulate sprite hardware using
transparent blts into an off-screen buffer. The DOGGIE sample application (in the SAMPLES\DOGGIE
directory of the WinG development kit) uses WinG in the same way to perform transparent blts to a
WinGDC and includes source code for an 8-bit to 8-bit TransparentDIBits procedure.

Using GDI With WinGDCs
WinG allows drawing onto the DIB surface of a WinGDC with GDI, but there are some anomalies to keep
in mind.

1. Most importantly, GDI does NOT regard WinGDCs as palette devices. WinGDCs are actually 256-
color RGB devices. You happen to be able to modify the device color table using the
WinGSetDIBColorTable API. The Palette Animation With WinG article describes how to match a
given palette to a WinGDC color table.

2. Drawing with GDI on a WinGDC surface does not always produce a pixel-perfect duplicate of the
image you would see using GDI on a display device. The images will be acceptably similar, but some
stray pixels will remain if you XOR the two images together.
3. Brushes realized in a WinGDC will be aligned to the upper left corner of the WinGDC whereas
brushes used in screen DCs are aligned to the upper left corner of the screen. This means that when you
blt a WinGDC that has been filled with a pattern into a screen DC that has been filled with the same
pattern, the patterns will not necessarily align correctly.

If you have this problem, you can either change the brush origins and re-realize the brushes in either
DC (see the section 1.6.8 Brush Alignment in the Windows SDK Programmers Reference Volume 1,
also available on the Microsoft Developer Network CD) or you can make off-screen brushes align
correctly with on-screen brushes by blting the WinGDC to a brush-aligned position on the screen. For
example, an 8x8 brush pattern can be correctly aligned to the screen by blting the WinGDC to an x, y
position when x and y are both multiples of 8.

4. Win32 applications that use GDI and custom drawing routines to draw on the surface of a
WinGBitmap should call GDIFlush after calling GDI functions and before calling custom functions.
Win32 GDI batches drawing commands, and this will guarantee that all GDI drawing is completed
before custom drawing begins. Without this call, drawing may be done in an incorrect order.

Halftoning With WinG
WinG allows applications to simulate true 24-bit color on 8-bit devices through the WinG halftoning
support APIs, WinGCreateHalftonePalette and WinGCreateHalftoneBrush.

The halftone palette is an identity palette containing a carefully selected ramp of colors optimized for
dithering true color images to 8-bit devices. The WinGCreateHalftonePalette function returns a handle to
a halftone palette which applications can select and realize into a display device context to take
advantage of the halftoning capabilities offered by WinG.

The brushes returned by the WinGCreateHalftoneBrush API use patterns of colors in the halftone palette
to create areas of simulated true color on 8-bit devices into which the halftone palette has been selected
and realized. The CUBE sample application (in the SAMPLES\CUBE subdirectory of the WinG
development kit) uses halftoned brushes to generate a wide range of shaded colors on an 8-bit display.

The halftone palette gives applications a framework for dithering 24-bit images to 8-bit devices. The
palette itself is a slightly modified 2.6-bit-per-primary RGB cube, giving 216 halftoned values. The 256-
color halftone palette also contains the twenty static colors and a range of gray values.

Given a 24-bit RGB color with 8 bits per primitive, you can find the index of the nearest color in the
halftone palette using the following formula:

HalftoneIndex = (Red / 51) + (Green / 51) * 6 + (Blue / 51) * 36;
HalftoneColorIndex = aWinGHalftoneTranslation [HalftoneIndex];

The aWinGHalftoneTranslation vector can be found in the HALFTONE source code. The HALFTONE
sample (in the SAMPLES\HALFTONE subdirectory of the WinG development kit) applies an ordered 8x8
dither to a 24-bit image, converting it to an 8-bit DIB using the WinG Halftone Palette.

Applications should avoid depending on a specific ordering of the halftone palette by using PALETTERGB
instead of PALETTEINDEX to refer to entries in the palette.

Maximizing Performance With WinG
Here is the WinG Programmers Guide to Achieving WinG Nirvana, the Top Ten ways to maximize blt
performance under Windows using WinG.

10. Take Out Your Monochrome Debugging Card and Unplug Network Connections

Eight bit monochrome video cards can turn the 16 bit 8 MHz ISA bus into an 8 bit 4 MHz PC bus,
cutting your video bus bandwidth by up to 75%. Monochrome cards are an invaluable aid when
debugging graphical applications, but when timing or running final tests, remove the card for
maximum speed.

Incoming network packets during WinG runtime profiling cause asynchronous interrupts that steal
CPU time from the time-sensitive profiling process. This may result in noticeable timing errors that
lead to sub-optimal performance. For best results, unplug any network connections before running a
WinG application for the first time on a new configuration, then plug the network connection back in
when the WinG profiling process is complete.

9. Store WinGBitmap Surface Pointer and BITMAPINFO

WinGCreateBitmap takes a BITMAPINFO, creates an HBITMAP, and returns a pointer to the new
bitmap surface. Store the BITMAPINFO and pointer at creation time with the HBITMAP rather than
call WinGGetDIBPointer when you need it.

8. Dont Make Redundant GDI Calls

GDI objects such as brushes, fonts, and pens, take time to create, select, and destroy. Save time by
creating frequently used objects once and caching them until they are no longer needed. Move the
creation and selection of objects as far out of your inner loops as possible.

7. Special Purpose Code May Be Faster Than GDI

There may be many ways to accomplish a given graphics operation using GDI or custom graphics
code in your application. Special purpose code can be faster than the general purpose GDI code, but
custom code often incurs associated development and testing overhead. Determine if GDI can
accomplish the operation and if the performance is acceptable for your problem. Weigh the
alternatives carefully and see number 6 below.

6. Time Everything, Assume Nothing

Software and its interactions with hardware are complex. Dont assume one technique is faster than
another; time both. Within GDI, some APIs do more work than others, and there are sometimes
multiple ways to do a single operation--not all techniques will be the same speed.

Remember the old software development adage: 90% of your time is spent executing 10% of the
code. If you can find the 10% through profiling and optimize it, your application will be noticeably
faster.

Timing results may depend on the runtime platform. An applications performance on your
development machine may be significantly different from its performance on a different runtime
machine. For absolute maximum speed, implement a variety of algorithms, time them at runtime or at
installation, and choose code paths accordingly. If you choose to time at installation, remember that
changes to video drivers and hardware configuration after your application has been installed can
have a significant effect on runtime speed.

5. Dont Stretch

Stretching a WinGBitmap requires more work than just blting it. If you must stretch, stretching by
factors of 2 will be fastest.

On the other hand, if your application is pixel-bound (it spends more time writing pixels to the bitmap
than it does blting), it may be faster to stretch a small WinGBitmap to a larger window than it is to fill
and blt a WinGBitmap with the same dimensions as the window. Your application can respond to the
WM_GETMINMAXINFO message to restrict the size of your window if you dont want to deal with this
problem.

4. Dont Blt

The fastest code is the code that isnt called. Blt the smallest area possible as seldom as possible. Of
course, figuring out the smallest area to blt might take longer than just blting a larger area. For
example, a dirty rectangle sprite system could use complex algorithms to calculate the absolute
minimum rectangles to update, but it might spend more time doing this than just blting the union of the
dirty areas. The runtime environment can affect which method is faster. Again, time it to make sure.

3. Dont Clip

Selecting GDI clip regions into the destination DC or placing windows (like floating tool bars) over the
destination DC can slow the blt speed.

Clip regions may seem like a good way to reduce the number of pixels actually sent to the screen, but
someone has to do the work. As number 4 and number 7 discuss above, you may be better off doing
the work yourself rather than using GDI.

An easy way to test your applications performance when clipped is to start the CLOCK.EXE program
supplied with Windows. Set it to Always On Top and move it over your client area.

2. Use an Identity Palette

WinGBitmaps without identity palettes require a color translation per pixel when blted. Nuff said.

See the Using an Identity Palette article for specific information about what identity palettes are, how
they work, and how you can use them.

1. Use the Recommended DIB Format

WinG adapts itself to the hardware available at runtime to achieve optimum performance on every
platform. Every hardware and software combination can be different, and the best way to guarantee
the best blt performance is to use the DIB parameters returned by WinGRecommendDibFormat in
calls to WinGCreateBitmap. If you do this, remember that your code must support both bottom-up and
top-down DIB formats. See the DIB Orientation article for more information on handling these formats.

DIB Orientation
The most frustrating thing about working with DIBs is that DIBs are usually oriented with the bottommost
scanline stored first in memory, the exact opposite of the usual device-dependent bitmap orientation. This
standard type of Windows DIB is called a bottom-up DIB.

WinG hides the orientation of DIBs from an application unless the application wants to know. Drawing into
a WinGDC using GDI functions and blting the WinGDC to the display using either of the WinG DIB copy
commands (WinGStretchBlt or WinGBitBlt) results in an image that is almost identical to one created
using GDI to draw directly onto a display DC. See the Using GDI With WinGDCs article for more
information.

If you dont plan on writing custom drawing routines and will not be using existing Windows 3.1 DIB-to-
screen functions (such as StretchDIBits or SetDIBitsToDevice), you can skip the rest of this section.

If you do plan on writing custom drawing routines or just want to know how they work, this section will
begin to alleviate the confusion. The Microsoft Technical Articles DIBs and Their Use by Ron Gery and
Animation in Windows by Herman Rodent will flesh out the ideas presented here, provide helpful advice,
and describe DIBs in depth. The TRIQ sample code from Microsofts GDI Technical Notes shows how to
draw triangles and quads into a memory DIB. These articles are listed in the section Further Reading.

Confusion with bottom-up DIBs inevitably stems from the fact that the bottommost scanline is stored first
in memory, giving a coordinate space where (0, 0) is the lower left corner of the image. Windows uses (0,
0) as the upper left corner of the display and of device dependent bitmaps, meaning that the Y
coordinates of bottom-up DIBs are inverted. In the diagram below, the smiling face casts its gaze towards
the DIB origin, but when translated to the display with WinGStretchBlt or WinGBitBlt, it looks away from
the display origin.

