
***** Computer Select, July 1993 : Articles *****

Journal: Computer Shopper July 1993 v13 n7 p528(4)
* Full Text COPYRIGHT Coastal Associates Publishing LP 1993.

Title: Year of the OS, part two: Unix versus Windows NT. (operating

system)
Author: Bryan, John

Abstract: There are several differences between two of the most powerful
desktop operating systems (OS), Microsoft Corp's Microsoft
Windows NT and Unix. While Windows NT is designed to function
as a standalone, prioritized multitasking system, most
versions of Unix are multiuser, time-sharing and multi-tasking
systems. Because of the their many powerful elements, both
OSs require a substantial amount of computing resources to
reach their potential. NT is an event-driven system; Unix is
process-driven. Event-driven means NT prioritizes processor
functions by events. An event is the initiation of a process
caused by any external signal. NT is a true graphical
operating environment, while Unix is character-based. The two
main standards on which most Unix packages are based are
System V Release 4 and OSF/1. NT probably has the best chance
of becoming the dominant OS because it is a new system based
on the best elements of its predecessors.

Full Text:

Last month, we defined the desirable features of a modern operating
system, and compared those features to Windows/DOS, Unix, OS/2, NT, and
System 7. Our wish list included: system-to-system communications,
transparent application-to-application data exchange, multiple concurrent
applications, a linear memory scheme with application protection, virtual
memory, and support for multiple processors. When push came to shove,
only two OSs have made it to part two: Unix and NT. This month, we'll
take apart both operating systems and see just where the real power lies.

THE UNIX AND NT DIFFERENCE

Several fundamental differences exist between Unix, in any form, and
Windows NT. First, Unix is a multiuser, multitasking, and time-sharing
operating system, while NT is designed primarily as a single-user,
prioritized multitasking OS. Actually, that is not quite true of NT:
Though it does not support a terminal mode of many users accessing the
same central processor, it does support client/server computing. The
client is not restricted to using Windows for Workgroups, but may be run
on distributed systems running DOS or Windows, or on a Macintosh or
workstation running Unix. Both NT and Unix, however, are high-end
operating systems that require a significant commitment in terms of
computing power in order to be effective.

NT borrows a concept from System 7's design that produces a second
functional difference between NT and Unix: NT is an event-driven
operating system. Unix and DOS, and most other systems, are
process-driven. An event-driven system prioritizes processor activity by
events--that is, any external stimuli which signals the initiation of a
process. This consideration has a further-reaching impact than one might
at first think, though the most notable is the priority of the active

window in the graphical environment.

Another conceptual difference is that NT is a truly graphical operating
system, rather than a character-based OS with a graphical interface
pasted on top, as is the case with DOS/Windows and Unix/Motif or Unix
with X Windows. This produces a distinctly different look and feel in
the manner in which the system handles output and application
responsiveness. All screen output under NT is handled by the Win32
sub-system, with other application environments translated. Under Unix,
an application may or may not be supported by the graphical interface,
and many applications will manipulate the screen directly.

UNIX BY FLAVORS

Unix is in a process of unification toward a standard API, or Application
Program Interface, but it isn't there yet. The vast majority of Unix
flavors fall into one of two versions. The first is System V Release 4,
or SVR4. SVR4 is AT&T's version of the complete operating system. SVR4
brings together most of the functions and systems of AT&T, Berkeley BSD,
and Sun OS releases into a single package standardized under the SVID
(System V Interface Definition) suite of benchmarks.

This other standard of Unix (I hesitate to say "second standard") is
OSF/1. OSF, the Open Software Foundation, is a consortium of vendors led
by IBM, DEC, and HP, all of whom were concerned about AT&T's agreements
with Sun Microsystems regarding the direction and development of Unix.
The group banded together to push OSF/1, a version of Unix based on the
Mach kernel developed at Carnegie-Mellon University. The primary
differences between OSF/1 and SVR4 is OSF/1's support, in its standard
configuration, of symmetrical multiprocessing and "threads."

So how does each operating system handle the various functions in its
environment? Let's take a closer look.

