UPDATED 40 CFR 1992, QUARTER 2 (AS OF DECEMBER 31, 1992) Part 264, is divided into four files.

This is File C: Subpart I through Subpart BB, Section 264.1079.

This file has been developed from 40 CFR 1992, Quarter 1 Update files (as of September 30, 1992), revised to reflect changes made by:

- ** 57 <u>FR</u> 54452, November 18, 1992 (Revision Checklist 118)
- ** 57 <u>FR</u> 61492, December 24, 1992 (Revision Checklist 120)
- ** Indicates paragraphs where Quarter 2 changes have been made.

Subpart I -- Use and Management of Containers

Source: 46 FR 2866, Jan. 12, 1981, unless otherwise noted.

§ 264.170 Applicability.

The regulations in this subpart apply to owners and operators of all hazardous waste facilities that store containers of hazardous waste, except as § 264.1 provides otherwise.

[Comment: Under § 261.7 and § 261.33(c), if a hazardous waste is emptied from a container the residue remaining in the container is not considered a hazardous waste if the container is ``empty'' as defined in § 261.7. In that event, management of the container is exempt from the requirements of this subpart.]

§ 264.171 Condition of containers.

If a container holding hazardous waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to leak, the owner or operator must transfer the hazardous waste from this container to a container that is in good condition or manage the waste in some other way that complies with the requirements of this part.

§ 264.172 Compatibility of waste with containers.

The owner or operator must use a container made of or lined with materials which will not react with, and are otherwise compatible with, the hazardous waste to be stored, so that the ability of the container to contain the waste is not impaired.

§ 264.173 Management of containers.

- (a) A container holding hazardous waste must always be closed during storage, except when it is necessary to add or remove waste.
- (b) A container holding hazardous waste must not be opened, handled, or stored in a manner which may rupture the container or cause it to leak.

[Comment: Reuse of containers in transportation is governed by U.S. Department of Transportation regulations including those set forth in 49 CFR 173.28.]

§ 264.174 Inspections.

At least weekly, the owner or operator must inspect areas where containers are stored, looking for leaking containers and for deterioration of containers and the containment system caused by corrosion or other factors.

[Comment: See §§ 264.15(c) and 264.171 for remedial action required if deterioration or leaks are detected.]

§ 264.175 Containment.

- (a) Container storage areas must have a containment system that is designed and operated in accordance with paragraph (b) of this section, except as otherwise provided by paragraph (c) of this section.
 - (b) A containment system must be designed and operated as follows:
- (1) A base must underly the containers which is free of cracks or gaps and is sufficiently impervious to contain leaks, spills, and accumulated precipitation until the collected material is detected and removed;
- (2) The base must be sloped or the containment system must be otherwise designed and operated to drain and remove liquids resulting from leaks, spills, or precipitation, unless the containers are elevated or are otherwise protected from contact with accumulated liquids;
- (3) The containment system must have sufficient capacity to contain 10% of the volume of containers or the volume of the largest container, whichever is greater. Containers that do not contain free liquids need not be considered in this determination;
- (4) Run-on into the containment system must be prevented unless the collection system has sufficient excess capacity in addition to that required in paragraph (b)(3) of this section to contain any run-on which might enter the system; and

(5) Spilled or leaked waste and accumulated precipitation must be removed from the sump or collection area in as timely a manner as is necessary to prevent overflow of the collection system.

[Comment: If the collected material is a hazardous waste under part 261 of this Chapter, it must be managed as a hazardous waste in accordance with all applicable requirements of parts 262 through 266 of this chapter. If the collected material is discharged through a point source to waters of the United States, it is subject to the requirements of section 402 of the Clean Water Act, as amended.]

- (c) Storage areas that store containers holding only wastes that do not contain free liquids need not have a containment system defined by paragraph (b) of this section, except as provided by paragraph (d) of this section or provided that:
- (1) The storage area is sloped or is otherwise designed and operated to drain and remove liquid resulting from precipitation, or
- (2) The containers are elevated or are otherwise protected from contact with accumulated liquid.
- (d) Storage areas that store containers holding the wastes listed below that do not contain free liquids must have a containment system defined by paragraph (b) of this section:
 - (1) FO20, FO21, FO22, FO23, FO26, and FO27.
 - (2) [Reserved]

[46 FR 55112, Nov. 6, 1981, as amended at 50 FR 2003, Jan. 14, 1985]

§ 264.176 Special requirements for ignitable or reactive waste.

Containers holding ignitable or reactive waste must be located at least 15 meters (50 feet) from the facility's property line.

[Comment: See § 264.17(a) for additional requirements.]

- § 264.177 Special requirements for incompatible wastes.
- (a) Incompatible wastes, or incompatible wastes and materials (see Appendix V for examples), must not be placed in the same container, unless § 264.17(b) is complied with.

(b) Hazardous waste must not be placed in an unwashed container that previously held an incompatible waste or material.

[Comment: As required by § 264.13, the waste analysis plan must include analyses needed to comply with § 264.177. Also, § 264.17(c) requires wastes analyses, trial tests or other documentation to assure compliance with § 264.17(b). As required by § 264.73, the owner or operator must place the results of each waste analysis and trial test, and any documented information, in the operating record of the facility.]

(c) A storage container holding a hazardous waste that is incompatible with any waste or other materials stored nearby in other containers, piles, open tanks, or surface impoundments must be separated from the other materials or protected from them by means of a dike, berm, wall, or other device.

[Comment: The purpose of this section is to prevent fires, explosions, gaseous emission, leaching, or other discharge of hazardous waste or hazardous waste constituents which could result from the mixing of incompatible wastes or materials if containers break or leak.]

§ 264.178 Closure.

At closure, all hazardous waste and hazardous waste residues must be removed from the containment system. Remaining containers, liners, bases, and soil containing or contaminated with hazardous waste or hazardous waste residues must be decontaminated or removed.

[Comment: At closure, as throughout the operating period, unless the owner or operator can demonstrate in accordance with § 261.3(d) of this chapter that the solid waste removed from the containment system is not a hazardous waste, the owner or operator becomes a generator of hazardous waste and must manage it in accordance with all applicable requirements of parts 262 through 266 of this chapter].

Subpart J -- Tank Systems

Source: 51 FR 25472, July 14, 1986, unless otherwise noted.

§ 264.190 Applicability.

The requirements of this subpart apply to owners and operators of facilities that use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a), (b), and (c) of this section or in § 264.1 of this part.

- (a) Tank systems that are used to store or treat hazardous waste which contains no free liquids and are situated inside a building with an impermeable floor are exempted from the requirements in § 264.193. To demonstrate the absence or presence of free liquids in the stored/treated waste, EPA Method 9095 (Paint Filter Liquids Test) as described in ``Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods'' (EPA Publication No. SW-846) must be used.
- (b) Tank systems, including sumps, as defined in § 260.10, that serve as part of a secondary containment system to collect or contain releases of hazardous wastes are exempted from the requirements in § 264.193(a).
- (c) Tanks, sumps, and other such collection devices or systems used in conjunction with drip pads, as defined in § 260.10 of this chapter and regulated under 40 CFR part 264 subpart W, must meet the requirements of this subpart.

(Information collection requirement contained in paragraph (a) was approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986, as amended at 53 FR 34086, Sept. 2, 1988; 55 FR 50484, Dec. 6, 1990]

- § 264.191 Assessment of existing tank system's integrity.
- (a) For each existing tank system that does not have secondary containment meeting the requirements of § 264.193, the owner or operator must determine that the tank system is not leaking or is unfit for use. Except as provided in paragraph (c) of this section, the owner or operator must obtain and keep on file at the facility a written assessment reviewed and certified by an independent, qualified registered professional engineer, in accordance with § 270.11(d), that attests to the tank system's integrity by January 12, 1988.
- (b) This assessment must determine that the tank system is adequately designed and has sufficient structural strength and compatibility with the waste(s) to be stored or treated, to ensure that it will not collapse, rupture, or fail. At a minimum, this assessment must consider the following:
- (1) Design standard(s), if available, according to which the tank and ancillary equipment were constructed;
- (2) Hazardous characteristics of the waste(s) that have been and will be handled;
 - (3) Existing corrosion protection measures;

- (4) Documented age of the tank system, if available (otherwise, an estimate of the age); and
- (5) Results of a leak test, internal inspection, or other tank integrity examination such that:
- (i) For non-enterable underground tanks, the assessment must include a leak test that is capable of taking into account the effects of temperature variations, tank end deflection, vapor pockets, and high water table effects, and
- (ii) For other than non-enterable underground tanks and for ancillary equipment, this assessment must include either a leak test, as described above, or other integrity examination, that is certified by an independent, qualified, registered professional engineer in accordance with § 270.11(d), that addresses cracks, leaks, corrosion, and erosion.

[Note: The practices described in the American Petroleum Institute (API) Publication, Guide for Inspection of Refinery Equipment, Chapter XIII, `Atmospheric and Low-Pressure Storage Tanks,' 4th edition, 1981, may be used, where applicable, as guidelines in conducting other than a leak test.]

- (c) Tank systems that store or treat materials that become hazardous wastes subsequent to July 14, 1986, must conduct this assessment within 12 months after the date that the waste becomes a hazardous waste.
- (d) If, as a result of the assessment conducted in accordance with paragraph (a), a tank system is found to be leaking or unfit for use, the owner or operator must comply with the requirements of § 264.196.

(Information collection requirements contained in paragraphs (a) through (d) were approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986]

- § 264.192 Design and installation of new tank systems or components.
- (a) Owners or operators of new tank systems or components must obtain and submit to the Regional Administrator, at time of submittal of Part B information, a written assessment, reviewed and certified by an independent, qualified registered professional engineer, in accordance with § 270.11(d), attesting that the tank system has sufficient structural integrity and is acceptable for the storing and treating of hazardous waste. The assessment must show that the foundation, structural support, seams,

connections, and pressure controls (if applicable) are adequately designed and that the tank system has sufficient structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to ensure that it will not collapse, rupture, or fail. This assessment, which will be used by the Regional Administrator to review and approve or disapprove the acceptability of the tank system design, must include, at a minimum, the following information:

- (1) Design standard(s) according to which tank(s) and/or the ancillary equipment are constructed;
 - (2) Hazardous characteristics of the waste(s) to be handled;
- (3) For new tank systems or components in which the external shell of a metal tank or any external metal component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of:
- (i) Factors affecting the potential for corrosion, including but not limited to:
 - (A) Soil moisture content;
 - (B) Soil pH;
 - (C) Soil sulfides level:
 - (D) Soil resistivity;
 - (E) Structure to soil potential;
 - (F) Influence of nearby underground metal structures (e.g., piping);
 - (G) Existence of stray electric current;
- (H) Existing corrosion-protection measures (e.g., coating, cathodic protection), and
- (ii) The type and degree of external corrosion protection that are needed to ensure the integrity of the tank system during the use of the tank system or component, consisting of one or more of the following:
- (A) Corrosion-resistant materials of construction such as special alloys, fiberglass reinforced plastic, etc.;
- (B) Corrosion-resistant coating (such as epoxy, fiberglass, etc.) with cathodic protection (e.g., impressed current or sacrificial anodes); and

(C) Electrical isolation devices such as insulating joints, flanges, etc.

[Note: The practices described in the National Association of Corrosion Engineers (NACE) standard, ``Recommended Practice (RP-02-85) -- Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems," and the American Petroleum Institute (API) Publication 1632, ``Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems," may be used, where applicable, as guidelines in providing corrosion protection for tank systems.]

- (4) For underground tank system components that are likely to be adversely affected by vehicular traffic, a determination of design or operational measures that will protect the tank system against potential damage; and
 - (5) Design considerations to ensure that:
 - (i) Tank foundations will maintain the load of a full tank;
- (ii) Tank systems will be anchored to prevent flotation or dislodgment where the tank system is placed in a saturated zone, or is located within a seismic fault zone subject to the standards of § 264.18(a); and
 - (iii) Tank systems will withstand the effects of frost heave.
- (b) The owner or operator of a new tank system must ensure that proper handling procedures are adhered to in order to prevent damage to the system during installation. Prior to covering, enclosing, or placing a new tank system or component in use, an independent, qualified installation inspector or an independent, qualified, registered professional engineer, either of whom is trained and experienced in the proper installation of tank systems or components, must inspect the system for the presence of any of the following items:
 - (1) Weld breaks;(2) Punctures;(3) Scrapes of protective coatings;(4) Cracks;
 - (5) Corrosion;
 - (6) Other structural damage or inadequate construction/installation.

All discrepancies must be remedied before the tank system is covered, enclosed, or placed in use.

- (c) New tank systems or components that are placed underground and that are backfilled must be provided with a backfill material that is a noncorrosive, porous, homogeneous substance and that is installed so that the backfill is placed completely around the tank and compacted to ensure that the tank and piping are fully and uniformly supported.
- (d) All new tanks and ancillary equipment must be tested for tightness prior to being covered, enclosed, or placed in use. If a tank system is found not to be tight, all repairs necessary to remedy the leak(s) in the system must be performed prior to the tank system being covered, enclosed, or placed into use.
- (e) Ancillary equipment must be supported and protected against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

[Note: The piping system installation procedures described in American Petroleum Institute (API) Publication 1615 (November 1979), ``Installation of Underground Petroleum Storage Systems," or ANSI Standard B31.3, ``Petroleum Refinery Piping," and ANSI Standard B31.4 ``Liquid Petroleum Transportation Piping System," may be used, where applicable, as guidelines for proper installation of piping systems.]

- (f) The owner or operator must provide the type and degree of corrosion protection recommended by an independent corrosion expert, based on the information provided under paragraph (a)(3) of this section, or other corrosion protection if the Regional Administrator believes other corrosion protection is necessary to ensure the integrity of the tank system during use of the tank system. The installation of a corrosion protection system that is field fabricated must be supervised by an independent corrosion expert to ensure proper installation.
- (g) The owner or operator must obtain and keep on file at the facility written statements by those persons required to certify the design of the tank system and supervise the installation of the tank system in accordance with the requirements of paragraphs (b) through (f) of this section, that attest that the tank system was properly designed and installed and that repairs, pursuant to paragraphs (b) and (d) of this section, were performed. These written statements must also include the certification statement as required in § 270.11(d) of this chapter.

(Information collection requirements contained in paragraphs (a) and (g)

were approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986]

§ 264.193 Containment and detection of releases.

- (a) In order to prevent the release of hazardous waste or hazardous constituents to the environment, secondary containment that meets the requirements of this section must be provided (except as provided in paragraphs (f) and (g) of this section):
- (1) For all new tank systems or components, prior to their being put into service;
- (2) For all existing tank systems used to store or treat EPA Hazardous Waste Nos. F020, F021, F022, F023, F026, and F027, within two years after January 12, 1987;
- (3) For those existing tank systems of known and documented age, within two years after January 12, 1987 or when the tank system has reached 15 years of age, whichever comes later;
- (4) For those existing tank systems for which the age cannot be documented, within eight years of January 12, 1987; but if the age of the facility is greater than seven years, secondary containment must be provided by the time the facility reaches 15 years of age, or within two years of January 12, 1987, whichever comes later; and
- (5) For tank systems that store or treat materials that become hazardous wastes subsequent to January 12, 1987, within the time intervals required in paragraphs (a)(1) through (a)(4) of this section, except that the date that a material becomes a hazardous waste must be used in place of January 12, 1987.
 - (b) Secondary containment systems must be:
- (1) Designed, installed, and operated to prevent any migration of wastes or accumulated liquid out of the system to the soil, ground water, or surface water at any time during the use of the tank system; and
- (2) Capable of detecting and collecting releases and accumulated liquids until the collected material is removed.
- (c) To meet the requirements of paragraph (b) of this section, secondary containment systems must be at a minimum:

- (1) Constructed of or lined with materials that are compatible with the wastes(s) to be placed in the tank system and must have sufficient strength and thickness to prevent failure owing to pressure gradients (including static head and external hydrological forces), physical contact with the waste to which it is exposed, climatic conditions, and the stress of daily operation (including stresses from nearby vehicular traffic).
- (2) Placed on a foundation or base capable of providing support to the secondary containment system, resistance to pressure gradients above and below the system, and capable of preventing failure due to settlement, compression, or uplift;
- (3) Provided with a leak-detection system that is designed and operated so that it will detect the failure of either the primary or secondary containment structure or the presence of any release of hazardous waste or accumulated liquid in the secondary containment system within 24 hours, or at the earliest practicable time if the owner or operator can demonstrate to the Regional Administrator that existing detection technologies or site conditions will not allow detection of a release within 24 hours; and
- (4) Sloped or otherwise designed or operated to drain and remove liquids resulting from leaks, spills, or precipitation. Spilled or leaked waste and accumulated precipitation must be removed from the secondary containment system within 24 hours, or in as timely a manner as is possible to prevent harm to human health and the environment, if the owner or operator can demonstrate to the Regional Administrator that removal of the released waste or accumulated precipitation cannot be accomplished within 24 hours.

[Note: If the collected material is a hazardous waste under part 261 of this chapter, it is subject to management as a hazardous waste in accordance with all applicable requirements of parts 262 through 265 of this chapter. If the collected material is discharged through a point source to waters of the United States, it is subject to the requirements of sections 301, 304, and 402 of the Clean Water Act, as amended. If discharged to a Publicly Owned Treatment Works (POTW), it is subject to the requirements of section 307 of the Clean Water Act, as amended. If the collected material is released to the environment, it may be subject to the reporting requirements of 40 CFR part 302.]

- (d) Secondary containment for tanks must include one or more of the following devices:
 - (1) A liner (external to the tank);

- (2) A vault;
- (3) A double-walled tank; or
- (4) An equivalent device as approved by the Regional Administrator
- (e) In addition to the requirements of paragraphs (b), (c), and (d) of this section, secondary containment systems must satisfy the following requirements:
 - (1) External liner systems must be:
- (i) Designed or operated to contain 100 percent of the capacity of the largest tank within its boundary;
- (ii) Designed or operated to prevent run-on or infiltration of precipitation into the secondary containment system unless the collection system has sufficient excess capacity to contain run-on or infiltration. Such additional capacity must be sufficient to contain precipitation from a 25-year, 24-hour rainfall event.
 - (iii) Free of cracks or gaps; and
- (iv) Designed and installed to surround the tank completely and to cover all surrounding earth likely to come into contact with the waste if the waste is released from the tank(s) (i.e., capable of preventing lateral as well as vertical migration of the waste).
 - (2) Vault systems must be:
- (i) Designed or operated to contain 100 percent of the capacity of the largest tank within its boundary;
- (ii) Designed or operated to prevent run-on or infiltration of precipitation into the secondary containment system unless the collection system has sufficient excess capacity to contain run-on or infiltration. Such additional capacity must be sufficient to contain precipitation from a 25-year, 24-hour rainfall event:
- (iii) Constructed with chemical-resistant water stops in place at all joints (if any):
- (iv) Provided with an impermeable interior coating or lining that is compatible with the stored waste and that will prevent migration of waste into the concrete;

- (v) Provided with a means to protect against the formation of and ignition of vapors within the vault, if the waste being stored or treated:
- (A) Meets the definition of ignitable waste under § 262.21 of this chapter; or
- (B) Meets the definition of reactive waste under § 262.21 of this chapter, and may form an ignitable or explosive vapor.
- (vi) Provided with an exterior moisture barrier or be otherwise designed or operated to prevent migration of moisture into the vault if the vault is subject to hydraulic pressure.
 - (3) Double-walled tanks must be:
- (i) Designed as an integral structure (i.e., an inner tank completely enveloped within an outer shell) so that any release from the inner tank is contained by the outer shell.
- (ii) Protected, if constructed of metal, from both corrosion of the primary tank interior and of the external surface of the outer shell: and
- (iii) Provided with a built-in continuous leak detection system capable of detecting a release within 24 hours, or at the earliest practicable time, if the owner or operator can demonstrate to the Regional Administrator, and the Regional Administrator concludes, that the existing detection technology or site conditions would not allow detection of a release within 24 hours.

[Note: The provisions outlined in the Steel Tank Institute's (STI) "Standard for Dual Wall Underground Steel Storage Tanks" may be used as guidelines for aspects of the design of underground steel double-walled tanks.]

- (f) Ancillary equipment must be provided with secondary containment (e.g., trench, jacketing, double-walled piping) that meets the requirements of paragraphs (b) and (c) of this section except for:
- (1) Aboveground piping (exclusive of flanges, joints, valves, and other connections) that are visually inspected for leaks on a daily basis;
- (2) Welded flanges, welded joints, and welded connections, that are visually inspected for leaks on a daily basis;
- (3) Sealless or magnetic coupling pumps and sealless valves, that are visually inspected for leaks on a daily basis; and

- (4) Pressurized aboveground piping systems with automatic shut-off devices (e.g., excess flow check valves, flow metering shutdown devices, loss of pressure actuated shut-off devices) that are visually inspected for leaks on a daily basis.
- (g) The owner or operator may obtain a variance from the requirements of this section if the Regional Administrator finds, as a result of a demonstration by the owner or operator that alternative design and operating practices, together with location characteristics, will prevent the migration of any hazardous waste or hazardous constituents into the ground water; or surface water at least as effectively as secondary containment during the active life of the tank system or that in the event of a release that does migrate to ground water or surface water, no substantial present or potential hazard will be posed to human health or the environment. New underground tank systems may not, per a demonstration in accordance with paragraph (g)(2) of this section, be exempted from the secondary containment requirements of this section.
- (1) In deciding whether to grant a variance based on a demonstration of equivalent protection of ground water and surface water, the Regional Administrator will consider:
 - (i) The nature and quantity of the wastes;
 - (ii) The proposed alternate design and operation;
- (iii) The hydrogeologic setting of the facility, including the thickness of soils present between the tank system and ground water, and
- (iv) All other factors that would influence the quality and mobility of the hazardous constituents and the potential for them to migrate to ground water or surface water
- (2) In deciding whether to grant a variance based on a demonstration of no substantial present or potential hazard, the Regional Administrator will consider:
- (i) The potential adverse effects on ground water, surface water, and land quality taking into account:
- (A) The physical and chemical characteristics of the waste in the tank system, including its potential for migration.
- (B) The hydrogeological characteristics of the facility and surrounding land,

- (C) The potential for health risks caused by human exposure to waste constituents,
- (D) The potential for damage to wildlife, crops, vegetation, and physical structures caused by exposure to waste constituents, and
 - (E) The persistence and permanence of the potential adverse effects;
- (ii) The potential adverse effects of a release on ground-water quality, taking into account:
- (A) The quantity and quality of ground water and the direction of ground-water flow,
 - (B) The proximity and withdrawal rates of ground-water users,
 - (C) The current and future uses of ground water in the area, and
- (D) The existing quality of ground water, including other sources of contamination and their cumulative impact on the ground-water quality;
- (iii) The potential adverse effects of a release on surface water quality, taking into account:
- (A) The quantity and quality of ground water and the direction of ground-water flow,
 - (B) The patterns of rainfall in the region,
 - (C) The proximity of the tank system to surface waters,
- (D) The current and future uses of surface waters in the area and any water quality standards established for those surface waters, and
- (E) The existing quality of surface water, including other sources of contamination and the cumulative impact on surface-water quality; and
- (iv) The potential adverse effects of a release on the land surrounding the tank system, taking into account:
 - (A) The patterns of rainfall in the region, and
 - (B) The current and future uses of the surrounding land.
- (3) The owner or operator of a tank system, for which a variance from secondary containment had been granted in accordance with the

requirements of paragraph (g)(1) of this section, at which a release of hazardous waste has occurred from the primary tank system but has not migrated beyond the zone of engineering control (as established in the variance), must:

- (i) Comply with the requirements of § 264.196, except paragraph (d), and
- (ii) Decontaminate or remove contaminated soil to the extent necessary to:
- (A) Enable the tank system for which the variance was granted to resume operation with the capability for the detection of releases at least equivalent to the capability it had prior to the release; and
- (B) Prevent the migration of hazardous waste or hazardous constituents to ground water or surface water; and
- (iii) If contaminated soil cannot be removed or decontaminated in accordance with paragraph (g)(3)(ii) of this section, comply with the requirement of § 264.197(b).
- (4) The owner or operator of a tank system, for which a variance from secondary containment had been granted in accordance with the requirements of paragraph (g)(1) of this section, at which a release of hazardous waste has occurred from the primary tank system and has migrated beyond the zone of engineering control (as established in the variance), must:
 - (i) Comply with the requirements of § 264.196 (a), (b), (c), and (d); and
- (ii) Prevent the migration of hazardous waste or hazardous constituents to ground water or surface water, if possible, and decontaminate or remove contaminated soil. If contaminated soil cannot be decontaminated or removed or if ground water has been contaminated, the owner or operator must comply with the requirements of § 264.197(b); and
- (iii) If repairing, replacing, or reinstalling the tank system, provide secondary containment in accordance with the requirements of paragraphs (a) through (f) of this section or reapply for a variance from secondary containment and meet the requirements for new tank systems in § 264.192 if the tank system is replaced. The owner or operator must comply with these requirements even if contaminated soil can be decontaminated or removed and ground water or surface water has not been contaminated.
 - (h) The following procedures must be followed in order to request a

variance from secondary containment:

- (1) The Regional Administrator must be notified in writing by the owner or operator that he intends to conduct and submit a demonstration for a variance from secondary containment as allowed in paragraph (g) of this section according to the following schedule:
- (i) For existing tank systems, at least 24 months prior to the date that secondary containment must be provided in accordance with paragraph (a) of this section.
- (ii) For new tank systems, at least 30 days prior to entering into a contract for installation.
- (2) As part of the notification, the owner or operator must also submit to the Regional Administrator a description of the steps necessary to conduct the demonstration and a timetable for completing each of the steps. The demonstration must address each of the factors listed in paragraph (g)(1) or paragraph (g)(2) of this section;
- (3) The demonstration for a variance must be completed within 180 days after notifying the Regional Administrator of an intent to conduct the demonstration; and
- (4) If a variance is granted under this paragraph, the Regional Administrator will require the permittee to construct and operate the tank system in the manner that was demonstrated to meet the requirements for the variance.
- (i) All tank systems, until such time as secondary containment that meets the requirements of this section is provided, must comply with the following:
- (1) For non-enterable underground tanks, a leak test that meets the requirements of § 264.191(b)(5) or other tank integrity method, as approved or required by the Regional Administrator, must be conducted at least annually.
- (2) For other than non-enterable underground tanks, the owner or operator must either conduct a leak test as in paragraph (i)(1) of this section or develop a schedule and procedure for an assessment of the overall condition of the tank system by an independent, qualified registered professional engineer. The schedule and procedure must be adequate to detect obvious cracks, leaks, and corrosion or erosion that may lead to cracks and leaks. The owner or operator must remove the stored waste from the tank, if necessary, to allow the condition of all internal tank surfaces to

be assessed. The frequency of these assessments must be based on the material of construction of the tank and its ancillary equipment, the age of the system, the type of corrosion or erosion protection used, the rate of corrosion or erosion observed during the previous inspection, and the characteristics of the waste being stored or treated.