Bottom-Up DIBs are flipped when copied to the display
WinGStretchBlt, WinGBitBlt, StretchDIBits, and SetDIBitsToDevice invert the bottom-up DIB as they draw
it to the screen.

For an 8-bit bottom-up DIB, the address in memory from which the screen pixel (X, Y) is retrieved can be
found with these equations:

// Calculate actual bits used per scan line
DibWidthBits = (UINT)lpBmiHeader->biWidth *

(UINT)lpBmiHeader->biBitCount);
// And align it to a 32 bit boundary
DibWidthBytes = ((DibWidthBits + 31) & (~31)) / 8;

pPixelXY = DibAddr + (DibHeight - 1 - Y) * DibWidthBytes + X
where DibAddr is the base address of the DIB, DibHeight is the height of the DIB, lpBmiHeader is a
pointer to a BITMAPINFOHEADER describing the DIB, and DibWidthBytes is the DWORD-aligned offset
of bytes in memory from any X in one scanline to any X in the next scanline.

Top-Down DIBs

Another kind of DIB, called a top-down DIB, is stored with the same orientation as most device-dependent
bitmaps: the first scanline in memory is the top of the image. Top-down DIBs are identified by a negative
biHeight entry in their BITMAPINFOHEADER structures.

Sometimes, WinG can greatly improve the speed of a DIB-to-screen copy by using a top-down DIB
because it can avoid inverting the DIB to a device-dependent format. When this is the case,
WinGRecommendDIBFormat will return a negative value in the biHeight field of the passed
BITMAPINFOHEADER structure.

If you are writing custom DIB drawing routines, you will have to handle top-down DIBs for best
performance because there is a good chance that WinG will recommend them with
WinGRecommendDibFormat.

WinGStretchBlt and WinGBitBlt recognize top-down DIBs and handle them correctly, but Windows 3.1
functions such as StretchDIBits and SetDIBitsToDevice will not work properly with top-down DIBs
unless you intentionally mirror the image.

Top-Down DIBs are copied directly to the display
For an 8-bit top-down DIB, the memory address of the pixel (X, Y) can be found with this equation:

PixelAddr = DibAddr + Y * DibWidthBytes + X
where DibAddr is the base address of the DIB and DibWidthBytes is the DWORD-aligned offset of bytes
in memory from the beginning of one scanline to the next.

The PALANIM sample application (in the SAMPLES\PALANIM subdirectory of the WinG development kit)
includes a routine to draw horizontal lines into a DIB. To do this, it determines the orientation of the target
DIB and performs its calculations accordingly.

The DOGGIE sample application (in the SAMPLES\DOGGIE subdirectory of the WinG development kit)
includes a routine to copy one DIB into another with a transparent color. The assembly function that does
this also behaves well with both DIB orientations.

Using an Identity Palette
The Windows Palette Manager, described in depth in Ron Gerys technical article The Palette Manager:
How and Why (see the Further Reading section for details) arbitrates conflicts between Windows
applications vying for color entries in a single hardware palette (known as the system palette). It gives
each application its own virtual 256-color palette, called a logical palette, and translates entries in the
logical palette to entries in the system palette as they are needed for blting images to the screen.

An identity palette is a logical palette which exactly matches the current system palette. An identity palette
does not require translation of palette entries, so using an identity palette can drastically improve the
speed with which you can blt WinGDCs to the screen.

The WinG Halftone Palette is an identity palette. This article describes how to create your own identity
palettes for maximum WinG blt speed.

Static Colors

The Palette Manager reserves a number of colors in the palette, called the static colors, which it uses to
draw system elements such as window captions, menus, borders, and scroll bars. An identity palette must
include the static colors in the appropriate palette entries.

The display driver defines the actual RGB values of the static colors, so they must always be determined
at run time. The GetSystemPaletteEntries will retrieve the colors currently in the system palette, and you
can isolate the static colors using the SIZEPALETTE and NUMCOLORS capability indices with
GetDeviceCaps and a little knowledge of how the Palette Manager works.

The static colors are split in half and stored at either end of the system palette. If there are nColors
possible entries in the system palette and there are nStaticColors static colors, then the static colors will
be found in entries 0 through nStaticColors/2 - 1 and entries nColors - nStaticColors/2 through nColors-1
in the system palette. Typically, there are 20 static colors, found in indices 0-9 and 246-255 of a 256-color
palette. The peFlags portion of these PALETTEENTRY structures must be set to zero.

The SetSystemPaletteUse API turns use of the static colors on and off for the system. Using
SYSPAL_STATIC, 20 entries will be reserved in the palette. SYSPAL_NOSTATIC reserves only 2 entries,
which must be mapped to black and white. See the Accessing a Full Palette Using SYSPAL_NOSTATIC
article for more information.

Other Colors

The remaining non-static colors in the logical palette may be defined by the application, but they must be
marked as PC_NOCOLLAPSE (see the PALETTEENTRY documentation for a description) to ensure an
identity palette.

A palette containing the static colors in the appropriate entries with the remaining entries marked
PC_NOCOLLAPSE, selected and realized into a DC, becomes an identity palette. Because no translation
to the system palette is required, the Palette Manager can step aside gracefully and leave you to achieve
maximum blt bandwidth.

If your palette contains duplicates of the high-intensity static colors you need to set the duplicate entries to
PC_RESERVED so GDI doesnt map the upper colors in your logical palette into those slots.

Creating an Identity Palette

The CreateIdentityPalette() function below shows how to create an identity palette from a an array of
RGBQUAD structures. Before you realize an identity palette for the first time, it may be a good idea to

clear the system palette by realizing a completely black palette, as the ClearSystemPalette() function
below does This will ensure that palette-managed applications executed before your application will not
affect the identity mapping of your carefully constructed palette.

To make sure that you have successfully created and are using an identity palette, you can tell WinG to
send debugging messages to the standard debug output, as described in the Debugging With WinG
article.

The PALANIM sample (in the SAMPLES\PALANIM subdirectory of the WinG development kit) uses these
routines to create a 256-entry identity palette filled with a wash of color.

Click Here to copy the CreateIdentityPalette() code sample to the clipboard.

Click Here to copy the ClearSystemPalette() code sample to the clipboard.

HPALETTE CreateIdentityPalette(RGBQUAD aRGB[], int nColors)
{

int i;
struct {

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} Palette =
{

0x300,
256

};

//*** Just use the screen DC where we need it
HDC hdc = GetDC(NULL);

//*** For SYSPAL_NOSTATIC, just copy the color table into
//*** a PALETTEENTRY array and replace the first and last entries
//*** with black and white
if (GetSystemPaletteUse(hdc) == SYSPAL_NOSTATIC)
{

//*** Fill in the palette with the given values, marking each
//*** as PC_NOCOLLAPSE
for(i = 0; i < nColors; i++)
{

Palette.aEntries[i].peRed = aRGB[i].rgbRed;
Palette.aEntries[i].peGreen = aRGB[i].rgbGreen;
Palette.aEntries[i].peBlue = aRGB[i].rgbBlue;
Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

}

//*** Mark any unused entries PC_NOCOLLAPSE
for (; i < 256; ++i)
{

Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;
}

//*** Make sure the last entry is white
//*** This may replace an entry in the array!

Palette.aEntries[255].peRed = 255;
Palette.aEntries[255].peGreen = 255;
Palette.aEntries[255].peBlue = 255;
Palette.aEntries[255].peFlags = 0;

//*** And the first is black
//*** This may replace an entry in the array!
Palette.aEntries[0].peRed = 0;
Palette.aEntries[0].peGreen = 0;
Palette.aEntries[0].peBlue = 0;
Palette.aEntries[0].peFlags = 0;

}
else
//*** For SYSPAL_STATIC, get the twenty static colors into
//*** the array, then fill in the empty spaces with the
//*** given color table
{

int nStaticColors;
int nUsableColors;

//*** Get the static colors from the system palette
nStaticColors = GetDeviceCaps(hdc, NUMCOLORS);
GetSystemPaletteEntries(hdc, 0, 256, Palette.aEntries);

//*** Set the peFlags of the lower static colors to zero
nStaticColors = nStaticColors / 2;
for (i=0; i<nStaticColors; i++)

Palette.aEntries[i].peFlags = 0;

//*** Fill in the entries from the given color table
nUsableColors = nColors - nStaticColors;
for (; i<nUsableColors; i++)
{

Palette.aEntries[i].peRed = aRGB[i].rgbRed;
Palette.aEntries[i].peGreen = aRGB[i].rgbGreen;
Palette.aEntries[i].peBlue = aRGB[i].rgbBlue;
Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

}

//*** Mark any empty entries as PC_NOCOLLAPSE
for (; i<256 - nStaticColors; i++)

Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

//*** Set the peFlags of the upper static colors to zero
for (i = 256 - nStaticColors; i<256; i++)

Palette.aEntries[i].peFlags = 0;
}

//*** Remember to release the DC!
ReleaseDC(NULL, hdc);

//*** Return the palette
return CreatePalette((LOGPALETTE *)&Palette);

}

void ClearSystemPalette(void)
{

//*** A dummy palette setup
struct
{

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} Palette =
{

0x300,
256

};

HPALETTE ScreenPalette = 0;
HDC ScreenDC;
int Counter;

//*** Reset everything in the system palette to black
for(Counter = 0; Counter < 256; Counter++)
{

Palette.aEntries[Counter].peRed = 0;
Palette.aEntries[Counter].peGreen = 0;
Palette.aEntries[Counter].peBlue = 0;

Palette.aEntries[Counter].peFlags = PC_NOCOLLAPSE;
}

//*** Create, select, realize, deselect, and delete the palette
ScreenDC = GetDC(NULL);
ScreenPalette = CreatePalette((LOGPALETTE *)&Palette);
if (ScreenPalette)
{

ScreenPalette = SelectPalette(ScreenDC,ScreenPalette,FALSE);
RealizePalette(ScreenDC);
ScreenPalette = SelectPalette(ScreenDC,ScreenPalette,FALSE);
DeleteObject(ScreenPalette);

}
ReleaseDC(NULL, ScreenDC);

}

Palette Animation With WinG
Palette animation creates the appearance of motion in an image by modifying entries the system palette,
resulting in color changes in the displayed image. Carefully arranged and animated palette entries can
produce motion effects such as running water, flowing lava, or even motion of an object across the
screen.