THE POWER OF UNIX

Unix had its beginnings in AT&T's development labs over 20 years ago, and
has evolved into today's operating system of choice for a large number of
platform types and processors. Without going into all of the various
evolutions and permutations, it is sufficient to say that Unix has
arrived in the '90s as a complete, highly functional OS that has been
adapted to the widest range of systems of any operating system.

Unix consists of five major components. These include the operating
system kernel, the user command interface, Unix commands and utilities,
Unix system services, and the Unix programming interface. Unix is
unusual in that the user command interface is not an integral part of the
operating system. It is a separate program, loaded like any other, and
interchangeable. There are several popular user command systems, among
them the "C" shell and the Bourne shell. Another modification is the "X"
window, or Motif interface, which gives Unix a graphical element, though
these are not as complete as those found in a system designed from the
"ground up" for a graphical interface.

AT&T's Unix is a monolithic design, meaning that all of the fundamental
portions of the operating system, hardware dependent or otherwise, are
interrelated to one another. In terms of adaptive system architecture,
this means that Unix is hard to modify for new devices because of the
amount of code that has to be changed.

This is an important point. Device support is probably the single most
significant problem that any operating system faces in a non-regulated
environment. By non-regulated, I mean any situation where hardware comes
from a wide variety of vendors, with different system and peripheral
types. Unix's origins are in the large-system environment, and Unix is
still generally supplied by, and customized to, the hardware vendor.

OSF/1, with its Mach microkernel, has some advantages in this respect.
Microkernel architectures operate on a client/server basis, and device
support and other functions can operate out of user space. In this
format, the system is protected from crashing in the case of an error in
application code.

The Unix kernel, the heart or core of the operating system, is
responsible for several functions. Among these are process scheduling,
device management, disk and file management, system calls, and the user
console interface. These general functions exist throughout the kernel
in several modules.

The innermost layers interact directly with the system hardware, and
perform the basic functions which give Unix its power. These layers are
generally written with a fair amount of assembly code, which is
non-portable, and means that modifications must be largely written. At
this level, the operating system also handles process representation,
scheduling, and dispatching. The process scheduler also handles
synchronization (Unix is, first and foremost, a time-sharing OS) and
interprocess communication.

I/O services are handled by Unix in a unique manner. Each I/O device is
established as a special file, and is accessed by the Unix file system.
All special files, as opposed to user data files, are kept in the /dev
directory. Even a system's main memory is accessed through a special
file. Unix file services provide protection for all files in a Unix
system, and the kernel provides special protection for main memory and
the active disk.

Most readers will be familiar with the layout of the Unix file system
because it is the model upon which DOS is based. The standard Unix
layout, though, contains several directories that are more or less
mandatory to the function of the system. Besides the root directory,/,
these include the /dev,/usr, /etc,/bin, and /usrs directories.

I've already mentioned that the /dev (for device) directory holds the
special files used for device support. The /usr directory is where the
system commands and program files are stored, in much the same fashion as
a /dos directory in a DOS system (at least in mine). /etc contains the
files which maintain information about the user: who is logged on to the
system at any given moment, passwords, etc. /bin is where utility
programs are commonly kept. /users may be located under /usr, or may
mounted under /, and is where the individual users store their files
and/or create their own directories.

Again, Unix is designed to be a time-sharing OS, granting every process a
quantum of processor resources in order to maintain equitability of
function for each user. In the graphical environment, since Unix does
not prioritize the processes associated with running a GUI, as opposed to
disk function or I/O, performance at that interface will frequently
suffer. It is not uncommon to see individual windows in the "X"

environment wait for a redraw as underlying processes, like a disk seek,
execute.

One of the major problems is defining a "standard" Unix is that everyone
has a version of the operating system ported to their hardware. Unix, in
one incarnation or another, is available for every 32-bit and most 16-bit
processors ever made. It has been adapted to the realtime environment,
supercomputer systems, portables, mini- and mainframe installations, and
personal computers.

ENTER NT

While Windows NT is not ported to every processor under the sun, it is
available for systems based on Intel's 386-compatible CPUs, the MIPS
R4000, and the DEC Alpha. This provides a wide array of system hardware
to choose from, more or less something for everyone. And where Unix must
have a graphical interface added (in the form of X Windows or Motif), the
GUI of Windows NT is an integral part of the OS, identical in appearance
to the already popular Windows 3.x.