(3) For ancillary equipment, a leak test or other integrity assessment as approved by the Regional Administrator must be conducted at least annually.

[Note: The practices described in the American Petroleum Institute (API) Publication Guide for Inspection of Refinery Equipment, Chapter XIII, ``Atmospheric and Low-Pressure Storage Tanks,'' 4th edition, 1981, may be used, where applicable, as guidelines for assessing the overall condition of the tank system.]

- (4) The owner or operator must maintain on file at the facility a record of the results of the assessments conducted in accordance with paragraphs (i)(1) through (i)(3) of this section.
- (5) If a tank system or component is found to be leaking or unfit for use as a result of the leak test or assessment in paragraphs (i)(1) through (i)(3) of this section, the owner or operator must comply with the requirements of \S 264.196.

(Information collection requirements contained in paragraphs (c), (d), (e), (g), (h), and (i) were approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986, as amended at 53 FR 34086, Sept. 2, 1988]

- § 264.194 General operating requirements.
- (a) Hazardous wastes or treatment reagents must not be placed in a tank system if they could cause the tank, its ancillary equipment, or the containment system to rupture, leak, corrode, or otherwise fail.
- (b) The owner or operator must use appropriate controls and practices to prevent spills and overflows from tank or containment systems. These include at a minimum:
- (1) Spill prevention controls (e.g., check valves, dry disconnect couplings);
 - (2) Overfill prevention controls (e.g., level sensing devices, high level

alarms, automatic feed cutoff, or bypass to a standby tank); and

- (3) Maintenance of sufficient freeboard in uncovered tanks to prevent overtopping by wave or wind action or by precipitation.
- (c) The owner or operator must comply with the requirements of § 264.196 if a leak or spill occurs in the tank system.

(Information collection requirements contained in paragraph (c) were approved by the Office of Management and Budget under control number 2050-0050)

§ 264.195 Inspections.

- (a) The owner or operator must develop and follow a schedule and procedure for inspecting overfill controls.
- (b) The owner or operator must inspect at least once each operating day:
- (1) Aboveground portions of the tank system, if any, to detect corrosion or releases of waste;
- (2) Data gathered from monitoring and leak detection equipment (e.g., pressure or temperature gauges, monitoring wells) to ensure that the tank system is being operated according to its design; and
- (3) The construction materials and the area immediately surrounding the externally accessible portion of the tank system, including the secondary containment system (e.g., dikes) to detect erosion or signs of releases of hazardous waste (e.g., wet spots, dead vegetation).

[Note: Section 264.15(c) requires the owner or operator to remedy any deterioration or malfunction he finds. Section 264.196 requires the owner or operator to notify the Regional Administrator within 24 hours of confirming a leak. Also, 40 CFR part 302 may require the owner or operator to notify the National Response Center of a release.]

- (c) The owner or operator must inspect cathodic protection systems, if present, according to, at a minimum, the following schedule to ensure that they are functioning properly:
- (1) The proper operation of the cathodic protection system must be confirmed within six months after initial installation and annually thereafter; and

(2) All sources of impressed current must be inspected and/or tested, as appropriate, at least bimonthly (i.e., every other month).

[Note: The practices described in the National Association of Corrosion Engineers (NACE) standard, ``Recommended Practice (RP-02-85) -- Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems," and the American Petroleum Institute (API) Publication 1632, ``Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems," may be used, where applicable, as guidelines in maintaining and inspecting cathodic protection systems.]

(d) The owner or operator must document in the operating record of the facility an inspection of those items in paragraphs (a) through (c) of this section.

(Information collection requirements contained in paragraph (a) and (d) were approved by the Office of Management and Budget under control number 2050-0050)

§ 264.196 Response to leaks or spills and disposition of leaking or unfit-foruse tank systems.

A tank system or secondary containment system from which there has been a leak or spill, or which is unfit for use, must be removed from service immediately, and the owner or operator must satisfy the following requirements:

- (a) Cessation of use; prevent flow or addition of wastes. The owner or operator must immediately stop the flow of hazardous waste into the tank system or secondary containment system and inspect the system to determine the cause of the release.
- (b) Removal of waste from tank system or secondary containment system. (1) If the release was from the tank system, the owner/operator must, within 24 hours after detection of the leak or, if the owner/operator demonstrates that it is not possible, at the earliest practicable time, remove as much of the waste as is necessary to prevent further release of hazardous waste to the environment and to allow inspection and repair of the tank system to be performed.
- (2) If the material released was to a secondary containment system, all released materials must be removed within 24 hours or in as timely a manner as is possible to prevent harm to human health and the environment.
 - (c) Containment of visible releases to the environment. The

owner/operator must immediately conduct a visual inspection of the release and, based upon that inspection:

- (1) Prevent further migration of the leak or spill to soils or surface water; and
- (2) Remove, and properly dispose of, any visible contamination of the soil or surface water.
- (d) Notifications, reports. (1) Any release to the environment, except as provided in paragraph (d)(2) of this section, must be reported to the Regional Administrator within 24 hours of its detection. If the release has been reported pursuant to 40 CFR part 302, that report will satisfy this requirement.
- (2) A leak or spill of hazardous waste is exempted from the requirements of this paragraph if it is:
 - (i) Less than or equal to a quantity of one (1) pound, and
 - (ii) Immediately contained and cleaned up.
- (3) Within 30 days of detection of a release to the environment, a report containing the following information must be submitted to the Regional Administrator:
 - (i) Likely route of migration of the release;
- (ii) Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate);
- (iii) Results of any monitoring or sampling conducted in connection with the release (if available). If sampling or monitoring data relating to the release are not available within 30 days, these data must be submitted to the Regional Administrator as soon as they become available.
- (iv) Proximity to downgradient drinking water, surface water, and populated areas; and
 - (v) Description of response actions taken or planned.
- (e) Provision of secondary containment, repair, or closure. (1) Unless the owner/operator satisfies the requirements of paragraphs (e)(2) through (4) of this section, the tank system must be closed in accordance with § 264.197.

- (2) If the cause of the release was a spill that has not damaged the integrity of the system, the owner/operator may return the system to service as soon as the released waste is removed and repairs, if necessary, are made.
- (3) If the cause of the release was a leak from the primary tank system into the secondary containment system, the system must be repaired prior to returning the tank system to service.
- (4) If the source of the release was a leak to the environment from a component of a tank system without secondary containment, the owner/operator must provide the component of the system from which the leak occurred with secondary containment that satisfies the requirements of § 264.193 before it can be returned to service, unless the source of the leak is an aboveground portion of a tank system that can be inspected visually. If the source is an aboveground component that can be inspected visually, the component must be repaired and may be returned to service without secondary containment as long as the requirements of paragraph (f) of this section are satisfied. If a component is replaced to comply with the requirements of this subparagraph, that component must satisfy the requirements for new tank systems or components in §§ 264.192 and 264.193. Additionally, if a leak has occurred in any portion of a tank system component that is not readily accessible for visual inspection (e.g., the bottom of an inground or onground tank), the entire component must be provided with secondary containment in accordance with § 264.193 prior to being returned to use.
- (f) Certification of major repairs. If the owner/operator has repaired a tank system in accordance with paragraph (e) of this section, and the repair has been extensive (e.g., installation of an internal liner; repair of a ruptured primary containment or secondary containment vessel), the tank system must not be returned to service unless the owner/operator has obtained a certification by an independent, qualified, registered, professional engineer in accordance with § 270.11(d) that the repaired system is capable of handling hazardous wastes without release for the intended life of the system. This certification must be submitted to the Regional Administrator within seven days after returning the tank system to use.

[Note: The Regional Administrator may, on the basis of any information received that there is or has been a release of hazardous waste or hazardous constituents into the environment, issue an order under RCRA section 3004(v), 3008(h), or 7003(a) requiring corrective action or such other response as deemed necessary to protect human health or the environment.]

[Note: See § 264.15(c) for the requirements necessary to remedy a

failure. Also, 40 CFR part 302 may require the owner or operator to notify the National Response Center of certain releases.]

(Information collection requirements contained in paragraphs (d), (e), and (f) were approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986, as amended at 53 FR 34086, Sept. 2, 1988]

§ 264.197 Closure and post-closure care.

- (a) At closure of a tank system, the owner or operator must remove or decontaminate all waste residues, contaminated containment system components (liners, etc.), contaminated soils, and structures and equipment contaminated with waste, and manage them as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities, cost estimates for closure, and financial responsibility for tank systems must meet all of the requirements specified in subparts G and H of this part.
- (b) If the owner or operator demonstrates that not all contaminated soils can be practicably removed or decontaminated as required in paragraph (a) of this section, then the owner or operator must close the tank system and perform post-closure care in accordance with the closure and post-closure care requirements that apply to landfills (§ 264.310). In addition, for the purposes of closure, post-closure, and financial responsibility, such a tank system is then considered to be a landfill, and the owner or operator must meet all of the requirements for landfills specified in subparts G and H of this part.
- (c) If an owner or operator has a tank system that does not have secondary containment that meets the requirements of § 264.193 (b) through (f) and has not been granted a variance from the secondary containment requirements in accordance with § 264.193(g), then:
- (1) The closure plan for the tank system must include both a plan for complying with paragraph (a) of this section and a contingent plan for complying with paragraph (b) of this section.
- (2) A contingent post-closure plan for complying with paragraph (b) of this section must be prepared and submitted as part of the permit application.
- (3) The cost estimates calculated for closure and post-closure care must reflect the costs of complying with the contingent closure plan and the contingent post-closure plan, if those costs are greater than the costs of

complying with the closure plan prepared for the expected closure under paragraph (a) of this section.

- (4) Financial assurance must be based on the cost estimates in paragraph (c)(3) of this section.
- (5) For the purposes of the contingent closure and post-closure plans, such a tank system is considered to be a landfill, and the contingent plans must meet all of the closure, post-closure, and financial responsibility requirements for landfills under subparts G and H of this part.

(Information collection requirements contained in paragraphs (a) through (c) were approved by the Office of Management and Budget under control number 2050-0050)

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986]

§ 264.198 Special requirements for ignitable or reactive wastes.

- (a) Ignitable or reactive waste must not be placed in tank systems, unless:
- (1) The waste is treated, rendered, or mixed before or immediately after placement in the tank system so that:
- (i) The resulting waste, mixture, or dissolved material no longer meets the definition of ignitable or reactive waste under §§ 261.21 or 261.23 of this chapter, and
 - (ii) Section 264.17(b) is complied with; or
- (2) The waste is stored or treated in such a way that it is protected from any material or conditions that may cause the waste to ignite or react; or
 - (3) The tank system is used solely for emergencies.
- (b) The owner or operator of a facility where ignitable or reactive waste is stored or treated in a tank must comply with the requirements for the maintenance of protective distances between the waste management area and any public ways, streets, alleys, or an adjoining property line that can be built upon as required in Tables 2-1 through 2-6 of the National Fire Protection Association's ``Flammable and Combustible Liquids Code,'' (1977 or 1981), (incorporated by reference, see § 260.11).

§ 264.199 Special requirements for incompatible wastes.

- (a) Incompatible wastes, or incompatible wastes and materials, must not be placed in the same tank system, unless § 264.17(b) is complied with.
- (b) Hazardous waste must not be placed in a tank system that has not been decontaminated and that previously held an incompatible waste or material, unless § 264.17(b) is complied with.

Subpart K -- Surface Impoundments

Source: 47 FR 32357, July 26, 1982, unless otherwise noted.

§ 264.220 Applicability.

The regulations in this subpart apply to owners and operators of facilities that use surface impoundments to treat, store, or dispose of hazardous waste except as § 264.1 provides otherwise.

§ 264.221 Design and operating requirements.

- (a) Any surface impoundment that is not covered by paragraph (c) of this section or § 265.221 of this chapter must have a liner for all portions of the impoundment (except for existing portions of such impoundments). The liner must be designed, constructed, and installed to prevent any migration of wastes out of the impoundment to the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the impoundment. The liner may be constructed of materials that may allow wastes to migrate into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the active life of the facility, provided that the impoundment is closed in accordance with § 264.228(a)(1). For impoundments that will be closed in accordance with § 264.228(a)(2), the liner must be constructed of materials that can prevent wastes from migrating into the liner during the active life of the facility. The liner must be:
- (1) Constructed of materials that have appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrogeologic forces), physical contact with the waste or leachate to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation;
- (2) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression, or uplift; and
 - (3) Installed to cover all surrounding earth likely to be in contact with

the waste or leachate.

- (b) The owner or operator will be exempted from the requirements of paragraph (a) of this section if the Regional Administrator finds, based on a demonstration by the owner or operator, that alternate design and operating practices, together with location characteristics, will prevent the migration of any hazardous constituents (see § 264.93) into the ground water or surface water at any future time. In deciding whether to grant an exemption, the Regional Administrator will consider:
 - (1) The nature and quantity of the wastes;
 - (2) The proposed alternate design and operation;
- (3) The hydrogeologic setting of the facility, including the attenuative capacity and thickness of the liners and soils present between the impoundment and ground water or surface water; and
- (4) All other factors which would influence the quality and mobility of the leachate produced and the potential for it to migrate to ground water or surface water.
- (c) The owner or operator of each new surface impoundment unit on which construction commences after January 29, 1992, each lateral expansion of a surface impoundment unit on which construction commences after July 29, 1992 and each replacement of an existing surface impoundment unit that is to commence reuse after July 29, 1992 must install two or more liners and a leachate collection and removal system between such liners. "Construction commences" is as defined in § 260.10 of this chapter under "existing facility".
 - (1)(i) The liner system must include:
- (A) A top liner designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into such liner during the active life and post-closure care period; and
- (B) A composite bottom liner, consisting of at least two components. The upper component must be designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into this component during the active life and post-closure care period. The lower component must be designed and constructed of materials to minimize the migration of hazardous constituents if a breach in the upper component were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil material with a hydraulic conductivity of no more than 1×10^{-7} /cm/sec.

- (ii) The liners must comply with paragraphs (a) (1), (2), and (3) of this section.
- (2) The leachate collection and removal system between the liners, and immediately above the bottom composite liner in the case of multiple leachate collection and removal systems, is also a leak detection system. This leak detection system must be capable of detecting, collecting, and removing leaks of hazardous constituents at the earliest practicable time through all areas of the top liner likely to be exposed to waste or leachate during the active life and post-closure care period. The requirements for a leak detection system in this paragraph are satisfied by installation of a system that is, at a minimum:
 - (i) Constructed with a bottom slope of one percent or more;
- (ii) Constructed of granular drainage materials with a hydraulic conductivity of $1X10/^{-1}$ /cm/sec or more and a thickness of 12 inches (30.5 cm) or more; or constructed of synthetic or geonet drainage materials with a transmissivity of $3X10/^{-4}$ /m²sec or more;
- (iii) Constructed of materials that are chemically resistant to the waste managed in the surface impoundment and the leachate expected to be generated, and of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying wastes and any waste cover materials or equipment used at the surface impoundment;
- (iv) Designed and operated to minimize clogging during the active life and post-closure care period; and
- (v) Constructed with sumps and liquid removal methods (e.g., pumps) of sufficient size to collect and remove liquids from the sump and prevent liquids from backing up into the drainage layer. Each unit must have its own sump(s). The design of each sump and removal system must provide a method for measuring and recording the volume of liquids present in the sump and of liquids removed.
- (3) The owner or operator shall collect and remove pumpable liquids in the sumps to minimize the head on the bottom liner.
- (4) The owner or operator of a leak detection system that is not located completely above the seasonal high water table must demonstrate that the operation of the leak detection system will not be adversely affected by the presence of ground water.
 - (d) The Regional Administrator may approve alternative design or

operating practices to those specified in paragraph (c) of this section if the owner or operator demonstrates to the Regional Administrator that such design and operating practices, together with location characteristics:

- (1) Will prevent the migration of any hazardous constituent into the ground water or surface water at least as effectively as the liners and leachate collection and removal system specified in paragraph (c) of this section; and
- (2) Will allow detection of leaks of hazardous constituents through the top liner at least as effectively.
- (e) The double liner requirement set forth in paragraph (c) of this section may be waived by the Regional Administrator for any monofill, if:
- (1) The monofill contains only hazardous wastes from foundry furnace emission controls or metal casting molding sand, and such wastes do not contain constituents which would render the wastes hazardous for reasons other than the EP toxicity characteristics in § 261.24 of this chapter; and
- (2)(i)(A) The monofill has at least one liner for which there is no evidence that such liner is leaking. For the purposes of this paragraph, the term ``liner" means a liner designed, constructed, installed, and operated to prevent hazardous waste from passing into the liner at any time during the active life of the facility, or a liner designed, constructed, installed, and operated to prevent hazardous waste from migrating beyond the liner to adjacent subsurface soil, ground water, or surface water at any time during the active life of the facility. In the case of any surface impoundment which has been exempted from the requirements of paragraph (c) of this section on the basis of a liner designed, constructed, installed, and operated to prevent hazardous waste from passing beyond the liner, at the closure of such impoundment, the owner or operator must remove or decontaminate all waste residues, all contaminated liner material, and contaminated soil to the extent practicable. If all contaminated soil is not removed or decontaminated, the owner or operator of such impoundment will comply with appropriate post-closure requirements, including but not limited to ground-water monitoring and corrective action;
- (B) The monofill is located more than one-quarter mile from an underground source of drinking water (as that term is defined in § 144.3 of this chapter); and
- (C) The monofill is in compliance with generally applicable groundwater monitoring requrements for facilities with permits under RCRA section 3005(c); or

- (ii) The owner or operator demonstrates that the monofill is located, designed and operated so as to assure that there will be no migration of any hazardous constituent into ground water or surface water at any future time.
- (f) The owner or operator of any replacement surface impoundment unit is exempt from paragraph (c) of this section if:
- (1) The existing unit was constructed in compliance with the design standards of sections 3004 (o)(1)(A)(i) and (o)(5) of the Resource Conservation and Recovery Act; and
- (2) There is no reason to believe that the liner is not functioning as designed.
- (g) A surface impoundment must be designed, constructed, maintained, and operated to prevent overtopping resulting from normal or abnormal operations; overfilling; wind and wave action; rainfall; run-on; malfunctions of level controllers, alarms, and other equipment; and human error.
- (h) A surface impoundment must have dikes that are designed, constructed, and maintained with sufficient structural integrity to prevent massive failure of the dikes. In ensuring structural integrity, it must not be presumed that the liner system will function without leakage during the active life of the unit.
- (i) The Regional Administrator will specify in the permit all design and operating practices that are necessary to ensure that the requirements of this section are satisfied.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32357, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985; 50 FR 28747, July 15, 1985; 55 FR 19263, May 9, 1990]

§ 264.222 Action leakage rate.

(a) The Regional Administrator shall approve an action leakage rate for surface impoundment units subject to § 264.221 (c) or (d). The action leakage rate is the maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom liner exceeding 1 foot. The action leakage rate must include an adequate safety margin to allow for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction, operation, and location of the LDS, waste and leachate characteristics, likelihood and amounts of other

sources of liquids in the LDS, and proposed response actions (e.g., the action leakage rate must consider decreases in the flow capacity of the system over time resulting from siltation and clogging, rib layover and creep of synthetic components of the system, overburden pressures, etc.).

(b) To determine if the action leakage rate has been exceeded, the owner or operator must convert the weekly or monthly flow rate from the monitoring data obtained under § 264.226(d) to an average daily flow rate (gallons per acre per day) for each sump. Unless the Regional Administrator approves a different calculation, the average daily flow rate for each sump must be calculated weekly during the active life and closure period, and if the unit is closed in accordance with § 264.228(b), monthly during the post-closure care period when monthly monitoring is required under § 264.226(d).

§ 264.223 Response actions.

- (a) The owner or operator of surface impoundment units subject to § 264.221 (c) or (d) must have an approved response action plan before receipt of waste. The response action plan must set forth the actions to be taken if the action leakage rate has been exceeded. At a minimum, the response action plan must describe the actions specified in paragraph (b) of this section.
- (b) If the flow rate into the leak detection system exceeds the action leakage rate for any sump, the owner or operator must:
- (1) Notify the Regional Administrator in writing of the exceedence within 7 days of the determination;
- (2) Submit a preliminary written assessment to the Regional Administrator within 14 days of the determination, as to the amount of liquids, likely sources of liquids, possible location, size, and cause of any leaks, and short-term actions taken and planned;
- (3) Determine to the extent practicable the location, size, and cause of any leak;
- (4) Determine whether waste receipt should cease or be curtailed, whether any waste should be removed from the unit for inspection, repairs, or controls, and whether or not the unit should be closed:
- (5) Determine any other short-term and longer-term actions to be taken to mitigate or stop any leaks; and
- (6) Within 30 days after the notification that the action leakage rate has been exceeded, submit to the Regional Administrator the results of the

analyses specified in paragraphs (b) (3), (4), and (5) of this section, the results of actions taken, and actions planned. Monthly thereafter, as long as the flow rate in the leak detection system exceeds the action leakage rate, the owner or operator must submit to the Regional Administrator a report summarizing the results of any remedial actions taken and actions planned.

- (c) To make the leak and/or remediation determinations in paragraphs (b) (3), (4), and (5) of this section, the owner or operator must:
 - (1)(i) Assess the source of liquids and amounts of liquids by source,
- (ii) Conduct a fingerprint, hazardous constituent, or other analyses of the liquids in the leak detection system to identify the source of liquids and possible location of any leaks, and the hazard and mobility of the liquid; and
- (iii) Assess the seriousness of any leaks in terms of potential for escaping into the environment; or
 - (2) Document why such assessments are not needed.
- §§ 264.224 -- 264.225 [Reserved]
- § 264.226 Monitoring and inspection.
- (a) During construction and installation, liners (except in the case of existing portions of surface impoundments exempt from § 264.221(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation:
- (1) Synthetic liners and covers must be inspected to ensure tight seams and joints and the absence of tears, punctures, or blisters; and
- (2) Soil-based and admixed liners and covers must be inspected for inperfections including lenses, cracks, channels, root holes, or other structural non-uniformities that may cause an increase in the permeability of the liner or cover.
- (b) While a surface impoundment is in operation, it must be inspected weekly and after storms to detect evidence of any of the following:
- (1) Deterioration, malfunctions, or improper operation of overtopping control systems;
 - (2) Sudden drops in the level of the impoundment's contents; and

- (3) Severe erosion or other signs of deterioration in dikes or other containment devices.
- (c) Prior to the issuance of a permit, and after any extended period of time (at least six months) during which the impoundment was not in service, the owner or operator must obtain a certification from a qualified engineer that the impoundment's dike, including that portion of any dike which provides freeboard, has structural integrity. The certification must establish, in particular, that the dike:
- (1) Will withstand the stress of the pressure exerted by the types and amounts of wastes to be placed in the impoundment; and
- (2) Will not fail due to scouring or piping, without dependence on any liner system included in the surface impoundment construction.
- (d)(1) An owner or operator required to have a leak detection system under § 264.221 (c) or (d) must record the amount of liquids removed from each leak detection system sump at least once each week during the active life and closure period.
- (2) After the final cover is installed, the amount of liquids removed from each leak detection system sump must be recorded at least monthly. If the liquid level in the sump stays below the pump operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If the liquid level in the sump stays below the pump operating level for two consecutive quarters, the amount of liquids in the sumps must be recorded at least semi-annually. If at any time during the post-closure care period the pump operating level is exceeded at units on quarterly or semi-annual recording schedules, the owner or operator must return to monthly recording of amounts of liquids removed from each sump until the liquid level again stays below the pump operating level for two consecutive months.
- (3) "Pump operating level" is a liquid level proposed by the owner or operator and approved by the Regional Administrator based on pump activation level, sump dimensions, and level that avoids backup into the drainage layer and minimizes head in the sump.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32357, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985; 50 FR 28748, July 15, 1985]

§ 264.227 Emergency repairs; contingency plans.