The Windows AnimatePalette function replaces entries in the logical palette and the system palette. The
app does not need to re-realize the palette after a call to AnimatePalette.

Because every DIB and WinGBitmap has an associated color table which is translated to the system
palette when the image is copied to the screen, DIBs blted after the palette is animated will not appear
animated because their colors are translated to the new palette.

The Using an Identity Palette article discusses the creation of an identity palette which removes the need
for color translation when blting. If a palette animating application went through the trouble to create the
identity palette, it should maintain the identity mapping between the palette and the WinGDC by matching
the WinGBitmap color table to the animated palette before blting. To do this, use WinGSetDibColorTable
to keep the WinGBitmap color table synchronized with changes in the system palette.

Remember that any entries in a palette which are to be animated must be marked with the
PC_RESERVED flag. PC_RESERVED is a superset of PC_NOCOLLAPSE flag, so these entries can be
used in an identity palette.

The PALANIM sample (in the SAMPLES\PALANIM subdirectory of the WinG development kit) performs a
simple palette animation with an identity palette, making sure to update the WinGDC color table to match
the palette before it blts using the following code, which copies the current logical palette (hpalApp) into
the color table of the WinGDC (hdcOffscreen). Of course, if you create the palette yourself from an array
of colors, there will be no need to call GetPaletteEntries because you could update the color table from
the array you already have in memory. Also, in a palette animation that does not animate the complete
palette, an application would not need to modify the entire palette and color table, as this code snippet
does:

int i;
PALETTEENTRY aPalette[256];
RGBQUAD aPaletteRGB[256];

//*** BEFORE BLTING, match the DIB color table to the
//*** current palette to match the animated palette
GetPaletteEntries(hpalApp, 0, 256, aPalette);
//*** Alas, palette entries are r-g-b, rgbquads are b-g-r
for (i=0; i<256; ++i)
{

aPaletteRGB[i].rgbRed = aPalette[i].peRed;
aPaletteRGB[i].rgbGreen = aPalette[i].peGreen;
aPaletteRGB[i].rgbBlue = aPalette[i].peBlue;
aPaletteRGB[i].rgbReserved = 0;

}
WinGSetDIBColorTable(hdcOffscreen, 0, 256, aPaletteRGB);

Accessing a Full Palette Using SYSPAL_NOSTATIC
The Palette Manager usually reserves twenty static colors in the palette for use in drawing captions,
menus, text, scroll bars, window frames, and other system elements. These static colors ensure a
common color scheme across all applications, but this leaves only 236 palette entries available to each
application. A Windows graphics application requiring a full palette of 256 colors has two options, outlined
here.

The first option is to incorporate the static colors into the palette at runtime, knowing that the RGB values
of the colors may change slightly from display driver to display driver. This means that the palette will vary
slightly when the application runs on different platforms, but it ensures the consistent look and feel
between the application and coexisting applications in the system.

The static colors are defined as follows:

Index Color Index Color
0 Black 246 Cream
1 Dark Red 247 Light Gray
2 Dark Green 248 Medium Gray
3 Dark Yellow 249 Red
4 Dark Blue 250 Green
5 Dark Magenta 251 Yellow
6 Dark Cyan 252 Blue
7 Light Gray 253 Magenta
8 Money Green 254 Cyan
9 Sky Blue 255 White

If you can accept the limitation of including these colors in your palette and determining their exact RGB
values at runtime (using GetSystemPaletteEntries), you can skip the rest of this article.

The second option is to tell the Window Manager to make 18 of the twenty static colors available to the
application, with entry 0 remaining black and entry 255 remaining white. However, choosing to control
those palette entries means youll have some more intimate relations with the Palette Manager.

To change the use of the static colors in the system palette, you use the SetSystemPaletteUse API,
passing either SYSPAL_STATIC or SYSPAL_NOSTATIC. Setting the palette use to SYSPAL_NOSTATIC
gives you access to palette entries 1 through 254. Your palette must map entry 0 to RGB(0, 0, 0) and
entry 255 to RGB(255, 255, 255), but black and white are standard in most palettes anyway.

Ordinarily, Windows uses entries 0-9 and 246-255 to draw captions, borders, menus, and text, and it will
continue to do so after youve changed the RGB values of those palette entries unless you tell it to do
otherwise. If you do not inform the operating system of your changes, your application and all others in
the system will become very messy and your application will be condemned by its peers as unfriendly.

You want your application to be friendly to the operating system and to the other active applications. You
can handle this in two ways: you can make your application a full-screen window with no controls, thereby
taking over the entire screen and the full palette, or you can tell the operating system to use different
palette entries to draw its captions, borders, menus, and text so that other visible windows do not appear
completely strange. In either case, you must restore the static colors when your application becomes
inactive or exits.

The following procedure handles the switch between SYSPAL_STATIC and SYSPAL_NOSTATIC for you,
managing the mapping and remapping of the system colors for you through the Windows functions
GetSysColor and SetSysColors. It stores the current mapping of the system colors before switching to
SYSPAL_NOSTATIC mode and restores them after switching back to SYSPAL_STATIC mode.

To use the AppActivate() function in an application, call AppActivate((BOOL)wParam) in response to a
WM_ACTIVATEAPP message and call AppActivate(FALSE) before exiting to restore the system colors.
This will set the system palette use and remap the system colors when your application is activated or
deactivated.

The PALANIM sample (in the SAMPLES\PALANIM subdirectory of the WinG development kit) uses this
function to take over the static colors at run time and clean up before it exits.

Click Here to copy this code sample to the clipboard.

#define NumSysColors (sizeof(SysPalIndex)/sizeof(SysPalIndex[1]))
#define rgbBlack RGB(0,0,0)
#define rgbWhite RGB(255,255,255)

//*** These are the GetSysColor display element identifiers
static int SysPalIndex[] = {

COLOR_ACTIVEBORDER,
COLOR_ACTIVECAPTION,
COLOR_APPWORKSPACE,
COLOR_BACKGROUND,
COLOR_BTNFACE,
COLOR_BTNSHADOW,
COLOR_BTNTEXT,
COLOR_CAPTIONTEXT,
COLOR_GRAYTEXT,
COLOR_HIGHLIGHT,
COLOR_HIGHLIGHTTEXT,
COLOR_INACTIVEBORDER,
COLOR_INACTIVECAPTION,
COLOR_MENU,
COLOR_MENUTEXT,
COLOR_SCROLLBAR,
COLOR_WINDOW,
COLOR_WINDOWFRAME,
COLOR_WINDOWTEXT

};

//*** This array translates the display elements to black and white
static COLORREF MonoColors[] = {

rgbBlack,
rgbWhite,
rgbWhite,
rgbWhite,
rgbWhite,
rgbBlack,
rgbBlack,
rgbBlack,
rgbBlack,
rgbBlack,
rgbWhite,
rgbWhite,
rgbWhite,
rgbWhite,
rgbBlack,
rgbWhite,
rgbWhite,

rgbBlack,
rgbBlack

};

//*** This array holds the old color mapping so we can restore them
static COLORREF OldColors[NumSysColors];

//*** AppActivate sets the system palette use and
//*** remaps the system colors accordingly.
void AppActivate(BOOL fActive)
{

HDC hdc;
int i;

//*** Just use the screen DC
hdc = GetDC(NULL);

//*** If the app is activating, save the current color mapping
//*** and switch to SYSPAL_NOSTATIC
if (fActive && GetSystemPaletteUse(hdc) == SYSPAL_STATIC)
{

//*** Store the current mapping
for (i=0; i<NumSysColors; i++)

OldColors[i] = GetSysColor(SysPalIndex[i]);

//*** Switch to SYSPAL_NOSTATIC and remap the colors
SetSystemPaletteUse(hdc, SYSPAL_NOSTATIC);
SetSysColors(NumSysColors, SysPalIndex, MonoColors);

}
else if (!fActive && GetSystemPaletteUse(hdc) == SYSPAL_NOSTATIC)
{

//*** Switch back to SYSPAL_STATIC and the old mapping
SetSystemPaletteUse(hdc, SYSPAL_STATIC);
SetSysColors(NumSysColors, SysPalIndex, OldColors);

}

//*** Be sure to release the DC!
ReleaseDC(NULL,hdc);

}

Debugging WinG Applications
WinG will report runtime errors and helpful debugging messages through standard Windows debug output
devices (the serial port or applications such as DBWIN.EXE) if you so desire. If you want WinG to send
error messages to the debug output, make sure the following entry appears in your WIN.INI file. If there is
already a [WinG] section (there will be if WinG has previously profiled your display), just add the Debug=1
line under that heading:

[WinG]
Debug=1

If you specifically do not want debug messages to appear, set this to:

[WinG]
Debug=0

If neither debug level is specified in the [WinG] section of your WIN.INI file, debugging will be turned ON if
youre using the Windows debug kernel and OFF if youre using the Windows retail kernel. Setting the
Debug level explicitly in your WIN.INI will always override this default behavior.

WinG can also provide you with a detailed log of palette translations between the color table of a
WinGBitmap and the logical palette and system palette. This will help to identify discrepancies in the
palette which prevent WinG from using faster blts with an identity palette. To receive these palette
notifications through the debug output, add the following line to the [WinG] section of win.ini:

DebugPalette = 1
Debugging WinG applications is no different than debugging normal Windows applications, but there are
some minor known problems and workarounds for the the following debuggers:

Borland

There are known problems with debugging WinG applications using Turbo Debugger for Windows. If you
have problems debugging with TDW, try running one of the samples first and leave it minimized so
WinG.DLL will already be in memory when you debug your application.

Microsoft

No known problems.

Symantec

No known problems.

Watcom

No known problems.

Compiling WinG Applications

BETA: This article is not yet complete.