The core of Windows NT is a microkernel, a similar design concept to
Mach, the basis of OSF/1. A microkernel doesn't necessarily mean that
the complete operating system is small, though, and in this case it
certainly isn't (with all the bells and whistles, the beta release of NT
likes 12Mb or more of RAM). What a microkernel does for NT is make the
code easily adaptable to any type of 32-bit CPU. NT's kernel sits atop
the hardware-dependent portion of the operating system, the HAL, or
Hardware Abstraction Layer. The HAL is what makes each variation of
underlying hardware appear the same to the kernel.

The HAL handles the system bus, the DMA controller, the memory system,
the interrupt controller, and system timers, parceling out resources to
the kernel. Microsoft has provided a HAL for Intel and compatible
processors, for the MIPS R4000, and for Digital Equipment's Alpha. All
of these are for uniprocessor machines. Manufacturers who produce
multiprocessor SMP systems, like the Compaq Systempro, provide their own
HAL for each platform. The division between HAL and kernel makes this a
much easier task than adapting a Unix system to a customized platform.

Like Unix, the Windows NT environment is divided into two separate modes,
user and kernel. In the kernel mode space are the system services, a
blanket designation for several kernel functions, the kernel itself, and
the HAL. The combined kernel and system services are called the NT
Executive. While system services include many of the same functions
found in the Unix kernel, there are some differences.

The components of the NT Executive are the kernel, the object manager,
the security reference monitor, the process manager, the local procedure
call facility, the virtual memory manager, and the I/O manager, which has
several submodules under the aegis of its control. Each of these modules
is isolated via an API-like interface that allows modification or
replacement without changes being implemented in adjacent or underlying
modules.

Windows NT is as close to an object-oriented operating system as is
currently available. Object orientation means that the data that must be
manipulated is formatted as a group of "objects" with a defined set of
characteristics. This minimizes the amount of software that must be
rewritten in order to encompass a change in data type. In an operating

system, the "data" that is being manipulated are the components of the
system, files, devices, memory, processes, etc. The creation,
management, and deletion of these "objects" is handled by NT's object
manager.

The process manager is NT's equivalent of Unix's swapper. This module
manages the processes and threads of execution that make NT run. But
where the Unix swapper runs as a continuous background process, the
process manager runs in the context of the executing thread, reducing
operating system overhead. Actually, as in OSF/1, the implementation of
threads in NT also reduces system overhead, allowing more efficient
operation of the OS.

Because NT supports several different operating subsystems (DOS, POSIX,
OS/2, Win16, and Win32), the virtual memory manager has a rather complex
task in providing protected memory space for all of the simultaneous
potential applications that might be running on the system. Indeed, each
of the processors currently supported by NT looks at memory in subtly
different ways, so that the VM manager has to manipulate data blocks both
coming and going.

NT's VM manager is able to map up to 4 gigabytes (232 bytes) of memory
space, a not inconsiderable amount. Two gigabytes of this space are
earmarked for user processes, while two gigabytes are reserved for kernel
processes. In lieu of actually having this much RAM in one's system, the
VM manager is able to swap "pages" of memory to disk as the physical
memory of the system becomes full. NT supports page sizes from 4K to
64K, but the default is 4K. Because NT is a true multitasking OS, VM
manager supports multiple pages associated with multiple threads of
execution, protecting memory space while allowing processes shared
access.

Windows NT is a secure system, meaning that each user must log on to the
system and establish an ID. This system is managed by the security
reference monitor. The government's National Computer Security Center
has established several levels of security for computers and operating
systems, from A1 (highest) to D (lowest). Versions of Unix are
represented at about every level, though the standard implementation is
generally rated at C1 (Discretionary Security). NT is designed to
provide C2 protection (Controlled System Access), a slightly higher
level.

The security reference monitor maintains this protection in much the same
fashion as Unix security systems, with encrypted passwords, but NT has a
generally higher level of granularity than Unix. Greater granularity
means that more aspects of more objects are protected, including memory
protection, device protection, and auditing of security-related
activities. NT is also designed to be easily migrated to the B2
(Structured Protection) level of security, more appropriate for secure
government installations or financial institutions.