- (a) A surface impoundment must be removed from service in accordance with paragraph (b) of this section when:
- (1) The level of liquids in the impoundment suddenly drops and the drop is not known to be caused by changes in the flows into or out of the impoundment; or
 - (2) The dike leaks.
- (b) When a surface impoundment must be removed from service as required by paragraph (a) of this section, the owner or operator must:
- (1) Immediately shut off the flow or stop the addition of wastes into the impoundment;
- (2) Immediately contain any surface leakage which has occurred or is occurring;
 - (3) Immediately stop the leak;
- (4) Take any other necessary steps to stop or prevent catastrophic failure;
- (5) If a leak cannot be stopped by any other means, empty the impoundment; and
- (6) Notify the Regional Administrator of the problem in writing within seven days after detecting the problem.
- (c) As part of the contingency plan required in subpart D of this part, the owner or operator must specify a procedure for complying with the requirements of paragraph (b) of this section.
- (d) No surface impoundment that has been removed from service in accordance with the requirements of this section may be restored to service unless the portion of the impoundment which was failing is repaired and the following steps are taken:
- (1) If the impoundment was removed from service as the result of actual or imminent dike failure, the dike's structural integrity must be recertified in accordance with § 264.226(c).
- (2) If the impoundment was removed from service as the result of a sudden drop in the liquid level, then:

- (i) For any existing portion of the impoundment, a liner must be installed in compliance with § 264.221(a); and
- (ii) For any other portion of the impoundment, the repaired liner system must be certified by a qualified engineer as meeting the design specifications approved in the permit.
- (e) A surface impoundment that has been removed from service in accordance with the requirements of this section and that is not being repaired must be closed in accordance with the provisions of § 264.228.

[47 FR 32357, July 26, 1982, as amended at 50 FR 28748, July 15, 1985] § 264.228 Closure and post-closure care.

- (a) At closure, the owner or operator must:
- (1) Remove or decontaminate all waste residues, contaminated containment system components (liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies; or
- (2)(i) Eliminate free liquids by removing liquid wastes or solidifying the remaining wastes and waste residues;
- (ii) Stabilize remaining wastes to a bearing capacity sufficient to support final cover; and
- (iii) Cover the surface impoundment with a final cover designed and constructed to:
- (A) Provide long-term minimization of the migration of liquids through the closed impoundment;
 - (B) Function with minimum maintenance;
- (C) Promote drainage and minimize erosion or abrasion of the final cover;
- (D) Accommodate settling and subsidence so that the cover's integrity is maintained; and
- (E) Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present.

- (b) If some waste residues or contaminated materials are left in place at final closure, the owner or operator must comply with all post-closure requirements contained in §§ 264.117 through 264.120, including maintenance and monitoring throughout the post-closure care period (specified in the permit under § 264.117). The owner or operator must:
- (1) Maintain the integrity and effectiveness of the final cover, including making repairs to the cap as necessary to correct the effects of settling, subsidence, erosion, or other events;
- (2) Maintain and monitor the leak detection system in accordance with §§ 264.221(c)(2)(iv) and (3) and 264.226(d), and comply with all other applicable leak detection system requirements of this part;
- (3) Maintain and monitor the ground-water monitoring system and comply with all other applicable requirements of subpart F of this part; and
- (4) Prevent run-on and run-off from eroding or otherwise damaging the final cover.
- (c)(1) If an owner or operator plans to close a surface impoundment in accordance with paragraph (a)(1) of this section, and the impoundment does not comply with the liner requirements of \S 264.221(a) and is not exempt from them in accordance with \S 264.221(b), then:
- (i) The closure plan for the impoundment under § 264.112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan for complying with paragraph (a)(2) of this section in case not all contaminated subsoils can be practicably removed at closure; and
- (ii) The owner or operator must prepare a contingent post-closure plan under § 264.118 for complying with paragraph (b) of this section in case not all contaminated subsoils can be practicably removed at closure.
- (2) The cost estimates calculated under §§ 264.142 and 264.144 for closure and post-closure care of an impoundment subject to this paragraph must include the cost of complying with the contingent closure plan and the contingent post-closure plan, but are not required to include the cost of expected closure under paragraph (a)(1) of this section.

[47 FR 32357, July 26, 1982, as amended at 50 FR 28748, July 15, 1985]

§ 264.229 Special requirements for ignitable or reactive waste.

Ignitable or reactive waste must not be placed in a surface impoundment, unless the waste and impoundment satisfy all applicable

requirements of 40 CFR part 268, and:

- (a) The waste is treated, rendered, or mixed before or immediately after placement in the impoundment so that:
- (1) The resulting waste, mixture, or dissolution of material no longer meets the definition of ignitable or reactive waste under § 261.21 or § 261.23 of this chapter; and
 - (2) Section 264.17(b) is complied with; or
- (b) The waste is managed in such a way that it is protected from any material or conditions which may cause it to ignite or react; or
 - (c) The surface impoundment is used solely for emergencies.

[47 FR 32357, July 26, 1982, as amended at 55 FR 22685, June 1, 1990]

§ 264.230 Special requirements for incompatible wastes.

Incompatible wastes, or incompatible wastes and materials, (see appendix V of this part for examples) must not be placed in the same surface impoundment, unless § 264.17(b) is complied with.

- § 264.231 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.
- (a) Hazardous Wastes FO20, FO21, FO22, FO23, FO26, and FO27 must not be placed in a surface impoundment unless the owner or operator operates the surface impoundment in accordance with a management plan for these wastes that is approved by the Regional Administrator pursuant to the standards set out in this paragraph, and in accord with all other applicable requirements of this part. The factors to be considered are:
- (1) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere;
- (2) The attenuative properties of underlying and surrounding soils or other materials;
- (3) The mobilizing properties of other materials co-disposed with these wastes: and
- (4) The effectiveness of additional treatment, design, or monitoring techniques.

(b) The Regional Administrator may determine that additional design, operating, and monitoring requirements are necessary for surface impoundments managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order to reduce the possibility of migration of these wastes to ground water, surface water, or air so as to protect human health and the environment.

[50 FR 2004, Jan. 14, 1985]

Subpart L -- Waste Piles

Source: 47 FR 32359, July 26, 1982, unless otherwise noted.

§ 264.250 Applicability.

- (a) The regulations in this subpart apply to owners and operators of facilities that store or treat hazardous waste in piles, except as § 264.1 provides otherwise.
- (b) The regulations in this subpart do not apply to owners or operators of waste piles that are closed with wastes left in place. Such waste piles are subject to regulation under subpart N of this part (Landfills).
- (c) The owner or operator of any waste pile that is inside or under a structure that provides protection from precipitation so that neither run-off nor leachate is generated is not subject to regulation under § 264.251 or under subpart F of this part, provided that:
- (1) Liquids or materials containing free liquids are not placed in the pile;
- (2) The pile is protected from surface water run-on by the structure or in some other manner;
- (3) The pile is designed and operated to control dispersal of the waste by wind, where necessary, by means other than wetting; and
- (4) The pile will not generate leachate through decomposition or other reactions.
- § 264.251 Design and operating requirements.
- (a) A waste pile (except for an existing portion of a waste pile) must have:

- (1) A liner that is designed, constructed, and installed to prevent any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may be constructed of materials that may allow waste to migrate into the liner itself (but not into the adjacent subsurface soil or ground water or surface water) during the active life of the facility. The liner must be:
- (i) Constructed of materials that have appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrogeologic forces), physical contact with the waste or leachate to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation;
- (ii) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression, or uplift; and
- (iii) Installed to cover all surrounding earth likely to be in contact with the waste or leachate; and
- (2) A leachate collection and removal system immediately above the liner that is designed, constructed, maintained, and operated to collect and remove leachate from the pile. The Regional Administrator will specify design and operating conditions in the permit to ensure that the leachate depth over the liner does not exceed 30 cm (one foot). The leachate collection and removal system must be:
 - (i) Constructed of materials that are:
- (A) Chemically resistent to the waste managed in the pile and the leachate expected to be generated; and
- (B) Of sufficient strength and thickness to prevent collapse under the pressures exerted by overlaying wastes, waste cover materials, and by any equipment used at the pile; and
- (ii) Designed and operated to function without clogging through the scheduled closure of the waste pile.
- (b) The owner or operator will be exempted from the requirements of paragraph (a) of this section, if the Regional Administrator finds, based on a demonstration by the owner or operator, that alternate design and operating practices, together with location characteristics, will prevent the migration of any hazardous constituents (see § 264.93) into the ground water or surface water at any future time. In deciding whether to grant an exemption, the

Regional Administrator will consider:

- (1) The nature and quantity of the wastes;
- (2) The proposed alternate design and operation;
- (3) The hydrogeologic setting of the facility, including attenuative capacity and thickness of the liners and soils present between the pile and ground water or surface water; and
- (4) All other factors which would influence the quality and mobility of the leachate produced and the potential for it to migrate to ground water or surface water.
- (c) The owner or operator of each new waste pile unit on which construction commences after January 29, 1992, each lateral expansion of a waste pile unit on which construction commences after July 29, 1992, and each replacement of an existing waste pile unit that is to commence reuse after July 29, 1992 must install two or more liners and a leachate collection and removal system above and between such liners. "Construction commences" is as defined in § 260.10 under "existing facility".
 - (1)(i) The liner system must include:
- (A) A top liner designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into such liner during the active life and post-closure care period; and
- (B) A composite bottom liner, consisting of at least two components. The upper component must be designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into this component during the active life and post-closure care period. The lower component must be designed and constructed of materials to minimize the migration of hazardous constituents if a breach in the upper component were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil material with a hydraulic conductivity of no more than 1×10^{-7} cm/sec.
- (ii) The liners must comply with paragraphs (a)(1)(i), (ii), and (iii) of this section.
- (2) The leachate collection and removal system immediately above the top liner must be designed, constructed, operated, and maintained to collect and remove leachate from the waste pile during the active life and post-closure care period. The Regional Administrator will specify design and operating conditions in the permit to ensure that the leachate depth over the

liner does not exceed 30 cm (one foot). The leachate collection and removal system must comply with paragraphs (c)(3)(iii) and (iv) of this section.

- (3) The leachate collection and removal system between the liners, and immediately above the bottom composite liner in the case of multiple leachate collection and removal systems, is also a leak detection system. This leak detection system must be capable of detecting, collecting, and removing leaks of hazardous constituents at the earliest practicable time through all areas of the top liner likely to be exposed to waste or leachate during the active life and post-closure care period. The requirements for a leak detection system in this paragraph are satisfied by installation of a system that is, at a minimum:
 - (i) Constructed with a bottom slope of one percent or more;
- (ii) Constructed of granular drainage materials with a hydraulic conductivity of 1×10^{-2} cm/sec or more and a thickness of 12 inches (30.5 cm) or more; or constructed of synthetic or geonet drainage materials with a transmissivity of 3×10^{-5} m²/sec or more:
- (iii) Constructed of materials that are chemically resistant to the waste managed in the waste pile and the leachate expected to be generated, and of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying wastes, waste cover materials, and equipment used at the waste pile;
- (iv) Designed and operated to minimize clogging during the active life and post-closure care period; and
- (v) Constructed with sumps and liquid removal methods (e.g., pumps) of sufficient size to collect and remove liquids from the sump and prevent liquids from backing up into the drainage layer. Each unit must have its own sump(s). The design of each sump and removal system must provide a method for measuring and recording the volume of liquids present in the sump and of liquids removed.
- (4) The owner or operator shall collect and remove pumpable liquids in the leak detection system sumps to minimize the head on the bottom liner.
- (5) The owner or operator of a leak detection system that is not located completely above the seasonal high water table must demonstrate that the operation of the leak detection system will not be adversely affected by the presence of ground water.
- (d) The Regional Administrator may approve alternative design or operating practices to those specified in paragraph (c) of this section if the

owner or operator demonstrates to the Regional Administrator that such design and operating practices, together with location characteristics:

- (1) Will prevent the migration of any hazardous constituent into the ground water or surface water at least as effectively as the liners and leachate collection and removal systems specified in paragraph (c) of this section; and
- (2) Will allow detection of leaks of hazardous constituents through the top liner at least as effectively.
- (e) Paragraph (c) of this section does not apply to monofills that are granted a waiver by the Regional Administrator in accordance with § 264.221(e).
- (f) The owner or operator of any replacement waste pile unit is exempt from paragraph (c) of this section if:
- (1) The existing unit was constructed in compliance with the design standards of section 3004(o)(1)(A)(i) and (o)(5) of the Resource Conservation and Recovery Act; and
- (2) There is no reason to believe that the liner is not functioning as designed.
- (g) The owner or operator must design, construct, operate, and maintain a run-on control system capable of preventing flow onto the active portion of the pile during peak discharge from at least a 25-year storm.
- (h) The owner or operator must design, construct, operate, and maintain a run-off management system to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (i) Collection and holding facilities (e.g., tanks or basins) associated with run-on and run-off control systems must be emptied or otherwise managed expeditiously after storms to maintain design capacity of the system.
- (j) If the pile contains any particulate matter which may be subject to wind dispersal, the owner or operator must cover or otherwise manage the pile to control wind dispersal.
- (k) The Regional Administrator will specify in the permit all design and operating practices that are necessary to ensure that the requirements of this section are satisfied.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32359, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985] § 264.252 Action leakage rate.

- (a) The Regional Administrator shall approve an action leakage rate for surface impoundment units subject to § 264.251(c) or (d). The action leakage rate is the maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom liner exceeding 1 foot. The action leakage rate must include an adequate safety margin to allow for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction, operation, and location of the LDS, waste and leachate characteristics, likelihood and amounts of other sources of liquids in the LDS, and proposed response actions (e.g., the action leakage rate must consider decreases in the flow capacity of the system over time resulting from siltation and clogging, rib layover and creep of synthetic components of the system, overburden pressures, etc.).
- (b) To determine if the action leakage rate has been exceeded, the owner or operator must convert the weekly flow rate from the monitoring data obtained under § 264.254(c) to an average daily flow rate (gallons per acre per day) for each sump. Unless the Regional Administrator approves a different calculation, the average daily flow rate for each sump must be calculated weekly during the active life and closure period.

§264.253 Response actions.

- (a) The owner or operator of waste pile units subject to § 264.251 (c) or (d) must have an approved response action plan before receipt of waste. The response action plan must set forth the actions to be taken if the action leakage rate has been exceeded. At a minimum, the response action plan must describe the actions specified in paragraph (b) of this section.
- (b) If the flow rate into the leak detection system exceeds the action leakage rate for any sump, the owner or operator must:
- (1) Notify the Regional Administrator in writing of the exceedance within 7 days of the determination;
- (2) Submit a preliminary written assessment to the Regional Administrator within 14 days of the determination, as to the amount of liquids, likely sources of liquids, possible location, size, and cause of any leaks, and short-term actions taken and planned;

- (3) Determine to the extent practicable the location, size, and cause of any leak;
- (4) Determine whether waste receipt should cease or be curtailed, whether any waste should be removed from the unit for inspection, repairs, or controls, and whether or not the unit should be closed;
- (5) Determine any other short-term and long-term actions to be taken to mitigate or stop any leaks; and
- (6) Within 30 days after the notification that the action leakage rate has been exceeded, submit to the Regional Administrator the results of the analyses specified in paragraphs (b) (3), (4), and (5) of this section, the results of actions taken, and actions planned. Monthly thereafter, as long as the flow rate in the leak detection system exceeds the action leakage rate, the owner or operator must submit to the Regional Administrator a report summarizing the results of any remedial actions taken and actions planned.
- (c) To make the leak and/or remediation determinations in paragraphs (b) (3), (4), and (5) of this section, the owner or operator must:
 - (1)(i) Assess the source of liquids and amounts of liquids by source,
- (ii) Conduct a fingerprint, hazardous constituent, or other analyses of the liquids in the leak detection system to identify the source of liquids and possible location of any leaks, and the hazard and mobility of the liquid; and
- (iii) Assess the seriousness of any leaks in terms of potential for escaping into the environment; or
 - (2) Document why such assessments are not needed.
- § 264.254 Monitoring and inspection.
- (a) During construction or installation, liners (except in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation:
- (1) Synthetic liners and covers must be inspected to ensure tight seams and joints and the absence of tears, punctures, or blisters; and
- (2) Soil-based and admixed liners and covers must be inspected for imperfections including lenses, cracks, channels, root holes, or other structural non-uniformities that may cause an increase in the permeability of

the liner or cover.

- (b) While a waste pile is in operation, it must be inspected weekly and after storms to detect evidence of any of the following:
- (1) Deterioration, malfunctions, or improper operation of run-on and run-off control systems;
- (2) Proper functioning of wind dispersal control systems, where present; and
- (3) The presence of leachate in and proper functioning of leachate collection and removal systems, where present.
- (c) An owner or operator required to have a leak detection system under § 264.251(c) must record the amount of liquids removed from each leak detection system sump at least once each week during the active life and closure period.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32359, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985; 50 FR 28748, July 15, 1985]

§ 264.255 [Reserved]

§ 264.256 Special requirements for ignitable or reactive waste.

Ignitable or reactive waste must not be place in a waste pile unless the waste and waste pile satisfy all applicable requirements of 40 CFR part 268, and:

- (a) The waste is treated, rendered, or mixed before or immediately after placement in the pile so that:
- (1) The resulting waste, mixture, or dissolution of material no longer meets the definition of ignitable or reactive waste under § 261.21 or § 261.23 of this chapter; and
 - (2) Section 264.17(b) is complied with; or
- (b) The waste is managed in such a way that it is protected from any material or conditions which may cause it to ignite or react.

[47 FR 32359, July 26, 1982, as amended at 55 FR 22685, June 1, 1990]

- § 264.257 Special requirements for incompatible wastes.
- (a) Incompatible wastes, or incompatible wastes and materials, (see Appendix V of this part for examples) must not be placed in the same pile, unless § 264.17(b) is complied with.
- (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in containers, other piles, open tanks, or surface impoundments must be separated from the other materials, or protected from them by means of a dike, berm, wall, or other device.
- (c) Hazardous waste must not be piled on the same base where incompatible wastes or materials were previously piled, unless the base has been decontaminated sufficiently to ensure compliance with § 264.17(b).
- § 264.258 Closure and post-closure care.
- (a) At closure, the owner or operator must remove or decontaminate all waste residues, contaminated containment system components (liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leachate, and manage them as hazardous waste unless § 261.3(d) of this chapter applies.
- (b) If, after removing or decontaminating all residues and making all reasonable efforts to effect removal or decontamination of contaminated components, subsoils, structures, and equipment as required in paragraph (a) of this section, the owner or operator finds that not all contaminated subsoils can be practicably removed or decontaminated, he must close the facility and perform post-closure care in accordance with the closure and post-closure care requirements that apply to landfills (§ 264.310).
- (c)(1) The owner or operator of a waste pile that does not comply with the liner requirements of § 264.251(a)(1) and is not exempt from them in accordance with § 264.250(c) or § 264.251(b), must:
- (i) Include in the closure plan for the pile under § 264.112 both a plan for complying with paragraph (a) of this section and a contingent plan for complying with paragraph (b) of this section in case not all contaminated subsoils can be practicably removed at closure; and
- (ii) Prepare a contingent post-closure plan under § 264.118 for complying with paragraph (b) of this section in case not all contaminated subsoils can be practicably removed at closure.
 - (2) The cost estimates calculated under §§ 264.142 and 264.144 for

closure and post-closure care of a pile subject to this paragraph must include the cost of complying with the contingent closure plan and the contingent post-closure plan, but are not required to include the cost of expected closure under paragraph (a) of this section.

§ 264.259 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

- (a) Hazardous Wastes FO20, FO21, FO22, FO23, FO26, and FO27 must not be placed in waste piles that are not enclosed (as defined in § 264.250(c)) unless the owner or operator operates the waste pile in accordance with a management plan for these wastes that is approved by the Regional Administrator pursuant to the standards set out in this paragraph, and in accord with all other applicable requirements of this part. The factors to be considered are:
- (1) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere;
- (2) The attenuative properties of underlying and surrounding soils or other materials;
- (3) The mobilizing properties of other materials co-disposed with these wastes; and
- (4) The effectiveness of additional treatment, design, or monitoring techniques.
- (b) The Regional Administrator may determine that additional design, operating, and monitoring requirements are necessary for piles managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and, FO27 in order to reduce the possibility of migration of these wastes to ground water, surface water, or air so as to protect human health and the environment.

[50 FR 2004, Jan. 14, 1985]

Subpart M -- Land Treatment

Source: 47 FR 32361, July 26, 1982, unless otherwise noted.

§ 264.270 Applicability.

The regulations in this subpart apply to owners and operators of facilities that treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise.

§ 264.271 Treatment program.

- (a) An owner or operator subject to this subpart must establish a land treatment program that is designed to ensure that hazardous constituents placed in or on the treatment zone are degraded, transformed, or immobilized within the treatment zone. The Regional Administrator will specify in the facility permit the elements of the treatment program, including:
- (1) The wastes that are capable of being treated at the unit based on a demonstration under § 264.272;
- (2) Design measures and operating practices necessary to maximize the success of degradation, transformation, and immobilization processes in the treatment zone in accordance with § 264.273(a); and
- (3) Unsaturated zone monitoring provisions meeting the requirements of § 264.278.
- (b) The Regional Administrator will specify in the facility permit the hazardous constituents that must be degraded, transformed, or immobilized under this subpart. Hazardous constituents are constituents identified in appendix VIII of part 261 of this chapter that are reasonably expected to be in, or derived from, waste placed in or on the treatment zone.
- (c) The Regional Administrator will specify the vertical and horizontal dimensions of the treatment zone in the facility permit. The treatment zone is the portion of the unsaturated zone below and including the land surface in which the owner or operator intends to maintain the conditions necessary for effective degradation, transformation, or immobilization of hazardous constituents. The maximum depth of the treatment zone must be:
 - (1) No more than 1.5 meters (5 feet) from the initial soil surface; and
 - (2) More than 1 meter (3 feet) above the seasonal high water table.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32361, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985]

§ 264.272 Treatment demonstration.

(a) For each waste that will be applied to the treatment zone, the owner or operator must demonstrate, prior to application of the waste, that

hazardous constituents in the waste can be completely degraded, transformed, or immobilized in the treatment zone.

- (b) In making this demonstration, the owner or operator may use field tests, laboratory analyses, available data, or, in the case of existing units, operating data. If the owner or operator intends to conduct field tests or laboratory analyses in order to make the demonstration required under paragraph (a) of this section, he must obtain a treatment or disposal permit under § 270.63. The Regional Administrator will specify in this permit the testing, analytical, design, and operating requirements (including the duration of the tests and analyses, and, in the case of field tests, the horizontal and vertical dimensions of the treatment zone, monitoring procedures, closure and clean-up activities) necessary to meet the requirements in paragraph (c) of this section.
- (c) Any field test or laboratory analysis conducted in order to make a demonstration under paragraph (a) of this section must:
- (1) Accurately simulate the characteristics and operating conditions for the proposed land treatment unit including:
- (i) The characteristics of the waste (including the presence of appendix VIII of part 261 of this chapter constituents);
 - (ii) The climate in the area;
 - (iii) The topography of the surrounding area;
- (iv) The characteristics of the soil in the treatment zone (including depth); and
 - (v) The operating practices to be used at the unit.
- (2) Be likely to show that hazardous constituents in the waste to be tested will be completely degraded, transformed, or immobilized in the treatment zone of the proposed land treatment unit; and
- (3) Be conducted in a manner that protects human health and the environment considering:
 - (i) The characteristics of the waste to be tested;
- (ii) The operating and monitoring measures taken during the course of the test;
 - (iii) The duration of the test;

- (iv) The volume of waste used in the test;
- (v) In the case of field tests, the potential for migration of hazardous constituents to ground water or surface water.

[47 FR 32361, July 26, 1982, as amended at 48 FR 14294, Apr. 1, 1983]

§ 264.273 Design and operating requirements.

The Regional Administrator will specify in the facility permit how the owner or operator will design, construct, operate, and maintain the land treatment unit in compliance with this section.

- (a) The owner or operator must design, construct, operate, and maintain the unit to maximize the degradation, transformation, and immobilization of hazardous constituents in the treatment zone. The owner or operator must design, construct, operate, and maintain the unit in accord with all design and operating conditions that were used in the treatment demonstration under § 264.272. At a minimum, the Regional Administrator will specify the following in the facility permit:
 - (1) The rate and method of waste application to the treatment zone;
 - (2) Measures to control soil pH;
- (3) Measures to enhance microbial or chemical reactions (e.g., fertilization, tilling); and
 - (4) Measures to control the moisture content of the treatment zone.
- (b) The owner or operator must design, construct, operate, and maintain the treatment zone to minimize run-off of hazardous constituents during the active life of the land treatment unit.
- (c) The owner or operator must design, construct, operate, and maintain a run-on control system capable of preventing flow onto the treatment zone during peak discharge from at least a 25-year storm.
- (d) The owner or operator must design, construct, operate, and maintain a run-off management system to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (e) Collection and holding facilities (e.g., tanks or basins) associated with run-on and run-off control systems must be emptied or otherwise managed expeditiously after storms to maintain the design capacity of the

system.

- (f) If the treatment zone contains particulate matter which may be subject to wind dispersal, the owner or operator must manage the unit to control wind dispersal.
- (g) The owner or operator must inspect the unit weekly and after storms to detect evidence of:
- (1) Deterioration, malfunctions, or improper operation of run-on and run-off control systems; and
 - (2) Improper functioning of wind dispersal control measures.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32361, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985]

§§ 264.274 -- 264.275 [Reserved]

§ 264.276 Food-chain crops.