Win32s allows access to 32-bit code and a subset of the 32-bit Windows APIs under 16-bit versions of
Windows. There are some extra things to consider when compiling and debugging Win32s applications.

The easiest environment for developing and debugging Win32 programs are, obviously, the 32-bit
versions of Windows. Debugging Win32s programs while running 16 bit Windows can be very difficult.
Because WinG supports Windows 4.0 and NT 3.5, programmers can develop and debug their application
in a 32-bit environment, running under Win32s only for run-time testing.

Compiling and linking for Win32s can be tricky with some compilers. Several major compilers require
various incantations to successfully build a Win32s application. Hopefully, the following hints will aid in the
successful compilation and linking of WinG applications using these compilers.

The WinG32.lib file in the WinG SDK is a Common Object File Format (COFF) library file. Most non-
Microsoft Win32 compilers support only Object-Module Format (OMF) library files, so you may have
problems linking to WinG32 functions. If you encounter link problems, first see if your compiler has an
import librarian, a program that creates a library file from a DLL. Run this program on WinG32.dll and try
linking with the generated library file. If this doesnt work or you dont have an import librarian, try
explicitly importing the functions in your .def file. As a last resort you can dynamically link to WinG32
using LoadLibrary and GetProcAddress.

Borland

Run implib on WinG32.dll or modify the .def file.

Microsoft

No known problems.

Symantec

Run implib on WinG32.dll or modify the .def file.

Watcom

The Watcom linker will have trouble linking to the wing32.lib export file included with the WinG
Development Kit. This export file lists undecorated names, using the conventions established for Alpha,
MIPS, and x86 cross-assembly. To create a new wing32.lib file linkable with the Watcom tools, run wlib on
win32.dll as follows:

wlib wing32 @wing32.lbc
where wing32.lbc is a text file containing the following description of the WinG functions:

++'_WinGBitBlt'.'WING32.DLL'..WinGBitBlt
++'_WinGCreateBitmap'.'WING32.DLL'..WinGCreateBitmap
++'_WinGCreateDC'.'WING32.DLL'..WinGCreateDC
++'_WinGCreateHalftoneBrush'.'WING32.DLL'..WinGCreateHalftoneBrush
++'_WinGCreateHalftonePalette'.'WING32.DLL'..WinGCreateHalftonePalette

++'_WinGGetDIBColorTable'.'WING32.DLL'..WinGGetDIBColorTable
++'_WinGGetDIBPointer'.'WING32.DLL'..WinGGetDIBPointer
++'_WinGRecommendDIBFormat'.'WING32.DLL'..WinGRecommendDIBFormat
++'_WinGSetDIBColorTable'.'WING32.DLL'..WinGSetDIBColorTable
++'_WinGStretchBlt'.'WING32.DLL'..WinGStretchBlt

DISPDIB and WinG

BETA: This article is not yet complete.

DISPDIB provides direct VGA hardware access under Windows through the DisplayDib function, which
bypasses the standard Windows video driver architecture and gives control of the hardware to the calling
application. Although DISPDIB has nothing to do with WinG, game developers may find it to be a
workable alternative to creating full-blown windowed applications.

DisplayDib was originally intended to display single 256-color bitmaps in 320x200 or 320x240 modes until
a key or mouse button was pressed, but you can take over the video indefinitely by using the
DISPDIB_NOWAIT flag or the DISPDIB_BEGIN and DISPDIB_END flags. While DISPDIB is enabled, the
calling application has direct access to the VGA hardware registers.

While it is active, DISPDIB disables the Windows video driver. GDI has no effect on the screen, but the
other Windows system components remain active. During the time between DISPDIB_BEGIN and
DISPDIB_END calls, the application receives messages as usual, including keyboard, timer, and mouse
messages, and Windows memory management, networking, and other system services are still available.

Note that mouse coordinates received by the application will be in the coordinate system of the display
driver. That is, if an application running in a 1024x768 Windows session switches to a 320x200 full-screen
mode using DISPDIB, the system continues to return mouse coordinates as though the screen were
1024x768.

An application using DISPDIB must be the active application when it calls DisplayDib.

Frequently Asked Questions

BETA: This article is not yet complete. If you have questions that you would like to see answered
here or end up searching through this help file for an answer, send mail to
wingbug@microsoft.com and ask us to add it to the FAQ!

Q:

A:

Shipping a Product With WinG
Microsoft grants you the royalty-free right to distribute any application you create using WinG, along with
the WinG runtime support files listed below.

If your application uses WinG, you will have to copy the WinG runtime files into the \SYSTEM
subdirectory of the Windows directory if WinG has not been previously installed on the target system. The
following files should be installed on the users system:

WING.DLL
WING32.DLL
WINGDE.DLL
WINGDIB.DRV
WINGPAL.WND
DVA.386

If your installation process copies dva.386 to the users machine, the following line should be added to the
[386Enh] section of the system.ini file, after which the user should reboot Windows:

device=dva.386
The Windows Software Development Kit includes the Setup Toolkit for Windows, which allows you to
create and run setup scripts for installing Windows applications. Documentation for the toolkit comes with
the Windows SDK and is also available through the Microsoft Developer Relations Group and the
Microsoft Developer Network CD.

The WinG Development Kit setup program installs the WinG runtime files using Microsoft setup exactly as
they should be installed on a target users system. Look at the WING.MST script on the WinG installation
diskette to see how this is done.

Code Samples
The WinG development kit contains a variety of code samples to help you develop fast applications
quickly using WinG.

Snippets
The following code samples appear in this help file:

Setting up an off-screen buffer with WinG.

Calculating the memory address of a scanline in a WinGBitmap.

Creating an Identity Palette.

Clearing the System Palette.

Maximizing palette availability using the SYSPAL_NOSTATIC setting.

Copying a logical palette to a WinGBitmap color table.

Matching an RGB color to a halftone palette entry.

Sample Applications
The WinG Development Kit also contains source code for several sample applications, installed in the \
SAMPLES subdirectory. The following applications are available:

DOGGIE allows the user to drag a sprite around the screen with the mouse, demonstrating off-screen
composition, dirty rectangle animation, and custom blt routines. Includes source code for a sample 8-
bit DIB to 8-bit DIB blt with one transparent color.

CUBE displays a halftoned rotating cube in a window that the user can manipulate with the mouse. It
demonstrates off-screen composition, double-buffering, and using the halftone palette and halftone
brushes with GDI to draw into a WinGDC.

TIMEWING tests and compares blt speeds of existing GDI functions with the WinGStretchBlt function.
This sample will give you an idea of how WinG will compare to standard GDI blts.

HALFTONE converts 24-bit RGB DIBs to 8-bit DIBs by dithering them to the WinG Halftone Palette. The
source code implements a standard 8x8 dither and color matching to the halftone palette.

PALANIM performs simple palette animation with an identity palette using WinG. This application uses all
of the sample code appearing in this help file.

Balloon Doggie Sample
The Balloon Doggie sample application, found in the SAMPLES\DOGGIE subdirectory of the WinG
development kit, demonstrates a simple dirty rectangle animation system. It creates a WinGDC and a
WinGBitmap, which it uses as an off-screen buffer, and uses WinGBitBlt to update the screen.

Balloon Doggie includes source code for TransparentDIBits (in TBLT.C and FAST32.ASM), a fast DIB-to-
DIB blt with transparency. TransparentDIBits demonstrates the use of custom drawing routines with WinG
to provide functions not present or unacceptably slow in GDI.

Note that DOGGIE.EXE requires MASM 5.1 to compile FAST32.ASM. If you do not own MASM 5.1, link
to the prceompiled FAST32.OBJ, included with the DOGGIE sample.

Spinning Cube Sample
The CUBE.EXE sample application, found in the SAMPLES\CUBE subdirectory of the WinG development
kit, demonstrates the use of Halftoning to create the appearance of more than 256 colors on an 8-bit
palletized display device. Using WinGCreateHalftonePalette and WinGCreateHalftoneBrush, the spinning
cube application halftones the faces of the cube to create lighting effects.

The Spinning Cube sample uses a standard double buffering architecture using a WinGDC and a
WinGBitmap. It creates a WinGDC when the application starts, then creates and selects appropriate
WinGBitmaps on WM_SIZE messages to keep the off-screen buffer the same size as the windows client
region.

When appropriate, the application uses the GDI Polygon function to draw into the off-screen buffer then
calls WinGBitBlt to copy the buffer to the screen.

The CUBE sample uses a simple floating-point vector and camera C++ class library (in DUMB3D.HPP
and DUMB3D.CPP) that can be used as a starting point by those interested in generating 3D graphics.

WinG Timing Sample
The timing sample, TIMEWING.EXE, found in the SAMPLES\TIMEWING subdirectory of the WinG
development kit, times and compares the blt and stretching speeds of StretchBlt, StretchDIBits, and
WinGStretchBlt. The application provides a summary you can use to compare the speeds of these
techniques on various video configurations and a framework you can use for your own timing tests.

On most platforms, WinGStretchBlt will perform favorably in comparison to StretchBlt and will blow
StretchDIBits away. SetDIBitsToDevice and StretchDIBits are essentially the same API, so this function is
not timed. WinGStretchBlt and WinGBitBlt will perform the same if the stretch ratio is 1 to 1, as will
StretchBlt and BitBlt.

Note that StretchDIBits and WinGStretchBlt operate on device-independent bitmaps whereas StretchBlt
and BitBlt operate on device-specific bitmaps, which require no translation and can sometimes be stored
in the local memory of the graphics card itself. For this reason, StretchBlt usually runs at speeds
approaching video memory bandwidth, which is the target speed for WinGStretchBlt.

Timewing.exe can be built as a Win32 app by compiling with the timewing.m32 makefile. You may need
to modify timewing.m32 for your compiler environment.

Also note that some drivers cheat on their BitBlts by keeping the last blted image in card memory. If the
image is blted again, the card uses the cached image instead of the memory image. This can result in
misleading performance benchmarks unless a different image is blted at each frame. This is not the
same as a card with device bitmaps, which is a completely legal way to improve display performance.