The user mode of NT, as opposed to the kernel mode, supports the user
subsystems, which communicate with the Executive via the Local Procedure
Call Facility. The LPC is a highly optimized version of the
industry-standard RPC (Remote Procedure Call) found in network
environments. The LPC serves as the interface between the user
subsystems and the executive, translating messages and coordinating the
message traffic.

The messages come from several protected subsystems found in the user
mode section of Windows NT. Of these subsystems, the Win32 subsystem is
the most significant, for a variety of reasons. The Win32 subsystem
controls all output to the system display, and receives all output from
the application environments. There are five environment subsystems in
which applications may be run. These are Win32, POSIX, OS/2, DOS, and
Win16. These environments are call "clients."

The Win32, POSIX, and OS/2 environments are full 32-bit APIs. The DOS
and Win16 APIs run in a VDM, or Virtual DOS Machine, which is supported
by the Win32 subsystem. There are other subsystems that are not
environments--for instance, the security subsystem and networking support
subsystems.

To reiterate here, Windows NT is a graphical environment, not a graphical
interface running on a character-based system. It looks like plain old
Windows, but underneath it is a much different breed. Where Windows is
an application for DOS, both Windows and DOS are applications on NT.

One benefit of having all of the client environments run under the Win32
subsystem is that Win32 provides a translation between APIs for the
various client environments, making communication between applications
possible. It is also another key of the system so that any may be
modified, updated, or even removed without affecting the rest of the
system.

From the standpoint of migration, the Win16 and DOS subsystems are
especially important to the millions of current users of those systems.
Both of these subsystems run in a VDM. Because DOS applications are
particularly ill-behaved in a multitasking environment, it is the task of
the VDM to isolate the DOS application and protect other subsystems while
having the DOS app believe that it has control of the environment. DOS
applications also handle memory in a different manner than NT's flat
32-bit model, and the Win32 subsystem handles the translation from the
segment:offset model to the Windows NT native mode.

THE HARDWARE IT TAKES

Both Unix and Windows NT are high-end operating systems, and the
resources required to run them effectively are significant. Unix has an
installed base in the workstation environment, where Windows has been
conspicuously absent. But the popularity of X Windows and Motif has made
it obvious that a graphical interface is a desirable alternative to the
command line for almost any user. All this aside, a significant
proportion of systems currently in use are not capable of running either
system, Windows NT or Unix with X or Motif.

The vast majority of installed systems in the business environment are
built around the Intel 8086 processor, with a surprising percentage based
on the 80286. After all, the IBM AT-339 was the single most popular
computer system ever sold, and there are a fair few left running. But
estimates of the number of PC-compatible systems run as high as 75
million, perhaps more, and even the percentage of these that are
386-based or higher far eclipses the number of RISC- or CISC-based
workstations installed.

The requirements for running either operating system are remarkably
similar. While Unix has been ported to a number of 16-bit processors, it
isn't really worth running without a 32-bit engine, preferably a fast

one. NT is 32-bit only; indeed, it is only available on three processor
types, the 386 and compatibles family, the MIPS R4000, and the DEC Alpha.

Microsoft claims that NT is targeted to run on systems with as little as
8Mb of RAM by the time shrink-wrapped software reaches the shelf, though
it certainly hasn't made it there yet. Unix will run quite handily in
8Mb of space, though the results are better if there is more memory.
100Mb is the minimum recommended disk size for either operating system,
and again, more is better.

The ideal operating system would be able to run on all of the hardware
platforms in the installed base, and would be easily portable to new
hardware as it becomes available. Unix has this characteristic, but,
unfortunately, it is not a single version of the operating system that
accomplishes the task. Instead, every major manufacturer has ported a
version of Unix to their systems, and applications are generally not
compatible from one version to the next.

TOMORROW'S DESKTOP

Unix has been around for better than 20 years, and every few years some
pundit says that Unix is "poised to take off" in terms of popularity.
Somehow, though, it still hasn't. SVR4 is as close to unified API as
Unix has gotten, yet there is some significant competition in the OSF/1
consortium. Sun Microsystems is the number one provider of
workstation-class systems, but IBM is the number one provider of business
computers. Of course, the waters are further muddied by IBM's support of
OS/2 on its personal computer line, which could have an impact on NT's
acceptance. In any case, what really hinders Unix is the lack of
"shrink-wrapped" applications for a single standard operating system.