The Regional Administrator may allow the growth of food-chain crops in or on the treatment zone only if the owner or operator satisfies the conditions of this section. The Regional Administrator will specify in the facility permit the specific food-chain crops which may be grown.

- (a)(1) The owner or operator must demonstrate that there is no substantial risk to human health caused by the growth of such crops in or on the treatment zone by demonstrating, prior to the planting of such crops, that hazardous constituents other than cadmium:
- (i) Will not be transferred to the food or feed portions of the crop by plant uptake or direct contact, and will not otherwise be ingested by foodchain animals (e.g., by grazing); or
- (ii) Will not occur in greater concentrations in or on the food or feed portions of crops grown on the treatment zone than in or on identical portions of the same crops grown on untreated soils under similar conditions in the same region.
- (2) The owner or operator must make the demonstration required under this paragraph prior to the planting of crops at the facility for all constituents identified in appendix VIII of part 261 of this chapter that are reasonably expected to be in, or derived from, waste placed in or on the

treatment zone.

- (3) In making a demonstration under this paragraph, the owner or operator may use field tests, greenhouse studies, available data, or, in the case of existing units, operating data, and must:
- (i) Base the demonstration on conditions similar to those present in the treatment zone, including soil characteristics (e.g., pH, cation exchange capacity), specific wastes, application rates, application methods, and crops to be grown; and
- (ii) Describe the procedures used in conducting any tests, including the sample selection criteria, sample size, analytical methods, and statistical procedures.
- (4) If the owner or operator intends to conduct field tests or greenhouse studies in order to make the demonstration required under this paragraph, he must obtain a permit for conducting such activities.
- (b) The owner or operator must comply with the following conditions if cadmium is contained in wastes applied to the treatment zone:
- (1)(i) The pH of the waste and soil mixture must be 6.5 or greater at the time of each waste application, except for waste containing cadmium at concentrations of 2 mg/kg (dry weight) or less;
- (ii) The annual application of cadmium from waste must not exceed 0.5 kilograms per hectare (kg/ha) on land used for production of tobacco, leafy vegetables, or root crops grown for human consumption. For other food-chain crops, the annual cadmium application rate must not exceed:

Time period	Annual Cd application rate (kilograms per hectare)
Present to June 30, 1984	2.0
July 1, 1984 to December 31, 1986	1.25
Beginning January 1, 1987	0.5

- (iii) The cumulative application of cadmium from waste must not exceed 5 kg/ha if the waste and soil mixture has a pH of less than 6.5; and
- (iv) If the waste and soil mixture has a pH of 6.5 or greater or is maintained at a pH of 6.5 or greater during crop growth, the cumulative application of cadmium from waste must not exceed: 5 kg/ha if soil cation exchange capacity (CEC) is less than 5 meq/100g; 10 kg/ha if soil CEC is 5-15 meq/100g; and 20 kg/ha if soil CEC is greater than 15 meq/100g; or

- (2)(i) Animal feed must be the only food-chain crop produced;
- (ii) The pH of the waste and soil mixture must be 6.5 or greater at the time of waste application or at the time the crop is planted, whichever occurs later, and this pH level must be maintained whenever food-chain crops are grown;
- (iii) There must be an operating plan which demonstrates how the animal feed will be distributed to preclude ingestion by humans. The operating plan must describe the measures to be taken to safeguard against possible health hazards from cadmium entering the food chain, which may result from alternative land uses; and
- (iv) Future property owners must be notified by a stipulation in the land record or property deed which states that the property has received waste at high cadmium application rates and that food-chain crops must not be grown except in compliance with paragraph (b)(2) of this section.

§ 264.277 [Reserved]

§ 264.278 Unsaturated zone monitoring.

An owner or operator subject to this subpart must establish an unsaturated zone monitoring program to discharge the following responsibilities:

- (a) The owner or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents migrate out of the treatment zone.
- (1) The Regional Administrator will specify the hazardous constituents to be monitored in the facility permit. The hazardous constituents to be monitored are those specified under § 264.271(b).
- (2) The Regional Administrator may require monitoring for principal hazardous constituents (PHCs) in lieu of the constituents specified under § 264.271(b). PHCs are hazardous constituents contained in the wastes to be applied at the unit that are the most difficult to treat, considering the combined effects of degradation, transformation, and immobilization. The Regional Administrator will establish PHCs if he finds, based on waste analyses, treatment demonstrations, or other data, that effective degradation, transformation, or immobilization of the PHCs will assure treatment at at least equivalent levels for the other hazardous constituents in the wastes.

- (b) The owner or operator must install an unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid monitoring using devices such as lysimeters. The unsaturated zone monitoring system must consist of a sufficient number of sampling points at appropriate locations and depths to yield samples that:
- (1) Represent the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been affected by leakage from the treatment zone; and
- (2) Indicate the quality of soil-pore liquid and the chemical make-up of the soil below the treatment zone.
- (c) The owner or operator must establish a background value for each hazardous constituent to be monitored under paragraph (a) of this section. The permit will specify the background values for each constituent or specify the procedures to be used to calculate the background values.
- (1) Background soil values may be based on a one-time sampling at a background plot having characteristics similar to those of the treatment zone.
- (2) Background soil-pore liquid values must be based on at least quarterly sampling for one year at a background plot having characteristics similar to those of the treatment zone.
- (3) The owner or operator must express all background values in a form necessary for the determination of statistically significant increases under paragraph (f) of this section.
- (4) In taking samples used in the determination of all background values, the owner or operator must use an unsaturated zone monitoring system that complies with paragraph (b)(1) of this section.
- (d) The owner or operator must conduct soil monitoring and soil-pore liquid monitoring immediately below the treatment zone. The Regional Administrator will specify the frequency and timing of soil and soil-pore liquid monitoring in the facility permit after considering the frequency, timing, and rate of waste application, and the soil permeability. The owner or operator must express the results of soil and soil-pore liquid monitoring in a form necessary for the determination of statistically significant increases under paragraph (f) of this section.
- (e) The owner or operator must use consistent sampling and analysis procedures that are designed to ensure sampling results that provide a reliable indication of soil-pore liquid quality and the chemical make-up of the

soil below the treatment zone. At a minimum, the owner or operator must implement procedures and techniques for:

- (1) Sample collection;
- (2) Sample preservation and shipment;
- (3) Analytical procedures; and
- (4) Chain of custody control.
- (f) The owner or operator must determine whether there is a statistically significant change over background values for any hazardous constituent to be monitored under paragraph (a) of this section below the treatment zone each time he conducts soil monitoring and soil-pore liquid monitoring under paragraph (d) of this section.
- (1) In determining whether a statistically significant increase has occurred, the owner or operator must compare the value of each constituent, as determined under paragraph (d) of this section, to the background value for that constituent according to the statistical procedure specified in the facility permit under this paragraph.
- (2) The owner or operator must determine whether there has been a statistically significant increase below the treatment zone within a reasonable time period after completion of sampling. The Regional Administrator will specify that time period in the facility permit after considering the complexity of the statistical test and the availability of laboratory facilities to perform the analysis of soil and soil-pore liquid samples.
- (3) The owner or operator must determine whether there is a statistically significant increase below the treatment zone using a statistical procedure that provides reasonable confidence that migration from the treatment zone will be identified. The Regional Administrator will specify a statistical procedure in the facility permit that he finds:
- (i) Is appropriate for the distribution of the data used to establish background values; and
- (ii) Provides a reasonable balance between the probability of falsely identifying migration from the treatment zone and the probability of failing to identify real migration from the treatment zone.
- (g) If the owner or operator determines, pursuant to paragraph (f) of this section, that there is a statistically significant increase of hazardous

constituents below the treatment zone, he must:

- (1) Notify the Regional Administrator of this finding in writing within seven days. The notification must indicate what constituents have shown statistically significant increases.
- (2) Within 90 days, submit to the Regional Administrator an application for a permit modification to modify the operating practices at the facility in order to maximize the success of degradation, transformation, or immobilization processes in the treatment zone.
- (h) If the owner or operator determines, pursuant to paragraph (f) of this section, that there is a statistically significant increase of hazardous constituents below the treatment zone, he may demonstrate that a source other than regulated units caused the increase or that the increase resulted from an error in sampling, analysis, or evaluation. While the owner or operator may make a demonstration under this paragraph in addition to, or in lieu of, submitting a permit modification application under paragraph (g) (2) of this section, he is not relieved of the requirement to submit a permit modification application within the time specified in paragraph (g)(2) of this section unless the demonstration made under this paragraph successfully shows that a source other than regulated units caused the increase or that the increase resulted from an error in sampling, analysis, or evaluation. In making a demonstration under this paragraph, the owner or operator must:
- (1) Notify the Regional Administrator in writing within seven days of determining a statistically significant increase below the treatment zone that he intends to make a determination under this paragraph;
- (2) Within 90 days, submit a report to the Regional Administrator demonstrating that a source other than the regulated units caused the increase or that the increase resulted from error in sampling, analysis, or evaluation;
- (3) Within 90 days, submit to the Regional Administrator an application for a permit modification to make any appropriate changes to the unsaturated zone monitoring program at the facility; and
- (4) Continue to monitor in accordance with the unsaturated zone monitoring program established under this section.

(Approved by the Office of Management and Budget under control number 2050-0038)

[47 FR 32361, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985]

§ 264.279 Recordkeeping.

The owner or operator must include hazardous waste application dates and rates in the operating record required under § 264.73.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32361, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985] § 264.280 Closure and post-closure care.

- (a) During the closure period the owner or operator must:
- (1) Continue all operations (including pH control) necessary to maximize degradation, transformation, or immobilization of hazardous constituents within the treatment zone as required under § 264.273(a), except to the extent such measures are inconsistent with paragraph (a)(8) of this section.
- (2) Continue all operations in the treatment zone to minimize run-off of hazardous constituents as required under § 264.273(b);
 - (3) Maintain the run-on control system required under § 264.273(c);
- (4) Maintain the run-off management system required under § 264.273(d);
- (5) Control wind dispersal of hazardous waste if required under § 264.273(f):
- (6) Continue to comply with any prohibitions or conditions concerning growth of food-chain crops under § 264.276;
- (7) Continue unsaturated zone monitoring in compliance with § 264.278, except that soil-pore liquid monitoring may be terminated 90 days after the last application of waste to the treatment zone; and
- (8) Establish a vegetative cover on the portion of the facility being closed at such time that the cover will not substantially impede degradation, transformation, or immobilization of hazardous constituents in the treatment zone. The vegetative cover must be capable of maintaining growth without extensive maintenance.
- (b) For the purpose of complying with § 264.115, when closure is completed the owner or operator may submit to the Regional Administrator

certification by an independent qualified soil scientist, in lieu of an independent registered professional engineer, that the facility has been closed in accordance with the specifications in the approved closure plan.

- (c) During the post-closure care period the owner or operator must:
- (1) Continue all operations (including pH control) necessary to enhance degradation and transformation and sustain immobilization of hazardous constituents in the treatment zone to the extent that such measures are consistent with other post-closure care activities;
 - (2) Maintain a vegetative cover over closed portions of the facility;
 - (3) Maintain the run-on control system required under § 264.273(c);
- (4) Maintain the run-off management system required under § 264.273(d);
- (5) Control wind dispersal of hazardous waste if required under § 264.273(f);
- (6) Continue to comply with any prohibitions or conditions concerning growth of food-chain crops under § 264.276; and
- (7) Continue unsaturated zone monitoring in compliance with § 264.278, expect that soil-pore liquid monitoring may be terminated 90 days after the last application of waste to the treatment zone.
- (d) The owner or operator is not subject to regulation under paragraphs (a)(8) and (c) of this section if the Regional Administrator finds that the level of hazardous constituents in the treatment zone soil does not exceed the background value of those constituents by an amount that is statistically significant when using the test specified in paragraph (d)(3) of this section. The owner or operator may submit such a demonstration to the Regional Administrator at any time during the closure of post-closure care periods. For the purposes of this paragraph:
- (1) The owner or operator must establish background soil values and determine whether there is a statistically significant increase over those values for all hazardous constituents specified in the facility permit under § 264.271 (b).
- (i) Background soil values may be based on a one-time sampling of a background plot having characteristics similar to those of the treatment zone.

- (ii) The owner or operator must express background values and values for hazardous constituents in the treatment zone in a form necessary for the determination of statistically significant increases under paragraph (d)(3) of this section.
- (2) In taking samples used in the determination of background and treatment zone values, the owner or operator must take samples at a sufficient number of sampling points and at appropriate locations and depths to yield samples that represent the chemical make-up of soil that has not been affected by leakage from the treatment zone and the soil within the treatment zone, respectively.
- (3) In determining whether a statistically significant increase has occurred, the owner or operator must compare the value of each constituent in the treatment zone to the background value for that constituent using a statistical procedure that provides reasonable confidence that constituent presence in the treatment zone will be identified. The owner or operator must use a statistical procedure that:
- (i) Is appropriate for the distribution of the data used to establish background values; and
- (ii) Provides a reasonable balance between the probability of falsely identifying hazardous constituent presence in the treatment zone and the probability of failing to identify real presence in the treatment zone.
- (e) The owner or operator is not subject to regulation under subpart F of this chapter if the Regional Administrator finds that the owner or operator satisfies paragraph (d) of this section and if unsaturated zone monitoring under § 264.278 indicates that hazardous constituents have not migrated beyond the treatment zone during the active life of the land treatment unit.
- § 264.281 Special requirements for ignitable or reactive waste.

The owner or operator must not apply ignitable or reactive waste to the treatment zone unless the waste and the treatment zone meet all applicable requirements of 40 CFR part 268, and:

- (a) The waste is immediately incorporated into the soil so that:
- (1) The resulting waste, mixture, or dissolution of material no longer meets the definition of ignitable or reactive waste under § 261.21 or § 261.23 of this chapter; and
 - (2) Section 264.17(b) is complied with; or

(b) The waste is managed in such a way that it is protected from any material or conditions which may cause it to ignite or react.

[47 FR 32361, July 26, 1982, as amended at 55 FR 22685, June 1, 1990]

§ 264.282 Special requirements for incompatible wastes.

The owner or operator must not place incompatible wastes, or incompatible wastes and materials (see appendix V of this part for examples), in or on the same treatment zone, unless § 264.17(b) is complied with.

§ 264.283 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

- (a) Hazardous Wastes FO20, FO21, FO22, FO23, FO26 and, FO27 must not be placed in a land treatment unit unless the owner or operator operates the facility in accordance with a management plan for these wastes that is approved by the Regional Administrator pursuant to the standards set out in this paragraph, and in accord with all other applicable requirements of this part. The factors to be considered are:
- (1) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere;
- (2) The attenuative properties of underlying and surrounding soils or other materials;
- (3) The mobilizing properties of other materials co-disposed with these wastes; and
- (4) The effectiveness of additional treatment, design, or monitoring techniques.
- (b) The Regional Administrator may determine that additional design, operating, and monitoring requirements are necessary for land treatment facilities managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order to reduce the possibility of migration of these wastes to ground water, surface water, or air so as to protect human health and the environment.

[50 FR 2004, Jan. 14, 1985]

Subpart N -- Landfills

Source: 47 FR 32365, July 26, 1982, unless otherwise noted.

§ 264.300 Applicability.

The regulations in this subpart apply to owners and operators of facilities that dispose of hazardous waste in landfills, except as § 264.1 provides otherwise.

§ 264.301 Design and operating requirements.

- (a) Any landfill that is not covered by paragraph (c) of this section or § 265.301(a) of this chapter must have a liner system for all portions of the landfill (except for existing portions of such landfill). The liner system must have:
- (1) A liner that is designed, constructed, and installed to prevent any migration of wastes out of the landfill to the adjacent subsurface soil or ground water or surface water at anytime during the active life (including the closure period) of the landfill. The liner must be constructed of materials that prevent wastes from passing into the liner during the active life of the facility. The liner must be:
- (i) Constructed of materials that have appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrogeologic forces), physical contact with the waste or leachate to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation;
- (ii) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression, or uplift; and
- (iii) Installed to cover all surrounding earth likely to be in contact with the waste or leachate; and
- (2) A leachate collection and removal system immediately above the liner that is designed, constructed, maintained, and operated to collect and remove leachate from the landfill. The Regional Administrator will specify design and operating conditions in the permit to ensure that the leachate depth over the liner does not exceed 30 cm (one foot). The leachate collection and removal system must be:
 - (i) Constructed of materials that are:
- (A) Chemically resistant to the waste managed in the landfill and the leachate expected to be generated; and

- (B) Of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying wastes, waste cover materials, and by any equipment used at the landfill; and
- (ii) Designed and operated to function without clogging through the scheduled closure of the landfill.
- (b) The owner or operator will be exempted from the requirements of paragraph (a) of this section if the Regional Administrator finds, based on a demonstration by the owner or operator, that alternative design and operating practices, together with location characteristics, will prevent the migration of any hazardous constituents (see § 264.93) into the ground water or surface water at any future time. In deciding whether to grant an exemption, the Regional Administrator will consider:
 - (1) The nature and quantity of the wastes;
 - (2) The proposed alternate design and operation;
- (3) The hydrogeologic setting of the facility, including the attenuative capacity and thickness of the liners and soils present between the landfill and ground water or surface water; and
- (4) All other factors which would influence the quality and mobility of the leachate produced and the potential for it to migrate to ground water or surface water.
- (c) The owner or operator of each new landfill unit on which construction commences after January 29, 1992, each lateral expansion of a landfill unit on which construction commences after July 29, 1992, and each replacement of an existing landfill unit that is to commence reuse after July 29, 1992 must install two or more liners and a leachate collection and removal system above and between such liners. "Construction commences" is as defined in § 260.10 of this chapter under "existing facility".
 - (1)(i) The liner system must include:
- (A) A top liner designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into such liner during the active life and post-closure care period; and
- (B) A composite bottom liner, consisting of at least two components. The upper component must be designed and constructed of materials (e.g., a geomembrane) to prevent the migration of hazardous constituents into this component during the active life and post-closure care period. The lower

component must be designed and constructed of materials to minimize the migration of hazardous constituents if a breach in the upper component were to occur. The lower component must be constructed of at least 3 feet (91 cm) of compacted soil material with a hydraulic conductivity of no more than 1×10^{-7} cm/sec.

- (ii) The liners must comply with paragraphs (a)(1) (i), (ii), and (iii) of this section.
- (2) The leachate collection and removal system immediately above the top liner must be designed, constructed, operated, and maintained to collect and remove leachate from the landfill during the active life and post-closure care period. The Regional Administrator will specify design and operating conditions in the permit to ensure that the leachate depth over the liner does not exceed 30 cm (one foot). The leachate collection and removal system must comply with paragraphs (3)(c) (iii) and (iv) of this section.
- (3) The leachate collection and removal system between the liners, and immediately above the bottom composite liner in the case of multiple leachate collection and removal systems, is also a leak detection system. This leak detection system must be capable of detecting, collecting, and removing leaks of hazardous constituents at the earliest practicable time through all areas of the top liner likely to be exposed to waste or leachate during the active life and post-closure care period. The requirements for a leak detection system in this paragraph are satisfied by installation of a system that is, at a minimum:
 - (i) Constructed with a bottom slope of one percent or more;
- (ii) Constructed of granular drainage materials with a hydraulic conductivity of 1×10^{-2} cm/sec or more and a thickness of 12 inches (30.5 cm) or more; or constructed of synthetic or geonet drainage materials with a transmissivity of 3×10^{-5} m²/sec or more;
- (iii) Constructed of materials that are chemically resistant to the waste managed in the landfill and the leachate expected to be generated, and of sufficient strength and thickness to prevent collapse under the pressures exerted by overlying wastes, waste cover materials, and equipment used at the landfill;
- (iv) Designed and operated to minimize clogging during the active life and post-closure care period; and
- (v) Constructed with sumps and liquid removal methods (e.g., pumps) of sufficient size to collect and remove liquids from the sump and prevent liquids from backing up into the drainage layer. Each unit must have its own

- sump(s). The design of each sump and removal system must provide a method for measuring and recording the volume of liquids present in the sump and of liquids removed.
- (4) The owner or operator shall collect and remove pumpable liquids in the leak detection system sumps to minimize the head on the bottom liner.
- (5) The owner or operator of a leak detection system that is not located completely above the seasonal high water table must demonstrate that the operation of the leak detection system will not be adversely affected by the presence of ground water.
- (d) The Regional Administrator may approve alternative design or operating practices to those specified in paragraph (c) of this section if the owner or operator demonstrates to the Regional Administrator that such design and operating practices, together with location characteristics:
- (1) Will prevent the migration of any hazardous constituent into the ground water or surface water at least as effectively as the liners and leachate collection and removal systems specified in paragraph (c) of this section; and
- (2) Will allow detection of leaks of hazardous constituents through the top liner at least as effectively.
- (e) The double liner requirement set forth in paragraph (c) of this section may be waived by the Regional Administrator for any monofill, if:
- (1) The monofill contains only hazardous wastes from foundry furnace emission controls or metal casting molding sand, and such wastes do not contain constituents which would render the wastes hazardous for reasons other than the Toxicity Characteristic in § 261.24 of this chapter, with EPA Hazardous Waste Numbers D004 through D017; and
- (2)(i)(A) The monofill has at least one liner for which there is no evidence that such liner is leaking;
- (B) The monofill is located more than one-quarter mile from an underground source of drinking water (as that term is defined in § 144.3 of this chapter); and
- (C) The monofill is in compliance with generally applicable ground-water monitoring requirements for facilities with permits under RCRA 3005(c); or
 - (ii) The owner or operator demonstrates that the monofill is located,

designed and operated so as to assure that there will be no migration of any hazardous constituent into ground water or surface water at any future time.

- (f) The owner or operator of any replacement landfill unit is exempt from paragraph (c) of this section if:
- (1) The existing unit was constructed in compliance with the design standards of section 3004(o)(1)(A)(i) and (o)(5) of the Resource Conservation and Recovery Act; and
- (2) There is no reason to believe that the liner is not functioning as designed.
- (g) The owner or operator must design, construct, operate, and maintain a run-on control system capable of preventing flow onto the active portion of the landfill during peak discharge from at least a 25-year storm.
- (h) The owner or operator must design, construct, operate, and maintain a run-off management system to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (i) Collection and holding facilities (e.g., tanks or basins) associated with run-on and run-off control systems must be emptied or otherwise managed expeditiously after storms to maintain design capacity of the system.
- (j) If the landfill contains any particulate matter which may be subject to wind dispersal, the owner or operator must cover or otherwise manage the landfill to control wind dispersal.
- (k) The Regional Administrator will specify in the permit all design and operating practices that are necessary to ensure that the requirements of this section are satisfied.
- (I) Any permit under RCRA 3005(c) which is issued for a landfill located within the State of Alabama shall require the installation of two or more liners and a leachate collection system above and between such liners, notwithstanding any other provision of RCRA.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32365, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985; 50 FR 28748, July 15, 1985; 55 FR 11875, Mar. 29, 1990; 55 FR 19264, May 9, 1990]

§ 264.302 Action leakage rate.

- (a) The Regional Administrator shall approve an action leakage rate for surface impoundment units subject to § 264.301(c) or (d). The action leakage rate is the maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom liner exceeding I foot. The action leakage rate must include an adequate safety margin to allow for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction, operation, and location of the LDS, waste and leachate characteristics, likelihood and amounts of other sources of liquids in the LDS, and proposed response actions (e.g., the action leakage rate must consider decreases in the flow capacity of the system over time resulting from siltation and clogging, rib layover and creep of synthetic components of the system, overburden pressures, etc.).
- (b) To determine if the action leakage rate has been exceeded, the owner or operator must convert the weekly or monthly flow rate from the monitoring data obtained under § 264.303(c), to an average daily flow rate (gallons per acre per day) for each sump. Unless the Regional Administrator approves a different calculation, the average daily flow rate for each sump must be calculated weekly during the active life and closure period, and monthly during the post-closure care period when monthly monitoring is required under § 264.303(c).

§ 264.303 Monitoring and inspection.

- (a) During construction or installation, liners (except in the case of existing portions of landfills exempt from § 264.301(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation:
- (1) Synthetic liners and covers must be inspected to ensure tight seams and joints and the absence of tears, punctures, or blisters; and
- (2) Soil-based and admixed liners and covers must be inspected for imperfections including lenses, cracks, channels, root holes, or other structural non-uniformities that may cause an increase in the permeability of the liner or cover.
- (b) While a landfill is in operation, it must be inspected weekly and after storms to detect evidence of any of the following:
- (1) Deterioration, malfunctions, or improper operation of run-on and run-off control systems;

- (2) Proper functioning of wind dispersal control systems, where present; and
- (3) The presence of leachate in and proper functioning of leachate collection and removal systems, where present.
- (c)(1) An owner or operator required to have a leak detection system under § 264.301(c) or (d) must record the amount of liquids removed from each leak detection system sump at least once each week during the active life and closure period.
- (2) After the final cover is installed, the amount of liquids removed from each leak detection system sump must be recorded at least monthly. If the liquid level in the sump stays below the pump operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If the liquid level in the sump stays below the pump operating level for two consecutive quarters, the amount of liquids in the sumps must be recorded at least semi-annually. If at any time during the post-closure care period the pump operating level is exceeded at units on quarterly or semi-annual recording schedules, the owner or operator must return to monthly recording of amounts of liquids removed from each sump until the liquid level again stays below the pump operating level for two consecutive months.
- (3) "Pump operating level" is a liquid level proposed by the owner or operator and approved by the Regional Administrator based on pump activation level, sump dimensions, and level that avoids backup into the drainage layer and minimizes head in the sump.