WinG Halftoning Sample
HALFTONE.EXE, found in the SAMPLES\HALFTONE subdirectory of the WinG development kit, dithers
24-bit DIBs to the WinG Halftone Palette using an 8x8 ordered dither.

The main function, DibHalftoneDIB in HALFTONE.C, does the real work in the dithering. The process of
calculating an ordered dither is too complex to describe here, but a description of the techniques involved
can be found in Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hughes. See
the Further Reading article for more information on this book.

The aWinGHalftoneTranslation array found in HTTABLES.C converts a 2.6-bit-per-pixel computed
halftone index into an entry in the halftone palette. To calculate the nearest match of an RGB color to the
halftone palette, HALFTONE uses the following formula:

HalftoneIndex = (Red / 51) + (Green / 51) * 6 + (Blue / 51) * 36;
HalftoneColorIndex = aWinGHalftoneTranslation [HalftoneIndex];

See also the documentation for the WinGCreateHalftoneBrush function and the Halftoning With WinG
article.

WinG Palette Animation Sample
The PALANIM.EXE application, found in the SAMPLES\PALANIM subdirectory of the WinG development
kit, performs simple palette animation using AnimatePalette and WinGSetDIBColorTable as described in
the Palette Animation With WinG article.

PALANIM gives the user the option of using the static colors in the palette to create a 254-color ramp or a
236-color ramp in an identity palette for fast blting.

The PALANIM sample uses the code samples found in this help file to perform all of its WinG functions.

WinG Programmers Reference

All of the source code, applications, and information included in the WinG development kit is provided as
is without warranty of any kind, either expressed or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose.

You have a royalty-free right to use, modify, reproduce and distribute the Sample Files (and/or any
modified version) in any way you find useful, provided that you agree that Microsoft has no warranty
obligations or liability for any Sample Application Files which are modified.

All code and documentation is Copyright ã 1994 Microsoft Corporation. All Rights Reserved.

This is a standard Windows 3.1 or Win32 API, structure, or constant. Documentation can be found in the
Help files installed with the Windows SDK.

This is a standard Win32 API, structure, or constant. Documentation can be found in the Help files
installed with the Win32 SDK.

WinG Beta readme - Late-breaking news and known bugs

Microsoft WinG - Beta release - June 27, 1994

This file describes known bugs, gotchas, and helpful hints for the WinG Beta
release. Please remember that this is a beta version and is subject to the
usual Beta Disclaimers.

Reporting Bugs

The main goal of this Beta release, in addition to providing you with a solid
foundation for writing great graphics-intensive Windows applications, is to
flush out compatibility problems with WinG. We want to know when you encounter
bugs, and want to hear suggestions and/or recommendations you have about WinG
or its support files.

With this in mind, we have included WINGBUG.EXE in the WinG Beta Development
Kit (in the BIN directory of the SDK), an automated tool for gathering
information on your configuration for reporting bugs to the WinG development
team. This tool creates a complete bug report by prompting you for information
about the bug, your configuration, and the steps used to reproduce the bug.
The resulting bug report text file should be sent to the wingbug@microsoft.com
address, or sent to Microsoft on floppy disk.

Before reporting a bug, please be sure that it's not one we already know about
by looking through the Known Bugs and Limitations section below. If there is
any doubt, send the bug anyway--it's better to have a duplicate bug on file
than not know about one.

Known Bugs And Limitations

The following are known problems with the beta version of WinG.

These bugs and design decisions will be fixed or resolved before the final
release. Their presence here serves only as a warning to programmers coding
for this release.

· WinGBitmaps must be created with full 256 entry color tables.
· WinG will assert on 8bpp non-palette devices, like the ATI Mach32 8bpp
non-palette mode.
· CMACRO32.INC from the doggie sample application requires Microsoft MASM
5.1 to compile. You must specify the /NOPACKCODE option when linking segments
produced with CMACRO32.INC.
· Calling WinGStretchBlt and WinGBitBlt with source coordinates outside of
the source boundary can crash WinG.
· WinGBitBlt and WinGStretchBlt only support bltting from WinGDCs to the
screen.

· Several GDI APIs that should work into WinGDCs dont right now. If you
discover others not on this list wed appreciate hearing about them.

- StrechDIBits with non-1:1 ratio screws up
- hatched brushes sometimes draw incorrectly
- FloodFill with a NULL brush draws incorrectly

- FloodFill outside of the bounds of a WinGBitmap can flood the whole
image
- PALETTERGBs may map differently when compared to the display
- brushes created with CreatePatternBrush fault when selected
- some drawing operations draw slightly differently than standard GDI
DrawIcon will crash
- WinGDCs will incorrectly map non-exact matches in the color-table
· You cannot change the origin of halftone brushes.
· The sample program makefiles are named sample.mk (where sample is the
name of the sample) instead of makefile because of limitations with Microsoft
Setup.
· Some GP Faults within the SVGA256.DRV driver have been found. If you
encounter one, please use WINGBUG.EXE and send mail to wingbug@microsoft.com.
· WinG does not unload when a GP Fault occurs. For accurate performance,
be sure to unload WinG.DLL or reboot Windows after a GP Fault in a WinG
application.
· WinGBitBlt and WinGStretchBlt sometimes have trouble clipping to non-
rectangular clipping regions. If you encounter incorrect behavior, please use
WINGBUG.EXE and send mail to wingbug@microsoft.com.
· 16-bit WinG applications will not run on Daytona Beta 1 (build 612). You
must have Daytona Beta 2 (build 683) to use 16-bit WinG applications under
Windows NT. 32-bit WinG applications will run on all versions of Daytona.
· Noticeable timing differences have been found while running the WinG
profiler on a computer connected to a network. For accurate results,
disconnect your computer from the network the first time you run a WinG
application. After the profile is complete, you can plug the net in again.

A Note on Speed

WinG is designed to be the absolute fastest way to blt DIBs under Windows.
The goal is to blt at memory bandwidth to the display device. In other words,
we are competing with BitBlt and DOS blts, not StretchDIBits or
SetDIBitsToDevice.

On most 8bpp devices, if you use the recommended DIB format (returned by
WinGRecommendDIBFormat) you should get speeds comparable to BitBlt, and much
faster than StretchDIBits. The timewing sample application will show you
various blt speeds on your display.

The only time WinG (in its final release) will not be able to beat or match
BitBlt is on some "device bitmap" drivers. These are drivers that keep
HBITMAPs in video ram and use the display hardware to copy to the screen at
much higher speeds than one can copy from main memory.

If you run timewing and the WinGStretchBlt performance is not as good or
better than the StretchBlt case and is not much faster than the StretchDIBits
case, please use WINGBUG.EXE and send a bug report to wingbug@microsoft.com.
We treat performance problems as priority 1 bugs. After all, if it's not fast
it's not worth using.

Thanks a lot for your participation in the WinG Beta program!

WinG API
The WinG API is a small set of functions for manipulating DIBs in the same way that device dependent
bitmaps are manipulated in Windows.

WinGDCs and WinGBitmaps
WinGCreateDC Create a new WinGDC

WinGCreateBitmap Create a new WinGBitmap

WinGGetDIBPointer Return the DIB pointer to a WinGBitmap

WinGRecommendDIBFormat Recommend an optimal DIB format for memory-to-screen blts

WinGGetDIBColorTable Return the DIB color table of a selected WinGBitmap

WinGSetDIBColorTable Set the DIB color table of a selected WinGBitmap

Blts
WinGBitBlt Copy a WinGDC to another DC

WinGStretchBlt Copy a WinGDC to another DC with stretching

Halftoning
WinGCreateHalftoneBrush Create a halftone brush

WinGCreateHalftonePalette Create a copy of the WinG halftone palette

WING_DITHER_TYPE Dither types for halftone brushes

WinGBitBlt
Copies an area from a specified device context to a destination device context. WinGBitBlt is optimized
for copying WinGDCs to display DCs.

BOOL WinGBitBlt(HDC hdcDest, int nXOriginDest, int nYOriginDest, int nWidthDest, int
nHeightDest, HDC hdcSrc, int nXOriginSrc, int nYOriginSrc)

Parameters

hdcDest Identifies the destination device context.

nXOriginDest X coordinate of the upper-left corner of the destination rectangle in
MM_TEXT client coordinates.

nYOriginDest Y coordinate of the upper-left corner of the destination rectangle in
MM_TEXT client coordinates.

nWidthDest Width of the source and destination rectangle..

nHeightDest Height of the source and destination rectangle..

hdcSrc Identifies the source device context.

nXOriginSrc X coordinate of the upper-left corner of the source rectangle in
MM_TEXT client coordinates.

nYOriginSrc Y coordinate of the upper-left corner of the source rectangle in
MM_TEXT client coordinates.

Return Value

The return value is non-zero if the function is successful. Otherwise, it is zero.

Comments

WinGBitBlt requires both DCs to use MM_TEXT mapping mode at the time of the call or the results
may be unpredictable. At other times, any mapping mode may be used in either DC.

In the current implementation, WinGBitBlt will fail under Windows 3.1 and Win32s if the source DC is
not an 8-bit-per-pixel WinGDC. Future implementations will allow for different pixel formats for
WinGBitmaps.

Maximizing Performance

You will get the highest performance from WinGBitBlt if you select a WinGBitmap created from
header information supplied by a call to WinGRecommendDIBFormat.

WinGBitBlt is optimized for copying WinGDCs to the screen.

Clipping can slow WinGBitBlt down. In general, dont select clipping regions into or blt outside the
boundaries of the source or destination DCs and avoid blting to an overlapped window if possible.

See Also

WinGStretchBlt WinGCreateDC WinGCreateBitmap WinGRecommendDIBFormat Maximizing
Performance With WinG

WinGCreateBitmap
Creates a WinGBitmap for the given WinGDC using the specified header information.

HBITMAP WinGCreateBitmap(HDC hWinGDC, BITMAPINFO far *pHeader, void far *far *ppBits)

Parameters

hWinGDC Identifies the WinG device context.

pHeader Points to a BITMAPINFO structure specifying the width, height, and color
table for the new WinGBitmap.

ppBitsr If not 0, points to a pointer to receive the address of the new WinGDC DIB
surface.