NT provides application compatibility across platform types, and it
appears to offer enough additional benefits to justify its use as a
primary operating system in just about any environment. One factor in
the eventual popularity of NT will be the acceptance, by the power-user
crowd, of systems built around the R4000, the Alpha, and Intel's Pentium.
Introduction of these systems should push the price point of 486-based
platforms somewhat lower than they already are, and this could also boost
NT sales.

Microsoft has plans to introduce, in the next couple of years, operating
systems that will enhance the position of NT as the patriarch
(matriarch?) of a Windows "family" of systems, covering systems from
portables to dedicated network, database, and video servers. Microsoft
will release, sometime in 1993, Win32s, a version of the Windows NT API
that will allow a 32-bit binary to run on a 16-bit Windows 3.1 system,
and a new version of DOS, currently called "Chicago," that will (finally)
break the 64OK barrier of all previous DOS releases.

Overall, Windows NT holds the better position in the race to become the
dominant operating system of the second half of the '90s. Unix is a fine
system, but it is carrying the baggage of 20 years of disparate
development, while NT is a brand-new system that borrows on the strengths
of a number of its predecessors. As this article is published, Windows
NT may still not be available to the end user, but if the product is
priced well, it should be phenomenally successful.

Company: Microsoft Corp.
Product: Microsoft Windows NT

Topic: Operating Systems
UNIX
Comparison
Functional Capabilities
Software Design

Record#: 13 912 807.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: PC Magazine June 15 1993 v12 n11 p240(4)
* Full Text COPYRIGHT Ziff-Davis Publishing Company 1993.

Title: Interactive Unix. (from SunSoft Inc.) (Software Review) (one

of seven Unix operating systems evaluated in The Beast Turns
Beauty: Unix on Intel) (Evaluation)

Author: Linthicum, David S.
Vaughan-Nichols, Steven J.

Abstract: SunSoft Inc's Interactive Unix version 3.0.1 is the oldest of
the seven Unix operating systems for Intel processors
evaluated in this series, and it is also one of the most
solid. A new release is under development despite SunSoft's
widely discussed plans to port Solaris to Intel processors.
Interactive Unix will be sold to small businesses that need a
multiuser, multitasking operating system, while Solaris will
be marketed to large corporations needing a distributed
computing environment for client/server, mission-critical
applications. The operating system is based on the SVR3.2
kernel, so it is not as compatible with applications written
for various Unix versions. Interactive Unix costs $495 for
two users and $3,195 for unlimited users; a network version of
the basic operating system costs $895. Visix Software's
Looking Glass 2.01 Motif-based GUI is bundled with the
operating system, but this is still not the best choice for
users looking for their first Unix package.

Full Text:

Interactive Unix, Version 3.0.1

SunSoft Inc., 2550 Garcia Ave., Mountain View, CA 94043; 800-227-9227,
415-960-3200; fax, 415-336-0362 List price: Basic package for two users,
$495; complete package for unlimited users, $3,195. Requires: 386-based
PC or better, 4MB RAM (8MB recommended), 120MB hard disk space.

In short: Superior system administration tools, an excellent GUI, and
stability are overshadowed by so-so DOS support and lack of non-TCP/IP
protocols. Still, this product is good for small, Unix-oriented
companies.

The oldest Unix version in this roundup is also one of the most solid.
SunSoft's Interactive Unix, Version 3.0.1, has improved with age. And
despite SunSoft's porting of Solaris to the x86 platform--a procedure
that's still in progress and talked about frequently--Interactive hasn't
been laid to rest; a new release is in the works. (For more information
on Solaris, see the sidebar "Solaris 2.1: The Rise of a New Sun?")

While SunSoft is readying Solaris to accommodate after large corporations
that need a distributed computing environment designed for client/server,
mission-critical applications, Interactive remains a solution for small
businesses that need a multiuser, multitasking operating system.

Interactive is well-suited for the task. The only drawback is that
Interactive's kernel--SVR3.2--is not as compatible with applications
written for different flavors of Unix as are the newer SVR4 and SVR4.2

versions of Unix.