[47 FR 32365, July 26, 1982, as amended at 50 FR 28748, July 15, 1985] § 264.304 Response actions.

- (a) The owner or operator of landfill units subject to § 264.301(c) or (d) must have an approved response action plan before receipt of waste. The response action plan must set forth the actions to be taken if the action leakage rate has been exceeded. At a minimum, the response action plan must describe the actions specified in paragraph (b) of this section.
- (b) If the flow rate into the leak detection system exceeds the action leakage rate for any sump, the owner or operator must:
- (1) Notify the Regional Administrator in writing of the exceedence within 7 days of the determination;
 - (2) Submit a preliminary written assessment to the Regional

Administrator within 14 days of the determination, as to the amount of liquids, likely sources of liquids, possible location, size, and cause of any leaks, and short-term actions taken and planned;

- (3) Determine to the extent practicable the location, size, and cause of any leak;
- (4) Determine whether waste receipt should cease or be curtailed, whether any waste should be removed from the unit for inspection, repairs, or controls, and whether or not the unit should be closed;
- (5) Determine any other short-term and longer-term actions to be taken to mitigate or stop any leaks; and
- (6) Within 30 days after the notification that the action leakage rate has been exceeded, submit to the Regional Administrator the results of the analyses specified in paragraphs (b)(3), (4), and (5) of this section, the results of actions taken, and actions planned. Monthly thereafter, as long as the flow rate in the leak detection system exceeds the action leakage rate, the owner or operator must submit to the Regional Administrator a report summarizing the results of any remedial actions taken and actions planned.
- (c) To make the leak and/or remediation determinations in paragraphs (b)(3), (4), and (5) of this section, the owner or operator must:
 - (1)(i) Assess the source of liquids and amounts of liquids by source,
- (ii) Conduct a fingerprint, hazardous constituent, or other analyses of the liquids in the leak detection system to identify the source of liquids and possible location of any leaks, and the hazard and mobility of the liquid; and
- (iii) Assess the seriousness of any leaks in terms of potential for escaping into the environment; or
 - (2) Document why such assessments are not needed.

§§ 264.305 -- 264.308 [Reserved]

§ 264.309 Surveying and recordkeeping.

The owner or operator of a landfill must maintain the following items in the operating record required under § 264.73:

(a) On a map, the exact location and dimensions, including depth, of each cell with respect to permanently surveyed benchmarks; and

(b) The contents of each cell and the approximate location of each hazardous waste type within each cell.

(Approved by the Office of Management and Budget under control number 2050-0007)

[47 FR 32365, July 26, 1982, as amended at 50 FR 4514, Jan. 31, 1985] § 264.310 Closure and post-closure care.

- (a) At final closure of the landfill or upon closure of any cell, the owner or operator must cover the landfill or cell with a final cover designed and constructed to:
- (1) Provide long-term minimization of migration of liquids through the closed landfill;
 - (2) Function with minimum maintenance;
 - (3) Promote drainage and minimize erosion or abrasion of the cover;
- (4) Accommodate settling and subsidence so that the cover's integrity is maintained; and
- (5) Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present.
- (b) After final closure, the owner or operator must comply with all post-closure requirements contained in §§ 264.117 through 264.120, including maintenance and monitoring throughout the post-closure care period (specified in the permit under § 264.117). The owner or operator must:
- (1) Maintain the integrity and effectiveness of the final cover, including making repairs to the cap as necessary to correct the effects of settling, subsidence, erosion, or other events;
- (2) Continue to operate the leachate collection and removal system until leachate is no longer detected;
- (3) Maintain and monitor the leak detection system in accordance with §§ 264.301(c)(3)(iv) and (4) and 264.303(c), and comply with all other applicable leak detection system requirements of this part;
- (4) Maintain and monitor the ground-water monitoring system and comply with all other applicable requirements of subpart F of this part;

- (5) Prevent run-on and run-off from eroding or otherwise damaging the final cover; and
- (6) Protect and maintain surveyed benchmarks used in complying with § 264.309.

[47 FR 32365, July 26, 1982, as amended at 50 FR 28748, July 15, 1985]

§ 264.311 [Reserved]

§ 264.312 Special requirements for ignitable or reactive waste.

- (a) Except as provided in paragraph (b) of this section, and in § 264.316, ignitable or reactive waste must not be placed in a landfill, unless the waste and landfill meet all applicable requirements of part 268, and:
- (1) The resulting waste, mixture, or dissolution of material no longer meets the definition of ignitable or reactive waste under § 261.21 or § 261.23 of this chapter; and
 - (2) Section 264.17(b) is complied with.
- (b) Except for prohibited wastes which remain subject to treatment standards in subpart D of part 268, ignitable wastes in containers may be landfilled without meeting the requirements of paragraph (a) of this section, provided that the wastes are disposed of in such a way that they are protected from any material or conditions which may cause them to ignite. At a minimum, ignitable wastes must be disposed of in non-leaking containers which are carefully handled and placed so as to avoid heat, sparks, rupture, or any other condition that might cause ignition of the wastes; must be covered daily with soil or other non-combustible material to minimize the potential for ignition of the wastes; and must not be disposed of in cells that contain or will contain other wastes which may generate heat sufficient to cause ignition of the waste.

[47 FR 32365, July 26, 1982, as amended at 55 FR 22685, June 1, 1990]

§ 264.313 Special requirements for incompatible wastes.

Incompatible wastes, or incompatible wastes and materials, (see Appendix V of this part for examples) must not be placed in the same landfill cell, unless § 264.17(b) is complied with.

- § 264.314 Special requirements for bulk and containerized liquids.
 - (a) Bulk or non-containerized liquid waste or waste containing free

liquids may be placed in a landfill prior to May 8, 1985 only if:

- (1) The landfill has a liner and leachate collection and removal system that meet the requirements of § 264.301(a); or
- ** (2) Before disposal, the liquid waste or waste containing free liquids is treated or stabilized, chemically or physically (e.g., by mixing with a sorbent solid), so that free liquids are no longer present.
- ** (b) Effective May 8, 1985, the placement of bulk or non-containerized liquid hazardous waste or hazardous waste containing free liquids (whether or not sorbents have been added) in any landfill is prohibited.
- (c) To demonstrate the absence or presence of free liquids in either a containerized or a bulk waste, the following test must be used: Method 9095 (Paint Filter Liquids Test) as described in ``Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods.'' [EPA Publication No. SW-846].
- (d) Containers holding free liquids must not be placed in a landfill unless:
- ** (1) All free-standing liquid: (i) has been removed by decanting, or other methods; (ii) has been mixed with sorbent or solidified so that free-standing liquid is no longer observed; or (iii) has been otherwise eliminated; or
 - (2) The container is very small, such as an ampule; or
- (3) The container is designed to hold free liquids for use other than storage, such as a battery or capacitor; or
- (4) The container is a lab pack as defined in § 264.316 and is disposed of in accordance with § 264.316.
- ** (e) Sorbents used to treat free liquids to be disposed of in landfills must be nonbiodegradable. Nonbiodegradable sorbents are: materials listed or described in paragraph (e)(1) of this section; materials that pass one of the tests in paragraph (e)(2) of this section; or materials that are determined by EPA to be nonbiodegradable through the part 260 petition process.
- ** (1) Nonbiodegradable sorbents. (i) Inorganic minerals, other inorganic materials, and elemental carbon (e.g., aluminosilicates, clays, smectites, Fuller's earth, bentonite, calcium bentonite, montmorillonite, calcined montmorillonite, kaolinite, micas (illite), vermiculites, zeolites; calcium carbonate (organic free limestone); oxides/hydroxides, alumina, lime, silica (sand), diatomaceous earth; perlite (volcanic glass); expanded volcanic rock; volcanic ash; cement kiln dust; fly ash; rice hull ash; activated

charcoal/activated carbon); or

- ** (ii) High molecular weight synthetic polymers (e.g., polyethylene, high density polyethylene (HDPE), polypropylene, polystyrene, polyurethane, polyacrylate, polynorborene, polyisobutylene, ground synthetic rubber, crosslinked allylstyrene and tertiary butyl copolymers). This does not include polymers derived from biological material or polymers specifically designed to be degradable; or
- ** (iii) Mixtures of these nonbiodegradable materials.
- ** (2) Tests for nonbiodegradable sorbents. (i) The sorbent material is determined to be nonbiodegradable under ASTM Method G21-70 (1984a)-Standard Practice for Determining Resistance of Synthetic Polymer Materials to Fungi; or
- ** (ii) The sorbent material is determined to be nonbiodegradable under ASTM Method G22-76 (1984b)-Standard Practice for Determining Resistance of Plastics to Bacteria.
- ** (f) Effective November 8, 1985, the placement of any liquid which is not a hazardous waste in a landfill is prohibited unless the owner or operator of such landfill demonstrates to the Regional Administrator, or the Regional Administrator determines, that:
- (1) The only reasonably available alternative to the placement in such landfill is placement in a landfill or unlined surface impoundment, whether or not permitted or operating under interim status, which contains, or may reasonably be anticipated to contain, hazardous waste; and
- (2) Placement in such owner or operator's landfill will not present a risk of contamination of any underground source of drinking water (as that term is defined in § 144.3 of this chapter.)

(Approved by the Office of Management and Budget under control number 2050-0037)

[47 FR 32365, July 26, 1982, as amended at 50 FR 18374, Apr. 30, 1985; 50 FR 28748, July 15, 1985]

§ 264.315 Special requirements for containers.

Unless they are very small, such as an ampule, containers must be either:

(a) At least 90 percent full when placed in the landfill; or

- (b) Crushed, shredded, or similarly reduced in volume to the maximum practical extent before burial in the landfill.
- § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs).

Small containers of hazardous waste in overpacked drums (lab packs) may be placed in a landfill if the following requirements are met:

- (a) Hazardous waste must be packaged in non-leaking inside containers. The inside containers must be of a design and constructed of a material that will not react dangerously with, be decomposed by, or be ignited by the contained waste. Inside containers must be tightly and securely sealed. The inside containers must be of the size and type specified in the Department of Transportation (DOT) hazardous materials regulations (49 CFR parts 173, 178, and 179), if those regulations specify a particular inside container for the waste.
- ** (b) The inside containers must be overpacked in an open head DOT-specification metal shipping container (49 CFR parts 178 and 179) of no more than 416-liter (110 gallon) capacity and surrounded by, at a minimum, a sufficient quantity of sorbent material, determined to be nonbiodegradable in accordance with § 264.314(e), to completely sorb all of the liquid contents of the inside containers. The metal outer container must be full after it has been packed with inside containers and sorbent material.
- ** (c) The sorbent material used must not be capable of reacting dangerously with, being decomposed by, or being ignited by the contents of the inside containers, in accordance with § 264.17(b).
- (d) Incompatible wastes, as defined in § 260.10 of this chapter, must not be placed in the same outside container.
- (e) Reactive wastes, other than cyanide- or sulfide-bearing waste as defined in § 261.23(a)(5) of this chapter, must be treated or rendered non-reactive prior to packaging in accordance with paragraphs (a) through (d) of this section. Cyanide- and sulfide-bearing reactive waste may be packed in accordance with paragraphs (a) through (d) of this section without first being treated or rendered non-reactive.
- (f) Such disposal is in compliance with the requirements of part 268. Persons who incinerate lab packs according to the requirements in 40 CFR 268.42(c)(1) may use fiber drums in place of metal outer containers. Such fiber drums must meet the DOT specifications in 49 CFR 173.12 and be overpacked according to the requirements in paragraph (b) of this section.

[47 FR 32365, July 26, 1982, as amended at 55 FR 22685, June 1, 1990]

§ 264.317 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

- (a) Hazardous Wastes FO20, FO21, FO22, FO23, FO26, and FO27 must not be placed in a landfills unless the owner or operator operates the landfill in accord with a management plan for these wastes that is approved by the Regional Administrator pursuant to the standards set out in this paragraph, and in accord with all other applicable requirements of this part. The factors to be considered are:
- (1) The volume, physical, and chemical characteristics of the wastes, including their potential to migrate through the soil or to volatilize or escape into the atmosphere;
- (2) The attenuative properties of underlying and surrounding soils or other materials;
- (3) The mobilizing properties of other materials co-disposed with these wastes; and
- (4) The effectiveness of additional treatment, design, or monitoring requirements.
- (b) The Regional Administrator may determine that additional design, operating, and monitoring requirements are necessary for landfills managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order to reduce the possibility of migration of these wastes to ground water, surface water, or air so as to protect human health and the environment.

[50 FR 2004, Jan. 14, 1985]

Subpart O -- Incinerators

§ 264.340 Applicability.

- (a) The regulations of this subpart apply to owners and operators of hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 264.1 provides otherwise.
- (b) After consideration of the waste analysis included with Part B of the permit application, the Regional Administrator, in establishing the permit conditions, must exempt the applicant from all requirements of this subpart except § 264.341 (Waste analysis) and § 264.351 (Closure),

- (1) If the Regional Administrator finds that the waste to be burned is:
- (i) Listed as a hazardous waste in part 261, subpart D, of this chapter solely because it is ignitable (Hazard Code I), corrosive (Hazard Code C), or both; or
- (ii) Listed as a hazardous waste in part 261, subpart D, of this chapter solely because it is reactive (Hazard Code R) for characteristics other than those listed in § 261.23(a) (4) and (5), and will not be burned when other hazardous wastes are present in the combustion zone; or
- (iii) A hazardous waste solely because it possesses the characteristic of ignitability, corrosivity, or both, as determined by the test for characteristics of hazardous wastes under part 261, subpart C, of this chapter; or
- (iv) A hazardous waste solely because it possesses any of the reactivity characteristics described by \S 261.23(a) (1), (2), (3), (6), (7), and (8) of this chapter, and will not be burned when other hazardous wastes are present in the combustion zone; and
- (2) If the waste analysis shows that the waste contains none of the hazardous constituents listed in part 261, appendix VIII, of this chapter, which would reasonably be expected to be in the waste.
- (c) If the waste to be burned is one which is described by paragraphs (b)(1)(i), (ii), (iii), or (iv) of this section and contains insignificant concentrations of the hazardous constituents listed in part 261, appendix VIII, of this chapter, then the Regional Administrator may, in establishing permit conditions, exempt the applicant from all requirements of this subpart, except § 264.341 (Waste analysis) and § 264.351 (Closure), after consideration of the waste analysis included with Part B of the permit application, unless the Regional Administrator finds that the waste will pose a threat to human health and the environment when burned in an incinerator.
- (d) The owner or operator of an incinerator may conduct trial burns subject only to the requirements of § 270.62 of this chapter (Short term and incinerator permits).

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27532, June 24, 1982; 48 FR 14295, Apr. 1, 1983; 50 FR 665, Jan. 4, 1985; 50 FR 49203, Nov. 29, 1985; 56 FR 7207, Feb. 21, 1991]

§ 264.341 Waste analysis.

- (a) As a portion of the trial burn plan required by § 270.62 of this chapter, or with Part B of the permit application, the owner or operator must have included an analysis of the waste feed sufficient to provide all information required by § 270.62(b) or § 270.19 of this chapter. Owners or operators of new hazardous waste incinerators must provide the information required by § 270.62(c) or § 270.19 of this chapter to the greatest extent possible.
- (b) Throughout normal operation the owner or operator must conduct sufficient waste analysis to verify that waste feed to the incinerator is within the physical and chemical composition limits specified in his permit (under § 264.345(b)).

(Approved by the Office of Management and Budget under control number 2050-0002)

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27532, June 24, 1982; 48 FR 14295, Apr. 1, 1983; 48 FR 30115, June 30, 1983; 50 FR 4514, Jan. 31, 1985]

§ 264.342 Principal organic hazardous constituents (POHCs).

- (a) Principal Organic Hazardous Constituents (POHCs) in the waste feed must be treated to the extent required by the performance standard of § 264.343.
- (b)(1) One or more POHCs will be specified in the facility's permit, from among those constituents listed in part 261, appendix VIII of this chapter, for each waste feed to be burned. This specification will be based on the degree of difficulty of incineration of the organic constituents in the waste and on their concentration or mass in the waste feed, considering the results of waste analyses and trial burns or alternative data submitted with Part B of the facility's permit application. Organic constituents which represent the greatest degree of difficulty of incineration will be those most likely to be designated as POHCs. Constituents are more likely to be designated as POHCs if they are present in large quantities or concentrations in the waste.
- (2) Trial POHCs will be designated for performance of trial burns in accordance with the procedure specified in § 270.62 of this chapter for obtaining trial burn permits.

[46 FR 7678, Jan. 23, 1981, as amended at 48 FR 14295, Apr. 1, 1983]

§ 264.343 Performance standards.

An incinerator burning hazardous waste must be designed,

constructed, and maintained so that, when operated in accordance with operating requirements specified under § 264.345, it will meet the following performance standards:

(a)(1) Except as provided in paragraph (a)(2) of this section, an incinerator burning hazardous waste must achieve a destruction and removal efficiency (DRE) of 99.99% for each principal organic hazardous constituent (POHC) designated (under § 264.342) in its permit for each waste feed. DRE is determined for each POHC from the following equation:

where:

 $W_{\text{in}} = \text{mass}$ feed rate of one principal organic hazardous constituent (POHC) in the waste stream feeding the incinerator

and

W_{out}=mass emission rate of the same POHC present in exhaust emissions prior to release to the atmosphere.

- (2) An incinerator burning hazardous wastes FO20, FO21, FO22, FO23, FO26, or FO27 must achieve a destruction and removal efficiency (DRE) of 99.9999% for each principal organic hazardous constituent (POHC) designated (under § 264.342) in its permit. This performance must be demonstrated on POHCs that are more difficult to incinerate than tetra-, penta-, and hexachlorodibenzo-p-dioxins and dibenzofurans. DRE is determined for each POHC from the equation in § 264.343(a)(1). In addition, the owner or operator of the incinerator must notify the Regional Administrator of his intent to incinerate hazardous wastes FO20, FO21, FO22, FO23, FO26, or FO27.
- (b) An incinerator burning hazardous waste and producing stack emissions of more than 1.8 kilograms per hour (4 pounds per hour) of hydrogen chloride (HCl) must control HCl emissions such that the rate of emission is no greater than the larger of either 1.8 kilograms per hour or 1% of the HCl in the stack gas prior to entering any pollution control equipment.
- (c) An incinerator burning hazardous waste must not emit particulate matter in excess of 180 milligrams per dry standard cubic meter (0.08 grains per dry standard cubic foot) when corrected for the amount of oxygen in the stack gas according to the formula:

Where P_c is the corrected concentration of particulate matter, P_m is the measured concentration of particulate matter, and Y is the measured

concentration of oxygen in the stack gas, using the Orsat method for oxygen analysis of dry flue gas, presented in part 60, appendix A (Method 3), of this chapter. This correction procedure is to be used by all hazardous waste incinerators except those operating under conditions of oxygen enrichment. For these facilities, the Regional Administrator will select an appropriate correction procedure, to be specified in the facility permit.

(d) For purposes of permit enforcement, compliance with the operating requirements specified in the permit (under § 264.345) will be regarded as compliance with this section. However, evidence that compliance with those permit conditions is insufficient to ensure compliance with the performance requirements of this section may be `information' justifying modification, revocation, or reissuance of a permit under § 270.41 of this chapter.

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27532, June 24, 1982; 48 FR 14295, Apr. 1, 1983; 50 FR 2005, Jan. 14, 1985]

- § 264.344 Hazardous waste incinerator permits.
- (a) The owner or operator of a hazardous waste incinerator may burn only wastes specified in his permit and only under operating conditions specified for those wastes under § 264.345, except:
 - (1) In approved trial burns under § 270.62 of this chapter; or
 - (2) Under exemptions created by § 264.340.
- (b) Other hazardous wastes may be burned only after operating conditions have been specified in a new permit or a permit modification as applicable. Operating requirements for new wastes may be be based on either trial burn results or alternative data included with Part B of a permit application under § 270.19 of this chapter.
- (c) The permit for a new hazardous waste incinerator must establish appropriate conditions for each of the applicable requirements of this subpart, including but not limited to allowable waste feeds and operating conditions necessary to meet the requirements of § 264.345, sufficient to comply with the following standards:
- (1) For the period beginning with initial introduction of hazardous waste to the incinerator and ending with initiation of the trial burn, and only for the minimum time required to establish operating conditions required in paragraph (c)(2) of this section, not to exceed a duration of 720 hours operating time for treatment of hazardous waste, the operating requirements must be those most likely to ensure compliance with the performance standards of § 264.343, based on the Regional Administrator's engineering

judgment. The Regional Administrator may extend the duration of this period once for up to 720 additional hours when good cause for the extension is demonstrated by the applicant.

- (2) For the duration of the trial burn, the operating requirements must be sufficient to demonstrate compliance with the performance standards of § 264.343 and must be in accordance with the approved trial burn plan;
- (3) For the period immediately following completion of the trial burn, and only for the minimum period sufficient to allow sample analysis, data computation, and submission of the trial burn results by the applicant, and review of the trial burn results and modification of the facility permit by the Regional Administrator, the operating requirements must be those most likely to ensure compliance with the performance standards of § 264.343, based on the Regional Administrator's engineering judgement.
- (4) For the remaining duration of the permit, the operating requirements must be those demonstrated, in a trial burn or by alternative data specified in § 270.19(c) of this chapter, as sufficient to ensure compliance with the performance standards of § 264.343.

(Approved by the Office of Management and Budget under control number 2050-0002)

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27532, June 24, 1982; 48 FR 14295, Apr. 1, 1983; 50 FR 4514, Jan. 31, 1985]

§ 264.345 Operating requirements.

- (a) An incinerator must be operated in accordance with operating requirements specified in the permit. These will be specified on a case-by-case basis as those demonstrated (in a trial burn or in alternative data as specified in § 264.344(b) and included with Part B of a facility's permit application) to be sufficient to comply with the performance standards of § 264.343.
- (b) Each set of operating requirements will specify the composition of the waste feed (including acceptable variations in the physical or chemical properties of the waste feed which will not affect compliance with the performance requirement of § 264.343) to which the operating requirements apply. For each such waste feed, the permit will specify acceptable operating limits including the following conditions:
 - (1) Carbon monoxide (CO) level in the stack exhaust gas;
 - (2) Waste feed rate;

- (3) Combustion temperature;
- (4) An appropriate indicator of combustion gas velocity;
- (5) Allowable variations in incinerator system design or operating procedures; and
- (6) Such other operating requirements as are necessary to ensure that the performance standards of § 264.343 are met.
- (c) During start-up and shut-down of an incinerator, hazardous waste (except wastes exempted in accordance with § 264.340) must not be fed into the incinerator unless the incinerator is operating within the conditions of operation (temperature, air feed rate, etc.) specified in the permit.
 - (d) Fugitive emissions from the combustion zone must be controlled by:
- (1) Keeping the combustion zone totally sealed against fugitive emissions; or
- (2) Maintaining a combustion zone pressure lower than atmospheric pressure; or
- (3) An alternate means of control demonstrated (with Part B of the permit application) to provide fugitive emissions control equivalent to maintenance of combustion zone pressure lower than atmospheric pressure.
- (e) An incinerator must be operated with a functioning system to automatically cut off waste feed to the incinerator when operating conditions deviate from limits established under paragraph (a) of this section.
- (f) An incinerator must cease operation when changes in waste feed, incinerator design, or operating conditions exceed limits designated in its permit.

(Approved by the Office of Management and Budget under control number 2050-0002)

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27532, June 24, 1982; 50 FR 4514, Jan. 31, 1985]

§ 264.346 [Reserved]

§ 264.347 Monitoring and inspections.

- (a) The owner or operator must conduct, as a minimum, the following monitoring while incinerating hazardous waste:
- (1) Combustion temperature, waste feed rate, and the indicator of combustion gas velocity specified in the facility permit must be monitored on a continuous basis.
- (2) CO must be monitored on a continuous basis at a point in the incinerator downstream of the combustion zone and prior to release to the atmosphere.
- (3) Upon request by the Regional Administrator, sampling and analysis of the waste and exhaust emissions must be conducted to verify that the operating requirements established in the permit achieve the performance standards of § 264.343.
- (b) The incinerator and associated equipment (pumps, valves, conveyors, pipes, etc.) must be subjected to thorough visual inspection, at least daily, for leaks, spills, fugitive emissions, and signs of tampering.
- (c) The emergency waste feed cutoff system and associated alarms must be tested at least weekly to verify operability, unless the applicant demonstrates to the Regional Administrator that weekly inspections will unduly restrict or upset operations and that less frequent inspection will be adequate. At a minimum, operational testing must be conducted at least monthly.
- (d) This monitoring and inspection data must be recorded and the records must be placed in the operating log required by § 264.73.

(Approved by the Office of Management and Budget under control number 2050-0002)

[46 FR 7678, Jan. 23, 1981, as amended at 47 FR 27533, June 24, 1982; 50 FR 4514, Jan. 31, 1985]

§§ 264.348 -- 264.350 [Reserved]

§ 264.351 Closure.

At closure the owner or operator must remove all hazardous waste and hazardous waste residues (including, but not limited to, ash, scrubber waters, and scrubber sludges) from the incinerator site.