Return Value

Returns a handle to the new WinGBitmap DIB surface or 0 if it is unsuccessful.

Comments

Currently, under Windows 3.1 and Win32s, WinGCreateBitmap will only create 8-bit-per-pixel
surfaces.

If ppBits is 0, the address of the newly created bitmap will not be returned. WinGGetDIBPointer will
also return this information.

pHeader must point to enough memory to hold a BITMAPINFOHEADER and a complete color table
of RGBQUAD entries. The biClrUsed field of the BITMAPINFOHEADER specifies the number of
colors in the color table; if it is zero, the maximum number of colors according to biBitCount are used
if biBitCount is less than 24. For example, if biBitCount is 8 and biClrUsed is 0, 256 palette entries are
expected. See the BITMAPINFOHEADER description in the Windows 3.1 SDK Reference for more
information.

When an application has finished using a WinGBitmap, it should select the bitmap out of its WinGDC
and remove the bitmap by calling DeleteObject.

The pointer to the WinGBitmap DIB surface returned by WinGCreateBitmap must not be freed by the
caller. The allocated memory will be freed by a call to DeleteObject.

WinGCreateBitmap uses pHeader and the subsequent color table to create the drawing surface.
WinG ignores the biClrImportant, biXPelsPerMeter, biYPelsPerMeter, and biSizeImage fields. The
current version of WinG expects biCompression to be BI_RGB.

If the biHeight field of the passed BITMAPINFOHEADER is negative, WinGCreateBitmap will create
a top-down DIB as the bitmap surface. See the article on DIB Orientation for a discussion of top-down
and bottom-up DIBs.

An HBITMAP can only be selected into one device context at a time, and a device context can only
have a single HBITMAP selected in at a time.

Maximizing Performance

To create a WinGBitmap that will maximize WinGBitBlt performance, use
WinGRecommendDIBFormat to fill in the entries of pHeader before calling WinGCreateBitmap,
remembering to modify the height and width to suit your needs.

Larger WinGBitmaps take longer to blt to the screen. Also, if the screen DC is clipped, for example by
an overlapping window or by a selected clip region, the WinGDC will take longer to blt to the screen.

Using an identity palette that exactly matches the WinGBitmaps color table will greatly increase
performance.

Example

The following code fragment shows how an application could create a WinGDC with an optimal
100x100 WinGBitmap selected for drawing, then delete it when it is no longer needed. Note that the
WinGBitmap will initially have garbage in its color table--be sure to call WinGSetDIBColorTable before
using the WinGDC.

The PALANIM sample (in the SAMPLES\PALANIM subdirectory of the WinG development kit) uses
these routines, modified to create a 256x256 WinGDC, to allocate and free its drawing buffer.

Click Here to copy this code sample to the clipboard.

HBITMAP ghBitmapMonochrome = 0;

HDC Create100x100WinGDC(void)
{

HDC hWinGDC;
HBITMAP hBitmapNew;
struct {

BITMAPINFOHEADER InfoHeader;
RGBQUAD ColorTable[256];

} Info;
void far *pSurfaceBits;

// Set up an optimal bitmap
if (WinGRecommendDibFormat((BITMAPINFO far *)&Info) == FALSE)

return 0;

// Set the width and height of the DIB but preserve the
// sign of biHeight in case top-down DIBs are faster
Info.InfoHeader.biHeight *= 100;
Info.InfoHeader.biWidth = 100;

// Create a WinGDC and Bitmap, then select away
hWinGDC = WinGCreateDC();
if (hWinGDC)
{

hBitmapNew = WinGCreateBitmap(hWinGDC,
(BITMAPINFO far *)&Info, &pSurfaceBits);

if (hBitmapNew)
{

ghBitmapMonochrome = (HBITMAP)SelectObject(hWinGDC,
hBitmapNew);

}
else
{

DeleteDC(hWinGDC);
hWinGDC = 0;

}
}

return hWinGDC;
}

void Destroy100x100WinGDC(HDC hWinGDC)
{

HBITMAP hBitmapOld;

if (hWinGDC && ghBitmapMonochrome)
{

// Select the stock 1x1 monochrome bitmap back in
hBitmapOld = (HBITMAP)SelectObject(hWinGDC,

ghBitmapMonochrome);
DeleteObject(hBitmapOld);
DeleteDC(hWinGDC);

}
}

See Also

WinGCreateDC WinGRecommendDIBFormat CreateBitmapCreateCompatibleBitmap BITMAPINFO
BITMAPINFOHEADER WinGGetDIBPointer CreateDIBSection Code Samples Off-screen Drawing
With WinG Maximizing Performance With WinG

WinGCreateDC
Creates a WinG device context with the stock 1x1 monochrome bitmap selected.

HDC WinGCreateDC(void)

Return Value

Returns the handle to a new WinGDC if successful. Otherwise, WinGCreateDC returns 0.

Comments

Device contexts created using WinGCreateDC must be deleted using the DeleteDC function. All
objects selected into the WinGDC after it was created should be selected out and replaced with the
original objects before the device context is deleted.

When a WinGDC is created, WinG automatically selects the stock 1x1 monochrome bitmap as its
drawing surface. To begin drawing on the WinGDC, select a WinGBitmap created by the
WinGCreateBitmap function into the WinGDC.

Maximizing Performance

WinGCreateDC has a fairly high overhead and is usually used to create a single off-screen DC. In
general, programs will call WinGCreateDC once at startup then select new WinGBitmaps on
WM_SIZE messages to the double-buffered window. Applications can use the
WM_GETMINMAXINFO message to restrict the size of their window if necessary.

Compose frames into WinGDCs, then use WinGStretchBlt or WinGBitBlt to copy the WinGDC to the
screen.

Example

See the WinGCreateBitmap API for sample code that uses WinGCreateDC.

See Also

WinGCreateBitmap CreateDC DeleteDC WM_SIZE WM_GETMINMAXINFO WinGStretchBlt
WinGBitBlt CreateDIBSection Off-screen Drawing With WinG Maximizing Performance With WinG
Code Samples

WinGCreateHalftoneBrush
Creates a dithered pattern brush based on the WinG halftone palette.

HBRUSH WinGCreateHalftoneBrush(HDC hdc, COLORREF Color, enum WING_DITHER_TYPE
DitherType)

Parameters

hdc Specifies the DC with which the brush should be compatible.

Color Specifies the color to be approximated by the brush.

DitherType Specifies the dither pattern for the brush. Can be one of:
WING_DISPERSED_4x4
WING_DISPERSED_8x8
WING_CLUSTERED_4x4

Return Value

Returns a handle to a GDI brush if successful. Otherwise, WinGCreateHalftoneBrush returns 0.

Comments

This API is intended for simulating true color on 8-bit devices. It will create a patterned brush using
colors from the halftone palette regardless of the color resolution of the target device. If hdc refers to
a 24-bit device, WinGCreateHalftoneBrush will not return a solid brush of the given color, it will
return a colored dither pattern using colors that appear in the halftone palette. On true-color devices,
creating a solid brush that exactly matches the desired color is simple; WinGCreateHalftoneBrush
lets you use the halftone patterns instead if you so desire.

A halftone brush approximates the requested Color using combinations of colors in the halftone
palette. Larger dither patterns give a better approximation of the desired color but require more area
to show the approximation. Quality is subjective, so programmers should experiment with different
dither types to find the one that suits their needs.

If the target DC is a palette device and the WinG halftone palette has not been selected and realized
into the target DC when a halftone brush is used, the visual results will be unpredictable. Use the
WinGCreateHalftonePalette function to create a copy of the halftone palette, then select and realize it
before using a halftone brush on a palette device.

The DISPERSED_nxn dither types create nxn patterns that approximate Color with a dispersed dot
ordered dither.

The CLUSTERED_4x4 dither type creates a 4x4 pattern that approximates Color with a clustered dot
ordered dither.

Always free GDI objects such as brushes by calling DeleteObject when the object is no longer
needed.

Maximizing Performance

Avoid redundant creation, selection, and deletion of identical brushes as much as possible. If an
application will be using the same brush repeatedly, it should create the brush once and save it for
later use, deleting it when the application is complete.

Example

The CUBE sample application (in the SAMPLES\CUBE directory of the WinG Development Kit)
allows the user to select the dither type for creating shaded brushes and provides a good experiment
in using the different dither types.

See Also

WinGCreateHalftonePalette WING_DITHER_TYPE CreateDIBPatternBrush CreateSolidBrush
Halftoning With WinG Using GDI With WinGDCs Code Samples

WinGCreateHalftonePalette
Creates an 8-bit palette used for halftoning images.

HPALETTE WinGCreateHalftonePalette(void)

Return Value

Returns the handle of a logical palettel containing the colors of the WinG halftone palette palette if
successful. Otherwise, WinGCreateHalftonePalette returns 0.

Comments

The halftone palette should be selected into any DC into which the application will use WinG to
halftone.

The WinG halftone palette is an identity palette: the logical palette indices and physical device indices
are the same.

The halftone palette inverts correctly, so bitwise XORs invert colors properly.

See the Using an Identity Palette article for a discussion of identity palettes.

Maximizing Performance

Call WinGCreateHalftonePalette once at the beginning of your application. Select and realize the
palette on WM_QUERYNEWPALETTE, WM_PALETTECHANGED, and WM_PAINT messages.

Example

The HALFTONE sample application (in the SAMPLES\CUBE directory of the WinG Development Kit)
uses the halftone palette to dither 24-bit images to 8-bits using an 8x8 ordered dither.

See Also

WinGCreateHalftoneBrush WinGStretchBlt WinGBitBlt RealizePalette WM_QUERYNEWPALETTE
WM_PALETTECHANGED Halftoning With WinG Using an Identity Palette Code Samples

WinGGetDIBColorTable
Returns the color table of the WinGBitmap currently selected into a WinGDC.

UINT WinGGetDIBColorTable(HDC hWinGDC, UINT StartIndex, UINT NumberOfEntries,
RGBQUAD far *pColors)

Parameters

hWinGDC Identifies the WinG device context whose color table should be
retrieved.