You can purchase either a two-user version ($495) or a network version
($895) of the basic operating system. Most users, however, will want to
opt for SunSoft's more complete configurations: Application Platform
($985), Network Platform ($1,315), Workstation Platform ($1,535), and
Workstation Developer Platform ($2,635). The first of these is designed
for users who will be running bread-and-butter character-based

DOS and Unix applications. The network package includes complete TCP/IP
and NFS software. The workstation edition adds an excellent GUI system
called Easy Windows. Finally, programmers will want to get their hands
on the Workstation Developer Platform, which we used for our tests. This
included the TCP/IP and NFS networking protocols, the VP/ix DOS emulator,
the TEN/PLUS user environment, the software development system, and X
Window.

EASY INSTALL AND ROCK-SOLID

Installing a Unix system is not an easy job, but SunSoft has made it as
painless as possible for a disk-based system. Though we would prefer to
see CD-ROM installation available, even with 3.5-inch floppy disks it
took us only an hour to install the entire operating system. You could
spend full days installing other versions of Unix. But if you have an
unusual setup--say, an IDE hard disk and a SCSI unit--be prepared to get
cozy with the manuals. The information you need will probably be in
there, but only a Unix systems administrator could love these manuals.

Also, to reap the full benefit of any extra system RAM you might add, you
must reconfigure and rebuild the kernel; the other reviewed Unix systems
handle reconfiguration more transparently.

Any Unix administrator will appreciate Interactive's one-stop approach to
system administration: the character-based sysadm utility. Almost every
commonly used system administration task can be accomplished from sysadm;
with its clean, complete design, the utility stands out.

Interactive's Unix foundation is SunSoft's port of AT&T's SVR3.2.
Although far from the state of the art in Unix research, the operating
system has been thoroughly tested and debugged. If you're tired of
bleeding all over technology's cutting edge, you will find Interactive's
stability a pleasant change of pace. SunSoft hasn't stuck completely to
System V Release 3.2 of Unix. Interactive also included some
enhancements present in BSD Unix. The most noteworthy of these is
sendmail. This mail handler lets you more easily set up multiple-network
node connections. Other BSD improvements will be available in Version
4.0 of Interactive. This upgrade will let you time events to within
milliseconds instead of seconds, assign files names up to 255 characters
in length, and create file names with "aliases," which are symbolic links
to other files. These enhancements will let SVR3.2 Unix work with the
newer SVR4 and BSD file systems.

STICK TO THE BASICS

Interactive's networking facilities are standard TCP/IP and NFS; you'll
find no surprises here. The basic system comes with only standard Unix
security; a C2-level module is available separately for $655.

The VP/ix DOS emulator runs well, within limits. While VP/ix can emulate

LIM EMS 4.0, it can't supply you with extended memory. Ordinary DOS
character-based programs will run smoothly, but you can forget about
anything more elaborate, such as Microsoft Windows 3.1. (Windows 3.0 is
supported in Real mode only.) SVR3.2 is a Unix first and doesn't play as
nicely with the DOS world as do the other operating systems.

On the other hand, since Interactive is compatible with SCO Xenix
applications, you may not miss DOS. For office work under Unix, SunSoft
supplies TEN/PLUS, which combines an easy-to-use file manager with a word
processor and an optional e-mail interface. While not the equal of
top-flight apps that do the same things, it is easy to use and functional
enough for most.

For programmers, Interactive comes with two C compliers, a full-fledged
context-sensitive editor, and a source-level debugger. Source code is
provided for X Window System 11 Release 5, and you also get access to the
Motif toolkit.

CALLING ALL SMALL BUSINESSES

Users who want to use a GUI, not write one, will enjoy Visix Software's
Looking Glass 2.01, Interactive's bundled GUI desktop manager. Looking
Glass's Motif-based user interface, ease of customization, and speed
gives us what we want from a GUI: a way of getting more work from the
machine without any hassles.

Interactive's documentation is plentiful, and we found the
customer-support technicians (available for the price of a call) to be
friendly and well-informed.