[Comment: At closure, as throughout the operating period, unless the owner or operator can demonstrate, in accordance with § 261.3(d) of this chapter,

that the residue removed from the incinerator is not a hazardous waste, the owner or operator becomes a generator of hazardous waste and must manage it in accordance with applicable requirements of parts 262 through 266 of this chapter.]

[46 FR 7678, Jan. 23, 1981]

Subparts P-V [Reserved]

Subpart W -- Drip Pads

Source: 56 FR 30196, July 1, 1991, unless otherwise noted.

§ 264.570 Applicability.

- ** (a) The requirements of this subpart apply to owners and operators of facilities that use new or existing drip pads to convey treated wood drippage, precipitation, and/or surface water run-off to an associated collection system. Existing drip pads are those constructed before December 6, 1990 and those for which the owner or operator has a design and has entered into binding financial or other agreements for construction prior to December 6, 1990. All other drip pads are new drip pads. The requirement at § 264.573(b)(3) to install a leak collection system applies only to those drip pads that are constructed after December 24, 1992 except for those constructed after December 24, 1992 for which the owner or operator has a design and has entered into binding financial or other agreements for construction prior to December 24, 1992.
- (b) The owner or operator of any drip pad that is inside or under a structure that provides protection from precipitation so that neither run-off nor run-on is generated is not subject to regulation under § 264.573(e) or § 264.573(f), as appropriate.
- ** (c) The requirements of this subpart are not applicable to the management of infrequent and incidental drippage in storage yards provided that:
- ** (1) The owner or operator maintains and complies with a written contingency plan that describes how the owner or operator will respond immediately to the discharge of such infrequent and incidental drippage. At a minimum, the contingency plan must describe how the owner or operator will do the following:
- ** (i) Clean up the drippage;
- ** (ii) Document the cleanup of the drippage;

- ** (iii) Retain documents regarding cleanup for three years; and
- ** (iv) Manage the contaminated media in a manner consistent with Federal regulations.
- § 264.571 Assessment of existing drip pad integrity.
- ** (a) For each existing drip pad as defined in § 264.570 of this subpart, the owner or operator must evaluate the drip pad and determine that it meets all of the requirements of this subpart, except the requirements for liners and leak detection systems of § 264.573(b). No later than the effective date of this rule, the owner or operator must obtain and keep on file at the facility a written assessment of the drip pad, reviewed and certified by an independent, qualified registered professional engineer that attests to the results of the evaluation. The assessment must be reviewed, updated and recertified annually until all upgrades, repairs, or modifications necessary to achieve compliance with all of the standards of § 264.573 of this subpart are complete. The evaluation must document the extent to which the drip pad meets each of the design and operating standards of § 264.573 of this subpart, except the standards for liners and leak detection systems, specified in § 264.573(b) of this subpart.
- ** (b) The owner or operator must develop a written plan for upgrading, repairing, and modifying the drip pad to meet the requirements of § 264.573(b) of this subpart, and submit the plan to the Regional Administrator no later than 2 years before the date that all repairs, upgrades, and modifications are complete. This written plan must describe all changes to be made to the drip pad in sufficient detail to document compliance with all the requirements of § 264.573 of this subpart. The plan must be reviewed and certified by an independent qualified registered professional engineer.
- ** (1) [Removed]
- ** (2) [Removed]
- ** (3) [Removed]
- (c) Upon completion of all upgrades, repairs, and modifications, the owner or operator must submit to the Regional Administrator or State Director, the as-built drawings for the drip pad together with a certification by an independent qualified registered professional engineer attesting that the drip pad conforms to the drawings.
- (d) If the drip pad is found to be leaking or unfit for use, the owner or operator must comply with the provisions of § 264.573 (m) of this subpart or

close the drip pad in accordance with § 264.575 of this subpart.

- § 264.572 Design and installation of new drip pads.
- ** Owners and operators of new drip pads must ensure that the pads are designed, installed, and operated in accordance with one of the following:
- ** (a) all of the requirements of §§ 264.573 (except 264.573(a)(4)), 264.574 and 264.575 of this subpart, or
- ** (b) all of the requirements of §§ 264.573 (except § 264.573(b)), 264.574 and 264.575 of this subpart.
- § 264.573 Design and operating requirements.
- (a) Drip pads must: (1) Be constructed of non-earthern materials, excluding wood and non-structurally supported asphalt:
- (2) Be sloped to free-drain treated wood drippage, rain and other waters, or solutions of drippage and water or other wastes to the associated collection system;
 - (3) Have a curb or berm around the perimeter;
- ** (4)(i) Have a hydraulic conductivity of less than or equal to 1×10^{-7} centimeters per second, e.g., existing concrete drip pads must be sealed, coated, or covered with a surface material with a hydraulic conductivity of less than or equal to 1×10^{-7} centimeters per second such that the entire surface where drippage occurs or may run across is capable of containing such drippage and mixtures of drippage and precipitation, materials, or other wastes while being routed to an associated collection system. This surface material must be maintained free of cracks and gaps that could adversely affect its hydraulic conductivity, and the material must be chemically compatible with the preservatives that contact the drip pad. The requirements of this provision apply only to existing drip pads and those drip pads for which the owner or operator elects to comply with § 264.572(a) instead of § 264.572(b).
- ** (ii) The owner or operator must obtain and keep on file at the facility a written assessment of the drip pad, reviewed and certified by an independent, qualified registered professional engineer that attests to the results of the evaluation. The assessment must be reviewed, updated and recertified annually. The evaluation must document the extent to which the drip pad meets the design and operating standards of this section, except for paragraph (b) of this Section.

** [Note is removed]

(5) Be of sufficient structural strength and thickness to prevent failure due to physical contact, climatic conditions, the stress of daily perations, e.g., variable and moving loads such as vehicle traffic, movement of wood, etc.

Note: EPA will generally consider applicable standards established by professional organizations generally recognized by the industry such as the American Concrete Institute (ACI) or the American Society of Testing and Materials (ASTM) in judging the structural integrity requirement of this paragraph.

- ** (b) If an owner/operator elects to comply with § 264.572(b) instead of § 264.572(a), the drip pad must have:
- (1) A synthetic liner installed below the drip pad that is designed, constructed, and installed to prevent leakage from the drip pad into the adjacent subsurface soil or groundwater or surface water at any time during the active life (including the closure period) of the drip pad. The liner must be constructed of materials that will prevent waste from being absorbed into the liner and to prevent releases into the adjacent subsurface soil or groundwater or surface water during the active life of the facility. The liner must be:
- (i) Constructed of materials that have appropriate chemical properties and sufficient strength and thickness to prevent failure due to pressure gradients (including static head and external hydrogeologic forces), physical contact with the waste or drip pad leakage to which they are exposed, climatic conditions, the stress of installation, and the stress of daily operation (including stresses from vehicular traffic on the drip pad);
- (ii) Placed upon a foundation or base capable of providing support to the liner and resistance to pressure gradients above and below the liner to prevent failure of the liner due to settlement, compression or uplift; and
- (iii) Installed to cover all surrounding earth that could come in contact with the waste or leakage; and
- (2) A leakage detection system immediately above the liner that is designed, constructed, maintained and operated to detect leakage from the drip pad. The leakage detection system must be:
 - (i) Constructed of materials that are:
 - (A) Chemically resistant to the waste managed in the drip pad and the

leakage that might be generated; and

- (B) Of sufficient strength and thickness to prevent collapse under the pressures exerted by overlaying materials and by any equipment used at the drip pad;
- (ii) Designed and operated to function without clogging through the scheduled closure of the drip pad; and
- (iii) Designed so that it will detect the failure of the drip pad or the presence of a release of hazardous waste or accumulated liquid at the earliest practicable time.
- ** (3) A leakage collection system immediately above the liner that is designed, constructed, maintained and operated to collect leakage from the drip pad such that it can be removed from below the drip pad. The date, time, and quantity of any leakage collected in this system and removed must be documented in the operating log.
- (c) Drip pads must be maintained such that they remain free of cracks, gaps, corrosion, or other deterioration that could cause hazardous waste to be released from the drip pad.

Note: See § 264.573(m) for remedial action required if deterioration or leakage is detected.

- (d) The drip pad and associated collection system must be designed and operated to convey, drain, and collect liquid resulting from drippage or precipitation in order to prevent run-off.
- (e) Unless protected by a structure, as described in § 264.570(b) of this subpart, the owner or operator must design, construct, operate and maintain a run-on control system capable of preventing flow onto the drip pad during peak discharge from at least a 24-hour, 25-year storm, unless the system has sufficient excess capacity to contain any run-off that might enter the system.
- (f) Unless protected by a structure or cover as described in § 264.570(b) of this subpart, the owner or operator must design, construct, operate and maintain a run-off management system to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (g) The drip pad must be evaluated to determine that it meets the requirements of paragraphs (a) through (f) of this section and the owner or operator must obtain a statement from an independent, qualified registered professional engineer certifying that the drip pad design meets the

requirements of this section.

- (h) Drippage and accumulated precipitation must be removed from the associated collection system as necessary to prevent overflow onto the drip pad.
- ** (i) The drip pad surface must be cleaned thoroughly in a manner and frequency such that accumulated residues of hazardous waste or other materials are removed, with residues being properly managed as hazardous waste, so as to allow weekly inspections of the entire drip pad surface without interference or hindrance from accumulated residues of hazardous waste or other materials on the drip pad. The owner or operator must document the date and time of each cleaning and the cleaning procedure used in the facility's operating log. The owner/operator must determine if the residues are hazardous as per 40 CFR 262.11 and, if so, must manage them under parts 261-268, 270, and section 3010 of RCRA.
- (j) Drip pads must be operated and maintained in a manner to minimize tracking of hazardous waste or hazardous waste constituents off the drip pad as a result of activities by personnel or equipment.
- (k) After being removed from the treatment vessel, treated wood from pressure and non-pressure processes must be held on the drip pad until drippage has ceased. The owner or operator must maintain records sufficient to document that all treated wood is held on the pad following treatment in accordance with this requirement.
- (I) Collection and holding units associated with run-on and run-off control systems must be emptied or otherwise managed as soon as possible after storms to maintain design capacity of the system.
- (m) Throughout the active life of the drip pad and as specified in the permit, if the owner or operator detects a condition that may have caused or has caused a release of hazardous waste, the condition must be repaired within a reasonably prompt period of time following discovery, in accordance with the following procedures:
- (1) Upon detection of a condition that may have caused or has caused a release of hazardous waste (e.g., upon detection of leakage in the leak detection system), the owner or operator must:
 - (i) Enter a record of the discovery in the facility operating log;
- (ii) Immediately remove the portion of the drip pad affected by the condition from service;

- (iii) Determine what steps must be taken to repair the drip pad and clean up any leakage from below the drip pad, and establish a schedule for accomplishing the repairs;
- (iv) Within 24 hours after discovery of the condition, notify the Regional Administrator of the condition and, within 10 working days, provide written notice to the Regional Administrator with a description of the steps that will be taken to repair the drip pad and clean up any leakage, and the schedule for accomplishing this work.
- (2) The Regional Administrator will review the information submitted, make a determination regarding whether the pad must be removed from service completely or partially until repairs and clean up are complete and notify the owner or operator of the determination and the underlying rationale in writing.
- (3) Upon completing all repairs and clean up, the owner or operator must notify the Regional Administrator in writing and provide a certification signed by an independent, qualified registered professional engineer, that the repairs and clean up have been completed according to the written plan submitted in accordance with paragraph (m)(1)(iv) of this section.
- (n) Should a permit be necessary, the Regional Administrator will specify in the permit all design and operating practices that are necessary to ensure that the requirements of this section are satisfied.
- (o) The owner or operator must maintain, as part of the facility operating log, documentation of past operating and waste handling practices. This must include identification of preservative formulations used in the past, a description of drippage management practices, and a description of treated wood storage and handling practices.

§ 264.574 Inspections.

- (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation, liners must be inspected and certified as meeting the requirements of § 264.573 of this subpart by an independent qualified, registered professional engineer. This certification must be maintained at the facility as part of the facility operating record. After installation, liners and covers must be inspected to ensure tight seams and joints and the absence of tears, punctures, or blisters.
- (b) While a drip pad is in operation, it must be inspected weekly and after storms to detect evidence of any of the following:

- (1) Deterioration, malfunctions or improper operation of run-on and run-off control systems;
- (2) The presence of leakage in and proper functioning of leak detection system.
 - (3) Deterioration or cracking of the drip pad surface.

Note: See § 264.573(m) for remedial action required if deterioration or leakage is detected.

§ 264.575 Closure.

- (a) At closure, the owner or operator must remove or decontaminate all waste residues, contaminated containment system components (pad, liners, etc.), contaminated subsoils, and structures and equipment contaminated with waste and leakage, and manage them as hazardous waste.
- (b) If, after removing or decontaminating all residues and making all reasonable efforts to effect removal or decontamination of contaminated components, subsoils, structures, and equipment as required in paragraph (a) of this section, the owner or operator finds that not all contaminated subsoils can be practicably removed or decontaminated, he must close the facility and perform post-closure care in accordance with closure and post-closure care requirements that apply to landfills (§ 264.310). For permitted units, the requirement to have a permit continues throughout the post-closure period. In addition, for the purpose of closure, post-closure, and financial responsibility, such a drip pad is then considered to be landfill, and the owner or operator must meet all of the requirements for landfills specified in subparts G and H of this part.
- (c)(1) The owner or operator of an existing drip pad, as defined in § 264.570 of this subpart, that does not comply with the liner requirements of § 264.573(b)(1) must:
- (i) Include in the closure plan for the drip pad under § 264.112 both a plan for complying with paragraph (a) of this section and a contingent plan for complying with paragraph (b) of this section in case not all contaminated subsoils can be practicably removed at closure; and
- (ii) Prepare a contingent post-closure plan under § 264.118 of this part for complying with paragraph (b) of this section in case not all contaminated subsoils can be practicably removed at closure.
 - (2) The cost estimates calculated under §§ 264.112 and 264.144 of this

part for closure and post-closure care of a drip pad subject to this paragraph must include the cost of complying with the contingent closure plan and the contingent post-closure plan, but are not required to include the cost of expected closure under paragraph (a) of this section.

Subpart X -- Miscellaneous Units

Source: 52 FR 46964, Dec. 10, 1987, unless otherwise noted.

§ 264.600 Applicability.

The requirements in this subpart apply to owners and operators of facilities that treat, store, or dispose of hazardous waste in miscellanenous units, except as § 264.1 provide otherwise.

§ 264.601 Environmental performance standards.

A miscellaneous unit must be located, designed, constructed, operated, maintained, and closed in a manner that will ensure protection of human health and the environment. Permits for miscellaneous units are to contain such terms and provisions as necessary to protect human health and the environment, including, but not limited to, as appropriate, design and operating requirements, detection and monitoring requirements, and requirements for responses to releases of hazardous waste or hazardous constituents from the unit. Permit terms and provisions shall include those requirements of subparts I through 0 of this part, part 270, and part 146 that are appropriate for the miscellaneous unit being permitted. Protection of human health and the environment includes, but is not limited to:

- (a) Prevention of any releases that may have adverse effects on human heath or the environment due to migration of waste constituents in the ground water or subsurface environment, considering:
- (1) The volume and physical and chemical characteristics of the waste in the unit, including its potential for migration through soil, liners, or other containing structures;
- (2) The hydrologic and geologic characteristics of the unit and the surrounding area;
- (3) The existing quality of ground water, including other sources of contamination and their cumulative impact on the ground water;
 - (4) The quantity and direction of ground-water flow;
 - (5) The proximity to and withdrawal rates of current and potential

ground-water users;

- (6) The patterns of land use in the region;
- (7) The potential for deposition or migration of waste constituents into subsurface physical structures, and into the root zone of food-chain crops and other vegetation;
- (8) The potential for health risks caused by human exposure to waste constituents; and
- (9) The potential for damage to domestic animals, wildlife, crops, vegetation, and physical structures caused by exposure to waste constituents:
- (b) Prevention of any releases that may have adverse effects on human health or the environment due to migration of waste constituents in surface water, or wetlands or on the soil surface considering:
- (1) The volume and physical and chemical characteristics of the waste in the unit;
- (2) The effectiveness and reliability of containing, confining, and collecting systems and structures in preventing migration;
- (3) The hydrologic characteristics of the unit and the surrounding area, including the topography of the land around the unit;
 - (4) The patterns of precipitation in the region;
 - (5) The quantity, quality, and direction of ground-water flow;
 - (6) The proximity of the unit to surface waters;
- (7) The current and potential uses of nearby surface waters and any water quality standards established for those surface waters;
- (8) The existing quality of surface waters and surface soils, including other sources of contamination and their cumulative impact on surface waters and surface soils:
 - (9) The patterns of land use in the region;
- (10) The potential for health risks caused by human exposure to waste constituents; and

- (11) The potential for damage to domestic animals, wildlife, crops, vegetation, and physical structures caused by exposure to waste constitutents.
- (c) Prevention of any release that may have adverse effects on human health or the environment due to migration of waste constituents in the air, considering:
- (1) The volume and physical and chemical characteristics of the waste in the unit, including its potential for the emission and dispersal of gases, aerosols and particulates;
- (2) The effectiveness and reliability of systems and structures to reduce or prevent emissions of hazardous constituents to the air;
 - (3) The operating characteristics of the unit;
- (4) The atmospheric, metorologic, and topographic characteristics of the unit and the surrounding area;
- (5) The existing quality of the air, including other sources of contamination and their cumulative impact on the air;
- (6) The potential for health risks caused by human exposure to waste constituents; and
- (7) The potential for damage to domestic animals, wildlife, crops, vegetation, and physical structures caused by exposure to waste constituents.
- § 264.602 Monitoring, analysis, inspection, response, reporting, and corrective action.

Monitoring, testing, analytical data, inspections, response, and reporting procedures and frequencies must ensure compliance with §§ 264.601, 264.15, 264.33, 264.75, 264.76, 264,77, and 264.101 as well as meet any additional requirements needed to protect human health and the environment as specified in the permit.

§ 264.603 Post-closure care.

A miscellaneous unit that is a disposal unit must be maintained in a manner that complies with § 264.601 during the post-closure care period. In addition, if a treatment or storage unit has contaminated soils or ground water that cannot be completely removed or decontaminated during closure, then that unit must also meet the requirements of § 264.601 during post-

closure care. The post-closure plan under § 264.118 must specify the procedures that will be used to satisfy this requirement.

Subparts Y-Z [Reserved]

Subpart AA -- Air Emission Standards for Process Vents

Source: 55 FR 25494, June 21, 1990, unless otherwise noted.

§ 264.1030 Applicability.

- (a) The regulations in this subpart apply to owners and operators of facilities that treat, store, or dispose of hazardous wastes (except as provided in § 264.1).
- (b) Except for §§ 264.1034(d) and (e), this subpart applies to process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operations that manage hazardous wastes with organic concentrations of at least 10-ppmw, if these operations are conducted in:
 - (1) Units that are subject to the permitting requirements of part 270, or
- (2) Hazardous waste recycling units that are located on hazardous waste management facilities otherwise subject to the permitting requirements of part 270.
- (c) If the owner or operator of process vents subject to the requirements of §§ 264.1032 through 264.1036 has received a permit under section 3005 of RCRA prior to December 21, 1990 the requirements of §§ 264.1032 through 264.1036 must be incorporated when the permit is reissued under § 124.15 or reviewed under § 270.50.

[Note: The requirements of §§ 264.1032 through 264.1036 apply to process vents on hazardous waste recycling units previously exempt under § 261.6(c)(1). Other exemptions under §§ 261.4, 262.34, and 264.1(g) are not affected by these requirements.]

[55 FR 25494, June 21, 1990, as amended at 56 FR 19290, Apr. 26, 1991] § 264.1031 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act and parts 260-266.

``Air stripping operation" is a desorption operation employed to

transfer one or more volatile components from a liquid mixture into a gas (air) either with or without the application of heat to the liquid. Packed towers, spray towers, and bubble-cap, sieve, or valve-type plate towers are among the process configurations used for contacting the air and a liquid.

- ``Bottoms receiver'' means a container or tank used to receive and collect the heavier bottoms fractions of the distillation feed stream that remain in the liquid phase.
- ``Closed-vent system' means a system that is not open to the atmosphere and that is composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device.
- ``Condenser' means a heat-transfer device that reduces a thermodynamic fluid from its vapor phase to its liquid phase.
- ``Connector'' means flanged, screwed, welded, or other joined fittings used to connect two pipelines or a pipeline and a piece of equipment. For the purposes of reporting and recordkeeping, connector means flanged fittings that are not covered by insulation or other materials that prevent location of the fittings.
- ``Continuous recorder'' means a data-recording device recording an instantaneous data value at least once every 15 minutes.
- ``Control device' means an enclosed combustion device, vapor recovery system, or flare. Any device the primary function of which is the recovery or capture of solvents or other organics for use, reuse, or sale (e.g., a primary condenser on a solvent recovery unit) is not a control device.
- ``Control device shutdown'' means the cessation of operation of a control device for any purpose.
- ``Distillate receiver'' means a container or tank used to receive and collect liquid material (condensed) from the overhead condenser of a distillation unit and from which the condensed liquid is pumped to larger storage tanks or other process units.
- ``Distillation operation' means an operation, either batch or continuous, separating one or more feed stream(s) into two or more exit streams, each exit stream having component concentrations different from those in the feed stream(s). The separation is achieved by the redistribution of the components between the liquid and vapor phase as they approach equilibrium within the distillation unit.

- ``Double block and bleed system'' means two block valves connected in series with a bleed valve or line that can vent the line between the two block valves.
- ``Equipment'' means each valve, pump, compressor, pressure relief device, sampling connection system, open-ended valve or line, or flange, and any control devices or systems required by this subpart.
- ``Flame zone'' means the portion of the combustion chamber in a boiler occupied by the flame envelope.
- ``Flow indicator'' means a device that indicates whether gas flow is present in a vent stream.
- ``First attempt at repair' means to take rapid action for the purpose of stopping or reducing leakage of organic material to the atmosphere using best practices.
- ``Fractionation operation'' means a distillation operation or method used to separate a mixture of several volatile components of different boiling points in successive stages, each stage removing from the mixture some proportion of one of the components.
- `Hazardous waste management unit shutdown" means a work practice or operational procedure that stops operation of a hazardous waste management unit or part of a hazardous waste management unit. An unscheduled work practice or operational procedure that stops operation of a hazardous waste management unit or part of a hazardous waste management unit for less than 24 hours is not a hazardous waste management unit shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping operation are not hazardous waste management unit shutdowns.
- ``Hot well' means a container for collecting condensate as in a steam condenser serving a vacuum-jet or steam-jet ejector.
- ``In gas/vapor service" means that the piece of equipment contains or contacts a hazardous waste stream that is in the gaseous state at operating conditions.
- ``In heavy liquid service' means that the piece of equipment is not in gas/vapor service or in light liquid service.
- ``In light liquid service'' means that the piece of equipment contains or contacts a waste stream where the vapor pressure of one or more of the components in the stream is greater than 0.3 kilopascals (kPa) at 20 °C, the

total concentration of the pure components having a vapor pressure greater than 0.3 kPa at 20 °C is equal to or greater than 20 percent by weight, and the fluid is a liquid at operating conditions.

- ``In situ sampling systems'' means nonextractive samplers or in-line samplers.
- ``In vacuum service'' means that equipment is operating at an internal pressure that is at least 5 kPa below ambient pressure.
- ``Malfunction'' means any sudden failure of a control device or a hazardous waste management unit or failure of a hazardous waste management unit to operate in a normal or usual manner, so that organic emissions are increased.
- ``Open-ended valve or line'' means any valve, except pressure relief valves, having one side of the valve seat in contact with process fluid and one side open to the atmosphere, either directly or through open piping.
- ``Pressure release'' means the emission of materials resulting from the system pressure being greater than the set pressure of the pressure relief device.
- ``Process heater'' means a device that transfers heat liberated by burning fuel to fluids contained in tubes, including all fluids except water that are heated to produce steam.
- ``Process vent'' means any open-ended pipe or stack that is vented to the atmosphere either directly, through a vacuum-producing system, or through a tank (e.g., distillate receiver, condenser, bottoms receiver, surge control tank, separator tank, or hot well) associated with hazardous waste distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operations.
- ``Repaired'' means that equipment is adjusted, or otherwise altered, to eliminate a leak.
- ``Sensor'' means a device that measures a physical quantity or the change in a physical quantity, such as temperature, pressure, flow rate, pH, or liquid level.
- ``Separator tank'' means a device used for separation of two immiscible liquids.
- ``Solvent extraction operation' means an operation or method of separation in which a solid or solution is contacted with a liquid solvent (the

two being mutually insoluble) to preferentially dissolve and transfer one or more components into the solvent.

- ``Startup'' means the setting in operation of a hazardous waste management unit or control device for any purpose.
- ``Steam stripping operation" means a distillation operation in which vaporization of the volatile constituents of a liquid mixture takes place by the introduction of steam directly into the charge.
- ``Surge control tank'' means a large-sized pipe or storage reservoir sufficient to contain the surging liquid discharge of the process tank to which it is connected.
- ``Thin-film evaporation operation" means a distillation operation that employs a heating surface consisting of a large diameter tube that may be either straight or tapered, horizontal or vertical. Liquid is spread on the tube wall by a rotating assembly of blades that maintain a close clearance from the wall or actually ride on the film of liquid on the wall.
- ``Vapor incinerator'' means any enclosed combustion device that is used for destroying organic compounds and does not extract energy in the form of steam or process heat.
- `Vented" means discharged through an opening, typically an openended pipe or stack, allowing the passage of a stream of liquids, gases, or fumes into the atmosphere. The passage of liquids, gases, or fumes is caused by mechanical means such as compressors or vacuum-producing systems or by process-related means such as evaporation produced by heating and not caused by tank loading and unloading (working losses) or by natural means such as diurnal temperature changes.