StartIndex Indicates the first palette entry to be retrieved.

NumberOfEntries Indicates the number of palette entries to retrieve.

pColors Points to a buffer which receives the requested color table entries.

Return Value

Returns the number of palette entries copied into the given buffer or 0 if it failed.

Comments

The pColors buffer must be at least large enough to hold NumberOfEntries RGBQUAD structures.

Note that StartIndex indicates an entry in a palette array, which is zero-based. NumberOfEntries
indicates a count, which is one-based. If NumberOfEntries is zero, no color table entries will be
retrieved.

WinGGetDIBColorTable will return 0 for WinGBitmaps with more than 8 bits per pixel.

See Also

WinGSetDIBColorTable WinGCreateBitmap

WinGGetDIBPointer
Retrieves information about a WinGBitmap and returns a pointer to its surface.

void far *WinGGetDIBPointer(HBITMAP hWinGBitmap, BITMAPINFO far *pHeader)

Parameters

hWinGBitma
p

Identifies the WinGBitmap whose surface should be retrieved.

pHeader If not 0, points to a buffer to receive the attributes and color table of the
WinGDC.

Return Value

Returns a pointer to the bits of a WinGBitmap drawing surface if possible. Otherwise,
WinGGetDIBPointer returns 0.

Comments

If it is supplied, pHeader must be large enough to hold a BITMAPINFOHEADER and enough
RGBQUAD structures to hold the color table of the specified WinGBitmap.

If hWinGBitmap is not a WinGBitmap handle, this function will return 0 and *pHeader will remain
unchanged.

Maximizing Performance

WinGCreateBitmap uses or returns the information returned by WinGGetDIBPointer as part of the
creation process. If possible, applications should store the data when the WinGBitmap is created
rather than calling WinGGetDIBPointer every time the information is required.

The address of a WinGBitmap surface will remain the same for the life of the WinGBitmap.

See Also

WinGCreateDC WinGCreateBitmap BITMAPINFO BITMAPINFOHEADER

WinGRecommendDIBFormat
Fills in the entries of a BITMAPINFO structure with values that will give maximum performance for
memory-to-screen blts using WinG.

BOOL WinGRecommendDIBFormat(BITMAPINFO far *pHeader)

Parameters

pHeader Points to a BITMAPINFO structure to receive the recommended DIB
format.

Return Value

Returns non-zero if successful. Otherwise, returns zero.

Comments

pHeader must point to enough memory to hold a BITMAPINFOHEADER.
WinGRecommendDIBFormat will not return a color table.

For any combination of hardware and software, there will be one DIB format that WinG can copy
fastest from memory to the screen. WinGRecommendDibFormat returns this optimal format.

In many cases, WinG will find that it can copy a DIB to the screen faster if the DIB is in top-down
format rather than the usual bottom-up format. WinGRecommendDibFormat will set the biHeight
entry of the BITMAPINFOHEADER structure to -1 if this is the case, otherwise biHeight will be set to
1. See the DIB Orientation article for more information about these special DIBs.

Currently, WinGRecommendDIBFormat will always recommend an 8-bit-per-pixel format under
Windows 3.1 and Win32s. Keep in mind that as WinG expands, other pixel formats will be supported.
Code that uses this API should never assume that it will recommend an 8-bit format, as this may
change depending on the run-time platform.

Example

See the WinGCreateBitmap API for sample code that uses WinGRecommendDibFormat.

See Also

WinGCreateBitmap BITMAPINFO BITMAPINFOHEADER Code Samples

WinGSetDIBColorTable
Modifies the color table of the currently selected WinGBitmap in a WinGDC.

UINT WinGSetDIBColorTable(HDC hWinGDC, UINT StartIndex, UINT NumberOfEntries,
RGBQUAD far *pColors)

Parameters

hWinGDC Identifies the WinG device context whose color table should be
modified.

StartIndex Indicates the first palette entry to be changed.

NumberOfEntries Indicates the number of palette entries to change.

pColors Points to a buffer which contains the new color table values.

Return Value

Returns the number of palette entries modified in the specified device context or 0 if it failed.

Comments

The pColors buffer must hold at least NumberOfEntries RGBQUAD structures.

If you want to update the display immediately (for example, in palette animation), use AnimatePalette
to modify the system palette and then call WinGSetDIBColorTable to match it or the WinGDC will be
remapped when it is blted. See the Palette Animation With WinG article for more information and
sample code that does this.

Note that StartIndex indicates an entry in a palette array, which is zero-based. NumberOfEntries
indicates a count, which is one-based. If NumberOfEntries is zero, no color table entries will be
modified.

Maximizing Performance

It is not necessary to call WinGSetDIBColorTable every time you call AnimatePalette. Only call this
API if you are about to blt and the destination palette has changed since the last call to
WinGSetDIBColorTable.

Example

See the section titled Palette Animation With WinG for sample code and discussion of using
WinGSetDIBColorTable to perform palette animation.

The PALANIM sample, in the SAMPLES\PALANIM subdirectory of the WinG Development Kit,
performs simple palette animation and maintains an identity palette throughout.

See Also

WinGGetDIBColorTable WinGCreateBitmap Palette Animation With WinG

WinGStretchBlt
Copies the source DC to the destination DC, resizing if necessary to fill the destination rectangle.
Optimized for blting WinGDCs to screen DCs.

BOOL WinGStretchBlt(HDC hdcDest, int nXOriginDest, int nYOriginDest, int nWidthDest, int
nHeightDest, HDC hdcSrc, int nXOriginSrc, int nYOriginSrc, int nWidthSrc, int nHeightSrc)

Parameters

hdcDest Identifies the destination device context.

nXOriginDest X coordinate of the upper-left corner of the destination rectangle in
MM_TEXT client coordinates.

nYOriginDest Y coordinate of the upper-left corner of the destination rectangle in
MM_TEXT client coordinates.

nWidthDest Width of the destination rectangle..

nHeightDest Height of the destination rectangle..

hdcSrc Identifies the source device context.

nXOriginSrc X coordinate of the upper-left corner of the source rectangle in
MM_TEXT client coordinates.

nYOriginSrc Y coordinate of the upper-left corner of the source rectangle in
MM_TEXT client coordinates.

nWidthSrc Width of the source rectangle.

nHeightSrc Height of the source rectangle.

Return Value

Returns non-zero if successful, otherwise returns zero.

Comments

WinGStretchBlt requires both DCs to use MM_TEXT mapping mode at the time of the call or the
results may be unpredictable. At other times, any mapping mode may be used in either DC.

WinGStretchBlt uses the STRETCH_DELETESCANS mode when expanding or shrinking an image,
so stretched images may appear chunky.

In the current implementation, WinGStretchBlt will fail under Windows 3.1 or Win32s if the source
DC is not an 8-bit-per-pixel WinGDC. Future implementations will allow for different pixel formats for
WinGBitmaps.

Maximizing Performance

You will get the highest performance from WinGStretchBlt if you use a WinGBitmap created from
header information supplied by a call to WinGRecommendDIBFormat.

WinGStretchBlt is optimized for copying WinGDCs to the screen.

Stretching by integer ratios is faster than arbitrary ratios. 1 to 2 and 1 to 4 stretching are fastest.

Clipping can slow WinGStretchBlt down. In general, dont select clipping regions into or blt outside
the boundaries of the source or destination DCs and avoid blting to an overlapped window if possible.

See Also

WinGBitBlt WinGCreateDC WinGCreateBitmap WinGRecommendDIBFormat Maximizing
Performance With WinG

WING_DITHER_TYPE
Dither types for halftone brushes.

WING_DITHER_TYPE

Values
DISPERSED_4x4
DISPERSED_8x8
CLUSTERED_4x4

See Also

WinGCreateHalftoneBrush WinGCreateHalftonePalette Halftoning With WinG CUBE

HPALETTE CreateIdentityPalette(RGBQUAD aRGB[], int nColors)
{

int i;
struct {

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} Palette =
{

0x300,
256

};

//*** Just use the screen DC where we need it
HDC hdc = GetDC(NULL);

//*** For SYSPAL_NOSTATIC, just copy the color table into
//*** a PALETTEENTRY array and replace the first and last entries
//*** with black and white
if (GetSystemPaletteUse(hdc) == SYSPAL_NOSTATIC)
{

//*** Fill in the palette with the given values, marking each
//*** as PC_NOCOLLAPSE
for(i = 0; i < nColors; i++)
{

Palette.aEntries[i].peRed = aRGB[i].rgbRed;
Palette.aEntries[i].peGreen = aRGB[i].rgbGreen;
Palette.aEntries[i].peBlue = aRGB[i].rgbBlue;
Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

}

//*** Mark any unused entries PC_NOCOLLAPSE
for (; i < 256; ++i)
{

Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;
}

//*** Make sure the last entry is white
//*** This may replace an entry in the array!
Palette.aEntries[255].peRed = 255;
Palette.aEntries[255].peGreen = 255;
Palette.aEntries[255].peBlue = 255;
Palette.aEntries[255].peFlags = 0;

//*** And the first is black
//*** This may replace an entry in the array!
Palette.aEntries[0].peRed = 0;
Palette.aEntries[0].peGreen = 0;
Palette.aEntries[0].peBlue = 0;
Palette.aEntries[0].peFlags = 0;

}
else
//*** For SYSPAL_STATIC, get the twenty static colors into
//*** the array, then fill in the empty spaces with the
//*** given color table

{
int nStaticColors;
int nUsableColors;

//*** Get the static colors from the system palette
nStaticColors = GetDeviceCaps(hdc, NUMCOLORS);
GetSystemPaletteEntries(hdc, 0, 256, Palette.aEntries);

//*** Set the peFlags of the lower static colors to zero
nStaticColors = nStaticColors / 2;
for (i=0; i<nStaticColors; i++)

Palette.aEntries[i].peFlags = 0;

//*** Fill in the entries from the given color table
nUsableColors = nColors - nStaticColors;
for (; i<nUsableColors; i++)
{