§ 264.1032 Standards: Process vents.

- (a) The owner or operator of a facility with process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operations managing hazardous wastes with organic concentrations of at least 10 ppmw shall either:
- (1) Reduce total organic emissions from all affected process vents at the facility below 1.4 kg/h (3 lb/h) and 2.8 Mg/yr (3.1 tons/yr), or
- (2) Reduce, by use of a control device, total organic emissions from all affected process vents at the facility by 95 weight percent.
 - (b) If the owner or operator installs a closed-vent system and control

device to comply with the provisions of paragraph (a) of this section the closed-vent system and control device must meet the requirements of § 264.1033.

- (c) Determinations of vent emissions and emission reductions or total organic compound concentrations achieved by add-on control devices may be based on engineering calculations or performance tests. If performance tests are used to determine vent emissions, emission reductions, or total organic compound concentrations achieved by add-on control devices, the performance tests must conform with the requirements of § 264.1034(c).
- (d) When an owner or operator and the Regional Administrator do not agree on determinations of vent emissions and/or emission reductions or total organic compound concentrations achieved by add-on control devices based on engineering calculations, the procedures in § 264.1034(c) shall be used to resolve the disagreement.
- § 264.1033 Standards: Closed-vent systems and control devices.
- (a)(1) Owners or operators of closed-vent systems and control devices used to comply with provisions of this part shall comply with the provisions of this section.
- (2) The owner or operator of an existing facility who cannot install a closed-vent system and control device to comply with the provisions of this subpart on the effective date that the facility becomes subject to the provisions of this subpart must prepare an implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation. The controls must be installed as soon as possible, but the implementation schedule may allow up to 18 months after the effective date that the facility becomes subject to this subpart for installation and startup. All units that begin operation after December 21, 1990, must comply with the rules immediately (i.e., must have control devices installed and operating on startup of the affected unit); the 2-year implementation schedule does not apply to these units.
- (b) A control device involving vapor recovery (e.g., a condenser or adsorber) shall be designed and operated to recover the organic vapors vented to it with an efficiency of 95 weight percent or greater unless the total organic emission limits of § 264.1032(a)(1) for all affected process vents can be attained at an efficiency less than 95 weight percent.
- (c) An enclosed combustion device (e.g., a vapor incinerator, boiler, or process heater) shall be designed and operated to reduce the organic emissions vented to it by 95 weight percent or greater; to achieve a total organic compound concentration of 20 ppmv, expressed as the sum of the

actual compounds, not carbon equivalents, on a dry basis corrected to 3 percent oxygen; or to provide a minimum residence time of 0.50 seconds at a minimum temperature of 760 °C. If a boiler or process heater is used as the control device, then the vent stream shall be introduced into the flame zone of the boiler or process heater.

- (d)(1) A flare shall be designed for and operated with no visible emissions as determined by the methods specified in paragraph (e)(1) of this section, except for periods not to exceed a total of 5 minutes during any 2 consecutive hours.
- (2) A flare shall be operated with a flame present at all times, as determined by the methods specified in paragraph (f)(2)(iii) of this section.
- (3) A flare shall be used only if the net heating value of the gas being combusted is 11.2 MJ/scm (300 Btu/scf) or greater if the flare is steamassisted or air-assisted; or if the net heating value of the gas being combusted is 7.45 MJ/scm (200 Btu/scf) or greater if the flare is nonassisted. The net heating value of the gas being combusted shall be determined by the methods specified in paragraph (e)(2) of this section.
- (4)(i) A steam-assisted or nonassisted flare shall be designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, less than 18.3 m/s (60 ft/s), except as provided in paragraphs (d)(4) (ii) and (iii) of this section.
- (ii) A steam-assisted or nonassisted flare designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, equal to or greater than 18.3 m/s (60 ft/s) but less than 122 m/s (400 ft/s) is allowed if the net heating value of the gas being combusted is greater than 37.3 MJ/scm (1,000 Btu/scf).
- (iii) A steam-assisted or nonassisted flare designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, less than the velocity, V_{max} , as determined by the method specified in paragraph (e)(4) of this section and less than 122 m/s (400 ft/s) is allowed.
- (5) An air-assisted flare shall be designed and operated with an exit velocity less than the velocity, V_{max} , as determined by the method specified in paragraph (e)(5) of this section.
- (6) A flare used to comply with this section shall be steam-assisted, air-assisted, or nonassisted.
 - (e)(1) Reference Method 22 in 40 CFR part 60 shall be used to

determine the compliance of a flare with the visible emission provisions of this subpart. The observation period is 2 hours and shall be used according to Method 22.

(2) The net heating value of the gas being combusted in a flare shall be calculated using the following equation:

where:

 H_T =Net heating value of the sample, MJ/scm; where the net enthalpy per mole of offgas is based on combustion at 25 °C and 760 mm Hg, but the standard temperature for determining the volume corresponding to 1 mol is 20 °C;

K=Constant, $1.74X10^{-7}$ (1/ppm) (g mol/scm) (MJ/kcal) where standard temperature for (g mol/scm) is 20 °C;

 C_i =Concentration of sample component i in ppm on a wet basis, as measured for organics by Reference Method 18 in 40 CFR part 60 and measured for hydrogen and carbon monoxide by ASTM D 1946-82 (incorporated by reference as specified in § 260.11); and

 H_i =Net heat of combustion of sample component i, kcal/9 mol at 25 °C and 760 mm Hg. The heats of combustion may be determined using ASTM D 2382-83 (incorporated by reference as specified in § 260.11) if published values are not available or cannot be calculated.

- (3) The actual exit velocity of a flare shall be determined by dividing the volumetric flow rate (in units of standard temperature and pressure), as determined by Reference Methods 2, 2A, 2C, or 2D in 40 CFR part 60 as appropriate, by the unobstructed (free) cross-sectional area of the flare tip.
- (4) The maximum allowed velocity in m/s, V_{max} , for a flare complying with paragraph (d)(4)(iii) of this section shall be determined by the following equation:

 $Log_{10}(V_{max})=(H_T+28.8)/31.7$

where:

28.8=Constant,

31.7=Constant,

 H_T =The net heating value as determined in paragraph (e)(2) of this section.

(5) The maximum allowed velocity in m/s, V_{max} , for an air-assisted flare shall be determined by the following equation:

$$V_{\text{max}} = 8.706 + 0.7084 \text{ (H}_{\text{T}})$$

where:

8.706=Constant,

0.7084=Constant,

 H_T =The net heating value as determined in paragraph (e)(2) of this section.

- (f) The owner or operator shall monitor and inspect each control device required to comply with this section to ensure proper operation and maintenance of the control device by implementing the following requirements:
- (1) Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow indicator that provides a record of vent stream flow from each affected process vent to the control device at least once every hour. The flow indicator sensor shall be installed in the vent stream at the nearest feasible point to the control device inlet but before the point at which the vent streams are combined.
- (2) Install, calibrate, maintain, and operate according to the manufacturer's specifications a device to continuously monitor control device operation as specified below:
- (i) For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. The temperature sensor shall be installed at a location in the combustion chamber downstream of the combustion zone.
- (ii) For a catalytic vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations and have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet.
 - (iii) For a flare, a heat sensing monitoring device equipped with a

continuous recorder that indicates the continuous ignition of the pilot flame.

- (iv) For a boiler or process heater having a design heat input capacity less than 44 MW, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. The temperature sensor shall be installed at a location in the furnace downstream of the combustion zone.
- (v) For a boiler or process heater having a design heat input capacity greater than or equal to 44 MW, a monitoring device equipped with a continuous recorder to measure a parameter(s) that indicates good combustion operating practices are being used.
 - (vi) For a condenser, either:
- (A) A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the condenser, or
- (B) A temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations and have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. One temperature sensor shall be installed at a location in the exhaust vent stream from the condenser, and a second temperature sensor shall be installed at a location in the coolant fluid exiting the condenser.
- (vii) For a carbon adsorption system that regenerates the carbon bed directly in the control device such as a fixed-bed carbon adsorber, either:
- (A) A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the carbon bed, or
- (B) A monitoring device equipped with a continuous recorder to measure a parameter that indicates the carbon bed is regenerated on a regular. predetermined time cycle.
- (3) Inspect the readings from each monitoring device required by paragraphs (f)(1) and (2) of this section at least once each operating day to check control device operation and, if necessary, immediately implement the corrective measures necessary to ensure the control device operates in compliance with the requirements of this section.
 - (g) An owner or operator using a carbon adsorption system such as a

fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device shall replace the existing carbon in the control device with fresh carbon at a regular, predetermined time interval that is no longer than the carbon service life established as a requirement of § 264.1035(b)(4)(iii) (F).

- (h) An owner or operator using a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device shall replace the existing carbon in the control device with fresh carbon on a regular basis by using one of the following procedures:
- (1) Monitor the concentration level of the organic compounds in the exhaust vent stream from the carbon adsorption system on a regular schedule, and replace the existing carbon with fresh carbon immediately when carbon breakthrough is indicated. The monitoring frequency shall be daily or at an interval no greater than 20 percent of the time required to consume the total carbon working capacity established as a requirement of § 264.1035(b)(4)(iii)(G), whichever is longer.
- (2) Replace the existing carbon with fresh carbon at a regular, predetermined time interval that is less than the design carbon replacement interval established as a requirement of § 264.1035(b)(4)(iii)(G).
- (i) An alternative operational or process parameter may be monitored if it can be demonstrated that another parameter will ensure that the control device is operated in conformance with these standards and the control device's design specifications.
- (j) An owner or operator of an affected facility seeking to comply with the provisions of this part by using a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system is required to develop documentation including sufficient information to describe the control device operation and identify the process parameter or parameters that indicate proper operation and maintenance of the control device.
- (k)(1) Closed-vent systems shall be designed for and operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background and by visual inspections, as determined by the methods specified as § 264.1034(b).
- (2) Closed-vent systems shall be monitored to determine compliance with this section during the initial leak detection monitoring, which shall be conducted by the date that the facility becomes subject to the provisions of this section, annually, and at other times as requested by the Regional Administrator.

- (3) Detectable emissions, as indicated by an instrument reading greater than 500 ppm and visual inspections, shall be controlled as soon as practicable, but not later than 15 calendar days after the emission is detected.
- (4) A first attempt at repair shall be made no later than 5 calendar days after the emission is detected.
- (I) Closed-vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.

[FR 25494, June 21, 1990, as amended at 56 FR 19290, Apr. 26, 1991]

- (a) Each owner or operator subject to the provisions of this subpart shall comply with the test methods and procedures requirements provided in this section.
- (b) When a closed-vent system is tested for compliance with no detectable emissions, as required in § 264.1033(k), the test shall comply with the following requirements:
- (1) Monitoring shall comply with Reference Method 21 in 40 CFR part 60.
- (2) The detection instrument shall meet the performance criteria of Reference Method 21.
- (3) The instrument shall be calibrated before use on each day of its use by the procedures specified in Reference Method 21.
 - (4) Calibration gases shall be:

§ 264.1034 Test methods and procedures.

- (i) Zero air (less than 10 ppm of hydrocarbon in air).
- (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.
- (5) The background level shall be determined as set forth in Reference Method 21.
- (6) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Reference

Method 21.

- (7) The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.
- (c) Performance tests to determine compliance with § 264.1032(a) and with the total organic compound concentration limit of § 264.1033(c) shall comply with the following:
- (1) Performance tests to determine total organic compound concentrations and mass flow rates entering and exiting control devices shall be conducted and data reduced in accordance with the following reference methods and calculation procedures:
 - (i) Method 2 in 40 CFR part 60 for velocity and volumetric flow rate.
 - (ii) Method 18 in 40 CFR part 60 for organic content.
- (iii) Each performance test shall consist of three separate runs; each run conducted for at least 1 hour under the conditions that exist when the hazardous waste management unit is operating at the highest load or capacity level reasonably expected to occur. For the purpose of determining total organic compound concentrations and mass flow rates, the average of results of all runs shall apply. The average shall be computed on a timeweighted basis.
- (iv) Total organic mass flow rates shall be determined by the following equation:

where:

 E_h =Total organic mass flow rate, kg/h;

Q_{sd}=Volumetric flow rate of gases entering or exiting control device, as determined by Method 2, dscm/h;

n=Number of organic compounds in the vent gas;

C_i=Organic concentration in ppm, dry basis, of compound i in the vent gas, as determined by Method 18;

MW_i=Molecular weight of organic compound i in the vent gas, kg/kg-mol;

0.0416=Conversion factor for molar volume, kg-mol/m³ (@ 293 K and 760

mm Hg);

10⁻⁶=Conversion from ppm, ppm⁻¹.

(v) The annual total organic emission rate shall be determined by the following equation:

 $E_A=(E_h)(H)$

where:

 E_A =Total organic mass emission rate, kg/y;

 E_h =Total organic mass flow rate for the process vent, kg/h;

H=Total annual hours of operations for the affected unit, h.

- (vi) Total organic emissions from all affected process vents at the facility shall be determined by summing the hourly total organic mass emission rates (E_h as determined in paragraph (c)(1)(iv) of this section) and by summing the annual total organic mass emission rates (E_A , as determined in paragraph (c)(1)(v) of this section) for all affected process vents at the facility.
- (2) The owner or operator shall record such process information as may be necessary to determine the conditions of the performance tests. Operations during periods of startup, shutdown, and malfunction shall not constitute representative conditions for the purpose of a performance test.
- (3) The owner or operator of an affected facility shall provide, or cause to be provided, performance testing facilities as follows:
- (i) Sampling ports adequate for the test methods specified in paragraph (c)(1) of this section.
 - (ii) Safe sampling platform(s).
 - (iii) Safe access to sampling platform(s).
 - (iv) Utilities for sampling and testing equipment.
- (4) For the purpose of making compliance determinations, the timeweighted average of the results of the three runs shall apply. In the event that a sample is accidentally lost or conditions occur in which one of the three runs must be discontinued because of forced shutdown, failure of an irreplaceable portion of the sample train, extreme meteorological conditions,

or other circumstances beyond the owner or operator's control, compliance may, upon the Regional Administrator's approval, be determined using the average of the results of the two other runs.

- (d) To show that a process vent associated with a hazardous waste distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operation is not subject to the requirements of this subpart, the owner or operator must make an initial determination that the time-weighted, annual average total organic concentration of the waste managed by the waste management unit is less than 10 ppmw using one of the following two methods:
- (1) Direct measurement of the organic concentration of the waste using the following procedures:
- (i) The owner or operator must take a minimum of four grab samples of waste for each waste stream managed in the affected unit under process conditions expected to cause the maximum waste organic concentration.
- (ii) For waste generated onsite, the grab samples must be collected at a point before the waste is exposed to the atmosphere such as in an enclosed pipe or other closed system that is used to transfer the waste after generation to the first affected distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operation. For waste generated offsite, the grab samples must be collected at the inlet to the first waste management unit that receives the waste provided the waste has been transferred to the facility in a closed system such as a tank truck and the waste is not diluted or mixed with other waste.
- (iii) Each sample shall be analyzed and the total organic concentration of the sample shall be computed using Method 9060 or 8240 of SW-846 (incorporated by reference under § 260.11).
- (iv) The arithmetic mean of the results of the analyses of the four samples shall apply for each waste stream managed in the unit in determining the time-weighted, annual average total organic concentration of the waste. The time-weighted average is to be calculated using the annual quantity of each waste stream processed and the mean organic concentration of each waste stream managed in the unit.
- (2) Using knowledge of the waste to determine that its total organic concentration is less than 10 ppmw. Documentation of the waste determination is required. Examples of documentation that shall be used to support a determination under this provision include production process information documenting that no organic compounds are used, information that the waste is generated by a process that is identical to a process at the

same or another facility that has previously been demonstrated by direct measurement to generate a waste stream having a total organic content less than 10 ppmw, or prior speciation analysis results on the same waste stream where it can also be documented that no process changes have occurred since that analysis that could affect the waste total organic concentration.

- (e) The determination that distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operations manage hazardous wastes with time-weighted, annual average total organic concentrations less than 10 ppmw shall be made as follows:
- (1) By the effective date that the facility becomes subject to the provisions of this subpart or by the date when the waste is first managed in a waste management unit, whichever is later, and
 - (2) For continuously generated waste, annually, or
- (3) Whenever there is a change in the waste being managed or a change in the process that generates or treats the waste.
- (f) When an owner or operator and the Regional Administrator do not agree on whether a distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operation manages a hazardous waste with organic concentrations of at least 10 ppmw based on knowledge of the waste, the procedures in Method 8240 may be used to resolve the dispute.
- § 264.1035 Recordkeeping requirements.
- (a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.
- (2) An owner or operator of more than one hazardous waste management unit subject to the provisions of this subpart may comply with the recordkeeping requirements for these hazardous waste management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit.
- (b) Owners and operators must record the following information in the facility operating record:
- (1) For facilities that comply with the provisions of § 264.1033(a)(2), an implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation. The schedule must also include a rationale of why the installation cannot be completed at an earlier date. The implementation schedule must be in the facility operating record by the effective date that the facility becomes subject to

the provisions of this subpart.

- (2) Up-to-date documentation of compliance with the process vent standards in § 264.1032, including:
- (i) Information and data identifying all affected process vents, annual throughput and operating hours of each affected unit, estimated emission rates for each affected vent and for the overall facility (i.e., the total emissions for all affected vents at the facility), and the approximate location within the facility of each affected unit (e.g., identify the hazardous waste management units on a facility plot plan).
- (ii) Information and data supporting determinations of vent emissions and emission reductions achieved by add-on control devices based on engineering calculations or source tests. For the purpose of determining compliance, determinations of vent emissions and emission reductions must be made using operating parameter values (e.g., temperatures, flow rates, or vent stream organic compounds and concentrations) that represent the conditions that result in maximum organic emissions, such as when the waste management unit is operating at the highest load or capacity level reasonably expected to occur. If the owner or operator takes any action (e.g., managing a waste of different composition or increasing operating hours of affected waste management units) that would result in an increase in total organic emissions from affected process vents at the facility, then a new determination is required.
- (3) Where an owner or operator chooses to use test data to determine the organic removal efficiency or total organic compound concentration achieved by the control device, a performance test plan. The test plan must include:
- (i) A description of how it is determined that the planned test is going to be conducted when the hazardous waste management unit is operating at the highest load or capacity level reasonably expected to occur. This shall include the estimated or design flow rate and organic content of each vent stream and define the acceptable operating ranges of key process and control device parameters during the test program.
- (ii) A detailed engineering description of the closed-vent system and control device including:
 - (A) Manufacturer's name and model number of control device.
 - (B) Type of control device.
 - (C) Dimensions of the control device.

- (D) Capacity.
- (E) Construction materials.
- (iii) A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency, and planned analytical procedures for sample analysis.
- (4) Documentation of compliance with § 264.1033 shall include the following information:
- (i) A list of all information references and sources used in preparing the documentation.
- (ii) Records, including the dates, of each compliance test required by § 264.1033(k).
- (iii) If engineering calculations are used, a design analysis, specifications, drawings, schematics, and piping and instrumentation diagrams based on the appropriate sections of ``APTI Course 415: Control of Gaseous Emissions'' (incorporated by reference as specified in § 260.11) or other engineering texts acceptable to the Regional Administrator that present basic control device design information. Documentation provided by the control device manufacturer or vendor that describes the control device design in accordance with paragraphs (b)(4)(iii)(A) through (b)(4)(iii)(G) of this section may be used to comply with this requirement. The design analysis shall address the vent stream characteristics and control device operation parameters as specified below.
- (A) For a thermal vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperature in the combustion zone and the combustion zone residence time.
- (B) For a catalytic vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average temperatures across the catalyst bed inlet and outlet.
- (C) For a boiler or process heater, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also establish the design minimum and average flame zone temperatures, combustion zone residence time, and description of

method and location where the vent stream is introduced into the combustion zone.

- (D) For a flare, the design analysis shall consider the vent stream composition, constituent concentrations, and flow rate. The design analysis shall also consider the requirements specified in § 264.1033(d).
- (E) For a condenser, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream, and design average temperatures of the coolant fluid at the condenser inlet and outlet.
- (F) For a carbon adsorption system such as a fixed-bed adsorber that regenerates the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total steam flow over the period of each complete carbon bed regeneration cycle, duration of the carbon bed steaming and cooling/drying cycles, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of carbon.
- (G) For a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The design analysis shall also establish the design outlet organic concentration level, capacity of carbon bed, type and working capacity of activated carbon used for carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule.
- (iv) A statement signed and dated by the owner or operator certifying that the operating parameters used in the design analysis reasonably represent the conditions that exist when the hazardous waste management unit is or would be operating at the highest load or capacity level reasonably expected to occur.
- (v) A statement signed and dated by the owner or operator certifying that the control device is designed to operate at an efficiency of 95 percent or greater unless the total organic concentration limit of § 264.1032(a) is achieved at an efficiency less than 95 weight percent or the total organic

emission limits of § 264.1032(a) for affected process vents at the facility can be attained by a control device involving vapor recovery at an efficiency less than 95 weight percent. A statement provided by the control device manufacturer or vendor certifying that the control equipment meets the design specifications may be used to comply with this requirement.

- (vi) If performance tests are used to demonstrate compliance, all test results.
- (c) Design documentation and monitoring, operating, and inspection information for each closed-vent system and control device required to comply with the provisions of this part shall be recorded and kept up-to-date in the facility operating record. The information shall include:
- (1) Description and date of each modification that is made to the closed-vent system or control device design.
- (2) Identification of operating parameter, description of monitoring device, and diagram of monitoring sensor location or locations used to comply with $\S 264.1033 (f)(1)$ and (f)(2).
- (3) Monitoring, operating, and inspection information required by paragraphs (f) through (k) of § 264.1033.
- (4) Date, time, and duration of each period that occurs while the control device is operating when any monitored parameter exceeds the value established in the control device design analysis as specified below:
- (i) For a thermal vapor incinerator designed to operate with a minimum residence time of 0.50 second at a minimum temperature of 760 °C. period when the combustion temperature is below 760 °C.
- (ii) For a thermal vapor incinerator designed to operate with an organic emission reduction efficiency of 95 weight percent or greater period when the combustion zone temperature is more than 28 °C below the design average combustion zone temperature established as a requirement of paragraph (b)(4)(iii)(A) of this section.
 - (iii) For a catalytic vapor incinerator, period when:
- (A) Temperature of the vent stream at the catalyst bed inlet is more than 28 °C below the average temperature of the inlet vent stream established as a requirement of paragraph (b)(4)(iii)(B) of this section, or
- (B) Temperature difference across the catalyst bed is less than 80 percent of the design average temperature difference established as a

requirement of paragraph (b)(4)(iii)(B) of this section.

- (iv) For a boiler or process heater, period when:
- (A) Flame zone temperature is more than 28 °C below the design average flame zone temperature established as a requirement of paragraph (b)(4)(iii)(C) of this section, or
- (B) Position changes where the vent stream is introduced to the combustion zone from the location established as a requirement of paragraph (b)(4)(iii)(C) of this section.
 - (v) For a flare, period when the pilot flame is not ignited.
- (vi) For a condenser that complies with § 264.1033(f)(2)(vi)(A), period when the organic compound concentration level or readings of organic compounds in the exhaust vent stream from the condenser are more than 20 percent greater than the design outlet organic compound concentration level established as a requirement of paragraph (b)(4)(iii)(E) of this section.
- (vii) For a condenser that complies with $\S 264.1033(f)(2)(vi)(B)$, period when:
- (A) Temperature of the exhaust vent stream from the condenser is more than 6 °C above the design average exhaust vent stream temperature established as a requirement of paragraph (b)(4)(iii)(E) of this section; or
- (B) Temperature of the coolant fluid exiting the condenser is more than 6 °C above the design average coolant fluid temperature at the condenser outlet established as a requirement of paragraph (b)(4)(iii)(E) of this section.
- (viii) For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device and complies with § 264.1033(f)(2)(vii)(A), period when the organic compound concentration level or readings of organic compounds in the exhaust vent stream from the carbon bed are more than 20 percent greater than the design exhaust vent stream organic compound concentration level established as a requirement of paragraph (b)(4)(iii)(F) of this section.
- (ix) For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device and complies with § 264.1033(f)(2)(vii)(B), period when the vent stream continues to flow through the control device beyond the predetermined carbon bed regeneration time established as a requirement of paragraph (b)(4)(iii)(F) of this section.

- (5) Explanation for each period recorded under paragraph (4) of the cause for control device operating parameter exceeding the design value and the measures implemented to correct the control device operation.
- (6) For a carbon adsorption system operated subject to requirements specified in § 264.1033(g) or § 264.1033(h)(2), date when existing carbon in the control device is replaced with fresh carbon.
- (7) For a carbon adsorption system operated subject to requirements specified in § 264.1033(h)(1), a log that records:
- (i) Date and time when control device is monitored for carbon breakthrough and the monitoring device reading.
- (ii) Date when existing carbon in the control device is replaced with fresh carbon.
 - (8) Date of each control device startup and shutdown.
- (d) Records of the monitoring, operating, and inspection information required by paragraphs (c)(3)-(c)(8) of this section need be kept only 3 years.
- (e) For a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system, the Regional Administrator will specify the appropriate recordkeeping requirements.
- (f) Up-to-date information and data used to determine whether or not a process vent is subject to the requirements in § 264.1032 including supporting documentation as required by § 264.1034(d)(2) when application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced is used, shall be recorded in a log that is kept in the facility operating record.

[55 FR 25494, June 21, 1990, as amended at 56 FR 19290, Apr. 26, 1991] § 264.1036 Reporting requirements.

(a) A semiannual report shall be submitted by owners and operators subject to the requirements of this subpart to the Regional Administrator by dates specified by the Regional Administrator. The report shall include the following information:

- (1) The Environmental Protection Agency identification number, name, and address of the facility.
- (2) For each month during the semiannual reporting period, dates when the control device exceeded or operated outside of the design specifications as defined in § 264.1035(c)(4) and as indicated by the control device monitoring required by § 264.1033(f) and such exceedances were not corrected within 24 hours, or that a flare operated with visible emissions as defined in § 264.1033(d) and as determined by Method 22 monitoring, the duration and cause of each exceedance or visible emissions, and any corrective measures taken.
- (b) If, during the semiannual reporting period, the control device does not exceed or operate outside of the design specifications as defined in § 264.1035(c)(4) for more than 24 hours or a flare does not operate with visible emissions as defined in § 264.1033(d), a report to the Regional Administrator is not required.

§§ 264.1037 -- 264.1049 [Reserved]

Subpart BB -- Air Emission Standards for Equipment Leaks

Source: 55 FR 25501, June 21, 1990, unless otherwise noted.

§ 264.1050 Applicability.

- (a) The regulations in this subpart apply to owners and operators of facilities that treat, store, or dispose of hazardous wastes (except as provided in § 264.1).
- (b) Except as provided in § 264.1064(k), this subpart applies to equipment that contains or contacts hazardous wastes with organic concentrations of at least 10 percent by weight that are managed in:
 - (1) Units that are subject to the permitting requirements of part 270, or
- (2) Hazardous waste recycling units that are located on hazardous waste management facilities otherwise subject to the permitting requirements of part 270.
- (c) If the owner or operator of equipment subject to the requirements of §§ 264.1052 through 264.1065 has received a permit under section 3005 of RCRA prior to December 21, 1990, the requirements of §§ 264.1052

through 264.1065 must be incorporated when the permit is reissued under § 124.15 or reviewed under § 270.50.

- (d) Each piece of equipment to which this subpart applies shall be marked in such a manner that it can be distinguished readily from other pieces of equipment.
- (e) Equipment that is in vacuum service is excluded from the requirements of \S 264.1052 to \S 264.1060 if it is identified as required in \S 264.1064(g)(5).

[Note: The requirements of §§ 264.1052 through 264.1065 apply to equipment associated with hazardous waste recycling units previously exempt under § 261.6(c)(1). Other exemptions under §§ 261.4, 262.34, and 264.1(g) are not affected by these requirements.]

§ 264.1051 Definitions.

As used in this subpart, all terms shall have the meaning given them in § 264.1031, the Act, and parts 260-266.

- § 264.1052 Standards: Pumps in light liquid service.
- (a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the methods specified in § 264.1063(b), except as provided in paragraphs (d), (e), and (f) of this section.
- (2) Each pump in light liquid service shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal.
- (b)(1) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (2) If there are indications of liquids dripping from the pump seal, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in § 264.1059.
- (2) A first attempt at repair (e.g., tightening the packing gland) shall be made no later than 5 calendar days after each leak is detected.
- (d) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraph

- (a) of this section, provided the following requirements are met:
 - (1) Each dual mechanical seal system must be:
- (i) Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure, or
- (ii) Equipped with a barrier fluid degassing reservoir that is connected by a closed-vent system to a control device that complies with the requirements of § 264.1060, or
- (iii) Equipped with a system that purges the barrier fluid into a hazardous waste stream with no detectable emissions to the atmosphere.
- (2) The barrier fluid system must not be a hazardous waste with organic concentrations 10 percent or greater by weight.
- (3) Each barrier fluid system must be equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (4) Each pump must be checked by visual inspection, each calendar week, for indications of liquids dripping from the pump seals.
- (5)(i) Each sensor as described in paragraph (d)(3) of this section must be checked daily or be equipped with an audible alarm that must be checked monthly to ensure that it is functioning properly.
- (ii) The owner or operator must determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
- (6)(i) If there are indications of liquids dripping from the pump seal or the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined in paragraph (d)(5)(ii) of this section, a leak is detected.
- (ii) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in § 264.1059.
- (iii) A first attempt at repair (e.g., relapping the seal) shall be made no later than 5 calendar days after each leak is detected.
- (e) Any pump that is designated, as described in § 264.1064(g)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs

- (a), (c), and (d) of this section if the pump meets the following requirements:
- (1) Must have no externally actuated shaft penetrating the pump housing.
- (2) Must operate with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background as measured by the methods specified in § 264.1063(c).
- (3) Must be tested for compliance with paragraph (e)(2) of this section initially upon designation, annually, and at other times as requested by the Regional Administrator.
- (f) If any pump is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal or seals to a control device that complies with the requirements of § 264.1060, it is exempt from the requirements of paragraphs (a) through (e) of this section.

[55 FR 25501, June 21, 1990, as amended at 56 FR 19290, Apr. 26, 1991] § 264.1053 Standards: Compressors.

- (a) Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of total organic emissions to the atmosphere, except as provided in paragraphs (h) and (i) of this section.
- (b) Each compressor seal system as required in paragraph (a) of this section shall be:
- (1) Operated with the barrier fluid at a pressure that is at all times greater than the compressor stuffing box pressure, or
- (2) Equipped with a barrier fluid system that is connected by a closedvent system to a control device that complies with the requirements of § 264.1060, or
- (3) Equipped with a system that purges the barrier fluid into a hazardous waste stream with no detectable emissions to atmosphere.
- (c) The barrier fluid must not be a hazardous waste with organic concentrations 10 percent or greater by weight.
- (d) Each barrier fluid system as described in paragraphs (a) through (c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.

- (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped with an audible alarm that must be checked monthly to ensure that it is functioning properly unless the compressor is located within the boundary of an unmanned plant site, in which case the sensor must be checked daily.
- (2) The owner or operator shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
- (f) If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined under paragraph (e)(2) of this section, a leak is detected.
- (g)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in § 264.1059.
- (2) A first attempt at repair (e.g., tightening the packing gland) shall be made no later than 5 calendar days after each leak is detected.
- (h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section if it is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal to a control device that complies with the requirements of § 264.1060, except as provided in paragraph (i) of this section.
- (i) Any compressor that is designated, as described in § 264.1064(g) (2), for no detectable emissions as indicated by an instrument reading of less than 500 ppm above background is exempt from the requirements of paragraphs (a) through (h) of this section if the compressor:
- (1) Is determined to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in § 264.1063(c).
- (2) Is tested for compliance with paragraph (i)(1) of this section initially upon designation, annually, and at other times as requested by the Regional Administrator.
- § 264.1054 Standards: Pressure relief devices in gas/vapor service.
- (a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in § 264.1063(c).

- (b)(1) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in § 264.1059.
- (2) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in § 264.1063(c).
- (c) Any pressure relief device that is equipped with a closed-vent system capable of capturing and transporting leakage from the pressure relief device to a control device as described in § 264.1060 is exempt from the requirements of paragraphs (a) and (b) of this section.
- § 264.1055 Standards: Sampling connecting systems.
- (a) Each sampling connection system shall be equipped with a closed purge system or closed-vent system.
- (b) Each closed-purge system or closed-vent system as required in paragraph (a) shall:
- (1) Return the purged hazardous waste stream directly to the hazardous waste management process line with no detectable emissions to atmosphere, or
- (2) Collect and recycle the purged hazardous waste stream with no detectable emissions to atmosphere, or
- (3) Be designed and operated to capture and transport all the purged hazardous waste stream to a control device that complies with the requirements of § 264.1060.
- (c) In situ sampling systems are exempt from the requirements of paragraphs (a) and (b) of this section.
- § 264.1056 Standards: Open-ended valves or lines.
- (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve.
 - (2) The cap, blind flange, plug, or second valve shall seal the open end

at all times except during operations requiring hazardous waste stream flow through the open-ended valve or line.

- (b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the hazardous waste stream end is closed before the second valve is closed.
- (c) When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) of this section at all other times.
- § 264.1057 Standards: Valves in gas/vapor service or in light liquid service.
- (a) Each valve in gas/vapor or light liquid service shall be monitored monthly to detect leaks by the methods specified in § 264.1063(b) and shall comply with paragraphs (b) through (e) of this section, except as provided in paragraphs (f), (g), and (h) of this section, and §§ 264.1061 and 264.1062.
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) Any valve for which a leak is not detected for two successive months may be monitored the first month of every succeeding quarter, beginning with the next quarter, until a leak is detected.
- (2) If a leak is detected, the valve shall be monitored monthly until a leak is not detected for two successive months,
- (d)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in § 264.1059.
- (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (e) First attempts at repair include, but are not limited to, the following best practices where practicable:
 - (1) Tightening of bonnet bolts.
 - (2) Replacement of bonnet bolts.
 - (3) Tightening of packing gland nuts.
 - (4) Injection of lubricant into lubricated packing.

- (f) Any valve that is designated, as described in § 264.1064(g)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraph (a) of this section if the valve:
- (1) Has no external actuating mechanism in contact with the hazardous waste stream.
- (2) Is operated with emissions less than 500 ppm above background as determined by the method specified in § 264.1063(c).
- (3) Is tested for compliance with paragraph (f)(2) of this section initially upon designation, annually, and at other times as requested by the Regional Administrator.
- (g) Any valve that is designated, as described in § 264.1064(h)(1), as an unsafe-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:
- (1) The owner or operator of the valve determines that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section.
- (2) The owner or operator of the valve adheres to a written plan that requires monitoring of the valve as frequently as practicable during safe-to-monitor times.
- (h) Any valve that is designated, as described in § 264.1064(h)(2), as a difficult-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:
- (1) The owner or operator of the valve determines that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface.
- (2) The hazardous waste management unit within which the valve is located was in operation before June 21, 1990.
- (3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year.
- § 264.1058 Standards: Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and flanges and other connectors.

- (a) Pumps and valves in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and flanges and other connectors shall be monitored within 5 days by the method specified in § 264.1063(b) if evidence of a potential leak is found by visual, audible, olfactory, or any other detection method.
- (b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected. except as provided in § 264.1059.
- (2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.
- (d) First attempts at repair include, but are not limited to, the best practices described under § 264.1057(e).
- § 264.1059 Standards: Delay of repair.
- (a) Delay of repair of equipment for which leaks have been detected will be allowed if the repair is technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall occur before the end of the next hazardous waste management unit shutdown.
- (b) Delay of repair of equipment for which leaks have been detected will be allowed for equipment that is isolated from the hazardous waste management unit and that does not continue to contain or contact hazardous waste with organic concentrations at least 10 percent by weight.
 - (c) Delay of repair for valves will be allowed if:
- (1) The owner or operator determines that emissions of purged material resulting from immediate repair are greater than the emissions likely to result from delay of repair.
- (2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with § 264.1060.
 - (d) Delay of repair for pumps will be allowed if:
 - (1) Repair requires the use of a dual mechanical seal system that

includes a barrier fluid system.

- (2) Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.
- (e) Delay of repair beyond a hazardous waste management unit shutdown will be allowed for a valve if valve assembly replacement is necessary during the hazardous waste management unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next hazardous waste management unit shutdown will not be allowed unless the next hazardous waste management unit shutdown occurs sooner than 6 months after the first hazardous waste management unit shutdown.
- § 264.1060 Standards: Closed-vent systems and control devices.

Owners or operators of closed-vent systems and control devices shall comply with the provisions of § 264.1033.

- § 264.1061 Alternative standards for valves in gas/vapor service or in light liquid service: percentage of valves allowed to leak.
- (a) An owner or operator subject to the requirements of § 264.1057 may elect to have all valves within a hazardous waste management unit comply with an alternative standard that allows no greater than 2 percent of the valves to leak.
- (b) The following requirements shall be met if an owner or operator decides to comply with the alternative standard of allowing 2 percent of valves to leak:
- (1) An owner or operator must notify the Regional Administrator that the owner or operator has elected to comply with the requirements of this section.
- (2) A performance test as specified in paragraph (c) of this section shall be conducted initially upon designation, annually, and at other times requested by the Regional Administrator.
- (3) If a valve leak is detected, it shall be repaired in accordance with § 264.1057(d) and (e).
 - (c) Performance tests shall be conducted in the following manner:
 - (1) All valves subject to the requirements in § 264.1057 within the

hazardous waste management unit shall be monitored within 1 week by the methods specified in § 264.1063(b).

- (2) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
- (3) The leak percentage shall be determined by dividing the number of valves subject to the requirements in § 264.1057 for which leaks are detected by the total number of valves subject to the requirements in § 264.1057 within the hazardous waste management unit.
- (d) If an owner or operator decides to comply with this section no longer, the owner or operator must notify the Regional Administrator in writing that the work practice standard described in § 264.1057(a) through (e) will be followed.
- § 264.1062 Alternative standards for valves in gas/vapor service or in light liquid service: skip period leak detection and repair.
- (a)(1) An owner or operator subject to the requirements of § 264.1057 may elect for all valves within a hazardous waste management unit to comply with one of the alternative work practices specified in paragraphs (b) (2) and (3) of this section.
- (2) An owner or operator must notify the Regional Administrator before implementing one of the alternative work practices.
- (b)(1) An owner or operator shall comply with the requirements for valves, as described in \S 264.1057, except as described in paragraphs (b)(2) and (b)(3) of this section.
- (2) After two consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2 percent, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves subject to the requirements in § 264.1057.
- (3) After five consecutive quarterly leak detection periods with the percentage of valves leaking equal to or less than 2 percent, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves subject to the requirements in § 264.1057.
- (4) If the percentage of valves leaking is greater than 2 percent, the owner or operator shall monitor monthly in compliance with the requirements in § 264.1057, but may again elect to use this section after meeting the requirements of § 264.1057(c)(1).

- § 264.1063 Test methods and procedures.
- (a) Each owner or operator subject to the provisions of this subpart shall comply with the test methods and procedures requirements provided in this section.
- (b) Leak detection monitoring, as required in §§ 264.1052-264.1062, shall comply with the following requirements:
- (1) Monitoring shall comply with Reference Method 21 in 40 CFR part 60.
- (2) The detection instrument shall meet the performance criteria of Reference Method 21.
- (3) The instrument shall be calibrated before use on each day of its use by the procedures specified in Reference Method 21.
 - (4) Calibration gases shall be:
 - (i) Zero air (less than 10 ppm of hydrocarbon in air).
- (ii) A mixture of methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.
- (5) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Reference Method 21.
- (c) When equipment is tested for compliance with no detectable emissions. as required in §§ 264.1052(e), 264.1053(i), 264.1054, and 264.1057(f), the test shall comply with the following requirements:
- (1) The requirements of paragraphs (b)(1) through (4) of this section shall apply.
- (2) The background level shall be determined as set forth in Reference Method 21.
- (3) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Reference Method 21.

- (4) The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.
- (d) In accordance with the waste analysis plan required by § 264.13(b), an owner or operator of a facility must determine, for each piece of equipment, whether the equipment contains or contacts a hazardous waste with organic concentration that equals or exceeds 10 percent by weight using the following:
- (1) Methods described in ASTM Methods D 2267-88, E 169-87, E 168-88, E 260-85 (incorporated by reference under § 260.11);
- (2) Method 9060 or 8240 of SW-846 (incorporated by reference under § 260.11); or
- (3) Application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced. Documentation of a waste determination by knowledge is required. Examples of documentation that shall be used to support a determination under this provision include production process information documenting that no organic compounds are used, information that the waste is generated by a process that is identical to a process at the same or another facility that has previously been demonstrated by direct measurement to have a total organic content less than 10 percent, or prior speciation analysis results on the same waste stream where it can also be documented that no process changes have occurred since that analysis that could affect the waste total organic concentration.
- (e) If an owner or operator determines that a piece of equipment contains or contacts a hazardous waste with organic concentrations at least 10 percent by weight, the determination can be revised only after following the procedures in paragraph (d)(1) or (d)(2) of this section.
- (f) When an owner or operator and the Regional Administrator do not agree on whether a piece of equipment contains or contacts a hazardous waste with organic concentrations at least 10 percent by weight, the procedures in paragraph (d)(1) or (d)(2) of this section can be used to resolve the dispute.
- (g) Samples used in determining the percent organic content shall be representative of the highest total organic content hazardous waste that is expected to be contained in or contact the equipment.
- (h) To determine if pumps or valves are in light liquid service, the vapor pressures of constituents may be obtained from standard reference texts or

may be determined by ASTM D-2879-86 (incorporated by reference under § 260.11).

- (i) Performance tests to determine if a control device achieves 95 weight percent organic emission reduction shall comply with the procedures of $\S 264.1034(c)(1)$ through (c)(4).
- § 264.1064 Recordkeeping requirements.
- (a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.
- (2) An owner or operator of more than one hazardous waste management unit subject to the provisions of this subpart may comply with the recordkeeping requirements for these hazardous waste management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit.
- (b) Owners and operators must record the following information in the facility operating record:
- (1) For each piece of equipment to which subpart BB of part 264 applies:
- (i) Equipment identification number and hazardous waste management unit identification.
- (ii) Approximate locations within the facility (e.g., identify the hazardous waste management unit on a facility plot plan).
 - (iii) Type of equipment (e.g., a pump or pipeline valve).
- (iv) Percent-by-weight total organics in the hazardous waste stream at the equipment.
 - (v) Hazardous waste state at the equipment (e.g., gas/vapor or liquid).
- (vi) Method of compliance with the standard (e.g., ``monthly leak detection and repair'' or ``equipped with dual mechanical seals'').
- (2) For facilities that comply with the provisions of § 264.1033(a)(2), an implementation schedule as specified in § 264.1033(a)(2).
- (3) Where an owner or operator chooses to use test data to demonstrate the organic removal efficiency or total organic compound concentration achieved by the control device, a performance test plan as

specified in § 264.1035(b)(3).

- (4) Documentation of compliance with § 264.1060, including the detailed design documentation or performance test results specified in § 264.1035(b)(4).
- (c) When each leak is detected as specified in §§ 264.1052, 264.1053, 264.1057, and 264.1058, the following requirements apply:
- (1) A weatherproof and readily visible identification, marked with the equipment identification number, the date evidence of a potential leak was found in accordance with § 264.1058(a), and the date the leak was detected, shall be attached to the leaking equipment.
- (2) The identification on equipment, except on a valve, may be removed after it has been repaired.
- (3) The identification on a valve may be removed after it has been monitored for 2 successive months as specified in §§ 264.1057(c) and no leak has been detected during those 2 months.
- (d) When each leak is detected as specified in §§ 264.1052, 264.1053, 264.1057, and 264.1058, the following information shall be recorded in an inspection log and shall be kept in the facility operating record:
- (1) The instrument and operator identification numbers and the equipment identification number.
- (2) The date evidence of a potential leak was found in accordance with § 264.1058(a).
- (3) The date the leak was detected and the dates of each attempt to repair the leak.
 - (4) Repair methods applied in each attempt to repair the leak.
- (5) ``Above 10,000'' if the maximum instrument reading measured by the methods specified in § 264.1063(b) after each repair attempt is equal to or greater than 10,000 ppm.
- (6) ``Repair delayed'' and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.
- (7) Documentation supporting the delay of repair of a valve in compliance with § 264.1059(c).

- (8) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a hazardous waste management unit shutdown.
- (9) The expected date of successful repair of the leak if a leak is not repaired within 15 calendar days.
 - (10) The date of successful repair of the leak.
- (e) Design documentation and monitoring, operating, and inspection information for each closed-vent system and control device required to comply with the provisions of § 264.1060 shall be recorded and kept up-to-date in the facility operating record as specified in § 264.1035(c). Design documentation is specified in § 264.1035 (c)(1) and (c)(2) and monitoring, operating, and inspection information in § 264.1035(c)(3)-(c)(8).
- (f) For a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system, the Regional Administrator will specify the appropriate recordkeeping requirements.
- (g) The following information pertaining to all equipment subject to the requirements in §§ 264.1052 through 264.1060 shall be recorded in a log that is kept in the facility operating record:
- (1) A list of identification numbers for equipment (except welded fittings) subject to the requirements of this subpart.
- (2)(i) A list of identification numbers for equipment that the owner or operator elects to designate for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, under the provisions of §§ 264.1052(e), 264.1053(i), and 264.1057(f).
- (ii) The designation of this equipment as subject to the requirements of §§ 264.1052(e), 264.1053(i), or 264.1057(f) shall be signed by the owner or operator.
- (3) A list of equipment identification numbers for pressure relief devices required to comply with § 264.1054(a).
- (4)(i) The dates of each compliance test required in §§ 264.1052(e), 264.1053(i), 264.1054, and 264.1057(f).
 - (ii) The background level measured during each compliance test.
 - (iii) The maximum instrument reading measured at the equipment

during each compliance test.

- (5) A list of identification numbers for equipment in vacuum service.
- (h) The following information pertaining to all valves subject to the requirements of § 264.1057 (g) and (h) shall be recorded in a log that is kept in the facility operating record:
- (1) A list of identification numbers for valves that are designated as unsafe to monitor, an explanation for each valve stating why the valve is unsafe to monitor, and the plan for monitoring each valve.
- (2) A list of identification numbers for valves that are designated as difficult to monitor, an explanation for each valve stating why the valve is difficult to monitor, and the planned schedule for monitoring each valve.
- (i) The following information shall be recorded in the facility operating record for valves complying with § 264.1062:
 - (1) A schedule of monitoring.
 - (2) The percent of valves found leaking during each monitoring period.
- (j) The following information shall be recorded in a log that is kept in the facility operating record:
- (1) Criteria required in $\S 264.1052(d)(5)(ii)$ and $\S 264.1053(e)(2)$ and an explanation of the design criteria.
 - (2) Any changes to these criteria and the reasons for the changes.
- (k) The following information shall be recorded in a log that is kept in the facility operating record for use in determining exemptions as provided in the applicability section of this subpart and other specific subparts:
- (1) An analysis determining the design capacity of the hazardous waste management unit.
- (2) A statement listing the hazardous waste influent to and effluent from each hazardous waste management unit subject to the requirements in §§ 264.1052 through 264.1060 and an analysis determining whether these hazardous wastes are heavy liquids.
- (3) An up-to-date analysis and the supporting information and data used to determine whether or not equipment is subject to the requirements in §§ 264.1052 through 264.1060. The record shall include supporting

documentation as required by § 264.1063(d)(3) when application of the knowledge of the nature of the hazardous waste stream or the process by which it was produced is used. If the owner or operator takes any action (e.g., changing the process that produced the waste) that could result in an increase in the total organic content of the waste contained in or contacted by equipment determined not to be subject to the requirements in §§ 264.1052 through 264.1060, then a new determination is required.

- (I) Records of the equipment leak information required by paragraph (d) of this section and the operating information required by paragraph (e) of this section need be kept only 3 years.
- (m) The owner or operator of any facility that is subject to this subpart and to regulations at 40 CFR part 60, subpart VV, or 40 CFR part 61, subpart V, may elect to determine compliance with this subpart by documentation either pursuant to § 264.1064 of this subpart, or pursuant to those provisions of 40 CFR part 60 or 61, to the extent that the documentation under the regulation at 40 CFR part 60 or part 61 duplicates the documentation required under this subpart. The documentation under the regulation at 40 CFR part 60 or part 61 shall be kept with or made readily available with the facility operating record.

(Approved by the Office of Management and Budget under control number 2060-0195)

- § 264.1065 Reporting requirements.
- (a) A semiannual report shall be submitted by owners and operators subject to the requirements of this subpart to the Regional Administrator by dates specified by the Regional Administrator. The report shall include the following information:
- (1) The Environmental Protection Agency identification number, name, and address of the facility.
 - (2) For each month during the semiannual reporting period:
- (i) The equipment identification number of each valve for which a leak was not repaired as required in § 264.1057(d).
- (ii) The equipment identification number of each pump for which a leak was not repaired as required in § 264.1052 (c) and (d)(6).
- (iii) The equipment identification number of each compressor for which a leak was not repaired as required in § 264.1053(g).

- (3) Dates of hazardous waste management unit shutdowns that occurred within the semiannual reporting period.
- (4) For each month during the semiannual reporting period, dates when the control device installed as required by § 264.1052, 264.1053, 264.1054, or 264.1055 exceeded or operated outside of the design specifications as defined in § 264.1064(e) and as indicated by the control device monitoring required by § 264.1060 and was not corrected within 24 hours, the duration and cause of each exceedance, and any corrective measures taken.
- (b) If, during the semiannual reporting period, leaks from valves, pumps, and compressors are repaired as required in §§ 264.1057 (d), 264.1052 (c) and (d)(6), and 264.1053 (g), respectively, and the control device does not exceed or operate outside of the design specifications as defined in § 264.1064(e) for more than 24 hours, a report to the Regional Administrator is not required.

§§ 264.1066 -- 264.1079 [Reserved]

>> End of File 264C. 40 CFR Part 264 is continued in File 264D. < < <