Palette.aEntries[i].peRed = aRGB[i].rgbRed;
Palette.aEntries[i].peGreen = aRGB[i].rgbGreen;
Palette.aEntries[i].peBlue = aRGB[i].rgbBlue;
Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

}

//*** Mark any empty entries as PC_NOCOLLAPSE
for (; i<256 - nStaticColors; i++)

Palette.aEntries[i].peFlags = PC_NOCOLLAPSE;

//*** Set the peFlags of the upper static colors to zero
for (i = 256 - nStaticColors; i<256; i++)

Palette.aEntries[i].peFlags = 0;
}

//*** Remember to release the DC!
ReleaseDC(NULL, hdc);

//*** Return the palette
return CreatePalette((LOGPALETTE *)&Palette);

}

void ClearSystemPalette(void)
{

//*** A dummy palette setup
struct
{

WORD Version;
WORD NumberOfEntries;
PALETTEENTRY aEntries[256];

} Palette =
{

0x300,
256

};

HPALETTE ScreenPalette = 0;
HDC ScreenDC;
int Counter;

//*** Reset everything in the system palette to black
for(Counter = 0; Counter < 256; Counter++)
{

Palette.aEntries[Counter].peRed = 0;
Palette.aEntries[Counter].peGreen = 0;
Palette.aEntries[Counter].peBlue = 0;

Palette.aEntries[Counter].peFlags = PC_NOCOLLAPSE;
}

//*** Create, select, realize, deselect, and delete the palette
ScreenDC = GetDC(NULL);
ScreenPalette = CreatePalette((LOGPALETTE *)&Palette);
if (ScreenPalette)
{

ScreenPalette = SelectPalette(ScreenDC,ScreenPalette,FALSE);
RealizePalette(ScreenDC);
ScreenPalette = SelectPalette(ScreenDC,ScreenPalette,FALSE);
DeleteObject(ScreenPalette);

}
ReleaseDC(NULL, ScreenDC);

}

HBITMAP ghBitmapMonochrome = 0;

HDC Create100x100WinGDC(void)
{

HDC hWinGDC;
HBITMAP hBitmapNew;
struct {

BITMAPINFOHEADER InfoHeader;
RGBQUAD ColorTable[256];

} Info;
void far *pSurfaceBits;

// Set up an optimal bitmap
if (WinGRecommendDIBFormat((BITMAPINFO far *)&Info) == FALSE)

return 0;

// Set the width and height of the DIB but preserve the
// sign of biHeight in case top-down DIBs are faster
Info.InfoHeader.biHeight *= 100;
Info.InfoHeader.biWidth = 100;

//*** DONT FORGET A COLOR TABLE! ***
//*** COLOR TABLE CODE HERE ***

// Create a WinGDC and Bitmap, then select away
hWinGDC = WinGCreateDC();
if (hWinGDC)
{

hBitmapNew = WinGCreateBitmap(hWinGDC,
(BITMAPINFO far *)&Info, &pSurfaceBits);

if (hBitmapNew)
{

ghBitmapMonochrome = (HBITMAP)SelectObject(hWinGDC,
hBitmapNew);

}
else
{

DeleteDC(hWinGDC);
hWinGDC = 0;

}
}

return hWinGDC;
}

void Destroy100x100WinGDC(HDC hWinGDC)
{

HBITMAP hBitmapOld;

if (hWinGDC && ghBitmapMonochrome)
{

// Select the stock 1x1 monochrome bitmap back in
hBitmapOld = (HBITMAP)SelectObject(hWinGDC,
ghBitmapMonochrome);
DeleteObject(hBitmapOld);

DeleteDC(hWinGDC);
}

}

#define NumSysColors (sizeof(SysPalIndex)/sizeof(SysPalIndex[1]))
#define rgbBlack RGB(0,0,0)
#define rgbWhite RGB(255,255,255)

//*** These are the GetSysColor display element identifiers
static int SysPalIndex[] = {

COLOR_ACTIVEBORDER,
COLOR_ACTIVECAPTION,
COLOR_APPWORKSPACE,
COLOR_BACKGROUND,
COLOR_BTNFACE,
COLOR_BTNSHADOW,
COLOR_BTNTEXT,
COLOR_CAPTIONTEXT,
COLOR_GRAYTEXT,
COLOR_HIGHLIGHT,
COLOR_HIGHLIGHTTEXT,
COLOR_INACTIVEBORDER,
COLOR_INACTIVECAPTION,
COLOR_MENU,
COLOR_MENUTEXT,
COLOR_SCROLLBAR,
COLOR_WINDOW,
COLOR_WINDOWFRAME,
COLOR_WINDOWTEXT

};

//*** This array translates the display elements to black and white
static COLORREF MonoColors[] = {

rgbBlack,
rgbWhite,
rgbWhite,
rgbWhite,
rgbWhite,
rgbBlack,
rgbBlack,
rgbBlack,
rgbBlack,
rgbBlack,
rgbWhite,
rgbWhite,
rgbWhite,
rgbWhite,
rgbBlack,
rgbWhite,
rgbWhite,
rgbBlack,
rgbBlack

};

//*** This array holds the old color mapping so we can restore them
static COLORREF OldColors[NumSysColors];

//*** AppActivate sets the system palette use and
//*** remaps the system colors accordingly.

void AppActivate(BOOL fActive)
{

HDC hdc;
int i;

//*** Just use the screen DC
hdc = GetDC(NULL);

//*** If the app is activating, save the current color mapping
//*** and switch to SYSPAL_NOSTATIC
if (fActive && GetSystemPaletteUse(hdc) == SYSPAL_STATIC)
{

//*** Store the current mapping
for (i=0; i<NumSysColors; i++)

OldColors[i] = GetSysColor(SysPalIndex[i]);

//*** Switch to SYSPAL_NOSTATIC and remap the colors
SetSystemPaletteUse(hdc, SYSPAL_NOSTATIC);
SetSysColors(NumSysColors, SysPalIndex, MonoColors);

}
else if (!fActive && GetSystemPaletteUse(hdc) == SYSPAL_NOSTATIC)
{

//*** Switch back to SYSPAL_STATIC and the old mapping
SetSystemPaletteUse(hdc, SYSPAL_STATIC);
SetSysColors(NumSysColors, SysPalIndex, OldColors);

}

//*** Be sure to release the DC!
ReleaseDC(NULL,hdc);

}

WinG Glossary

Bottom-Up DIB: A DIB in which the first scan line in memory corresponds to the bottommost scanline
when the DIB is displayed. This is the standard Windows DIB format.

Color Table: The table of RGB color values referenced by an color-indexed DIB.

Dirty Rectangle Animation: A double-buffering technique in which only the areas on the screen which have
changed are updated from frame to frame.

Double Buffering: An animation technique in which images are composed entirely off-screen then copied
in whole or in part to the display.

Halftone Palette: An identity palette carefully filled with an array of colors optimized for dithering images to
8 bits per pixel.

Halftoning: A technique for simulating unavailable colors using special patterns of available colors. Also
called dithering.

Identity Palette: A logical palette that is a 1:1 match to the system palette.

Logical Palette: A palette object created by an application using the CreatePalette function.

Palette: A table of RGB colors associated with a GDI Device Context.

Palette Animation: An animation technique in which palette entries are shifted to create the appearance of
movement.

Static Colors: Reserved colors in the system palette that can never be changed by an application. Under
normal circumstances, twenty colors are so reserved.

System Colors: The colors used by Windows to draw captions, menu bars, text, and other Windows
display elements.

System Palette: A copy of the hardware device palette maintained by the Palette Manager.

Top-Down DIB: A DIB in which the first scan line in memory corresponds to the topmost scanline when the
DIB is displayed.

WinGBitmap: A special HBITMAP with a DIB as its drawing surface created for use in a WinGDC.

WinGDC: A device context with a DIB as its drawing surface.

Twenty colors in the system palette that can never be changed by an application.

The colors used by Windows to draw captions, menu bars, text, and other Windows display elements.

A copy of the hardware palette maintained by the Palette Manager.

A palette object created by an application using the CreatePalette function.

The table of RGB color values referenced by an color-indexed DIB.

A logical palette that is a 1:1 match to the system palette.

An identity palette carefully filled with an array of colors optimized for dithering images to 8 bits per pixel.

An animation technique in which palette entries are shifted to create the appearance of movement.

A standard Windows DIB in which the bottommost scanline is stored first in memory.

A special DIB in which the topmost scanline is stored first in memory.

Nirvana has ever been a difficult concept to explain. It is a state of mind achieved through diligence and
meditation, a state of complete tranquility and awareness in which conscious thought ceases to exist
as such, the final step in the struggle for the cessation of suffering.

Further Reading

The following collection of books, articles, and sample code may help clarify the use of DIBs, provide
insight into custom drawing routines, or generally ease the transition from device-dependent bitmaps
to WinGDCs. All of these are available on the Microsoft Developer Network CD or through the
Microsoft Developer Relations Group. Some are included with the Windows SDK.

Foley, vanDam, Feiner, and Hughes, Computer Graphics: Principles and Practice, Second Edition,
Addison-Wesley, 1991

Gery, Ron, Using DIBs with Palettes, Microsoft Technical Article, 3 March 1992

Gery, Ron, DIBs and Their Use, Microsoft Technical Article, 20 March 1992

Gery, Ron, The Palette Manager: How and Why, Microsoft Technical Article, 23 March 1992

Petzold, Charles, The Device-Independent Bitmap (DIB), Programming Windows 3.1, Microsoft Press,
1992, pp. 607-619

Rodent, Herman, Animation In Windows, Microsoft Technical Article, 28 April 1993

How To Use a DIB Stored as a Windows Resource, Microsoft PSS Article Q67883, 26 April 1993

Multimedia Video Techniques, Microsoft Technical Article, 20 March 1992

Windows 3.1 Software Development Kit samples: DIBIT, DIBVIEW, CROPDIB, WINCAP, SHOWDIB,
FADE

Microsoft Technical Samples, TRIQ, draws triangles or boxes directly into device-independent bitmap
memory.