Interactive may not be as fancy as some of the other systems in this
roundup, but then none of the others could run with as little memory and
with just a 386SX. Popular Unix and DOS business software ran
flawlessly. Interactive is a stable, tried, and tested product that
makes an ideal backbone operating system for a small business. While it
doesn't have the bells and whistles of UnixWare or SCO Open Desktop,
users who are already comfortable with Unix may find it the ideal
platform for their homes and offices. But if you're not already sold on
Unix, this might not be the place to begin.

[TABULAR DATA OMITTED]

Type: software review

evaluation
Company: SunSoft Inc.
Product: Interactive Unix 3.0.1
Topic: Evaluation

Unix-like operating systems

Record#: 13 762 026.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: Corporate Computing May 1993 v2 n5 p121(1)
* Full Text COPYRIGHT Ziff-Davis Publishing Company 1993.

Title: In defense of Unix security. (Special Report on Security: Weak

Links)
Author: Ruber, Peter

Abstract: Most users see Unix as providing poor security, but its
security is comparable to other systems, and new security
products for Unix are coming out in 1993. Products are also
emerging for a wider variety of Unix implementations than ever
before. Unix security is increasingly important as Unix
becomes more popular for distributed systems. Demax
Software's SecureMax 3.0 software meets the National Security
Agency's (NSA) C2 requirements. The package protects against
break-ins, checks passwords and detects Trojan horses and
worms. Woodside Technologies' Fortress software also detects
Trojan horses and worms, as well as viruses. In addition, the
package inoculates files and allows users to test possible
passwords. Computer Associates' CA-Unicenter and Tivoli
Systems' Tivoli Management Environment are large-scale
security systems. CA-Unicenter monitors system performance
and access attempts. Tivoli Management Environment provides
complete management capabilities and will be incorporated in
part into the Open Software Foundation's OSF/1 operating
system.

Full Text:

Unix security has a bad rap, fueled in large part by the infamous
"Morris" Internet worm. With one program and a small dictionary of
possible passwords, one individual managed to disable tens of thousands
of computers across the country. Is Unix really less secure than other
major operating systems? Probably not, according to the experts. But it
certainly is better known.

"Why do you think there are so few MVS accesses compared to Unix or DEC?"
asks James Kates, a security consultant with Janus Associates of
Stamford, Connecticut. "It's not because MVS is particularly secure.
But just think about what's on campus. Our schools are training grounds
for hackers." Today, though, Unix security tools are available that will
stop most trespassers. In fact, 1993 promises to be a watershed year for
Unix security. Not only are important big-iron products migrating to
Unix this year (CA-Unicenter particularly comes to mind), but new
security products will proliferate on a greater variety of Unix
platforms, including Sun's Solaris, HP/UX, DEC's Ultrix, and IBM's AIX.
With Unix increasingly seen as a major component in distributed corporate
systems, such tools are a must for managers who are serious about
downsizing.

Tightening the Grip

While Raychem Corp. doesn't think it has had any security breaches, it
prefers not to wait for the inevitable. "Although our existing security
was tight, we wanted to add virus protection, password production, and
other security features," says John Denis, a systems administrator for

Raychem in Raleigh, North Carolina. So the company installed Fortress on
its Sun servers and Sparcstations. Available from Woodside Technologies
of Sunnyvale, California, Fortress automatically detects Trojan horses,
worms, and viruses; inoculates files; looks for vulnerable passwords; and
even lets users test potential passwords for security weaknesses. "It
relieved me from having to check each user account [for security
vulnerabilities]," says Denis. (See "Invasion-Proof Unix," April, page
47.)

Like Raychem, Chase Manhattan prefers to play it safe. Its data center
in Brooklyn, New York, uses SecureMax 3.0 from Demax Software of San
Mateo, California, for two Sun 690 servers. "We have about $800 billion
in financial production flowing through this system each year," says Tama
Herman, second vice president for the data center. The software, which
complies with the National Security Agency's C2 minimum security
requirements, automatically checks passwords, protects files against
break-ins, and detects worms and Trojan horses. And because help screens
can sometimes be too helpful, it also analyzes GUIs.

Chase Manhattan doesn't simply assume SecureMax is working properly; a
senior system administrator periodically tests it by attempting to break
into the protected network from the outside.

"So far he hasn't had much luck," Herman says happily. "SecureMax isn't
hospitable to his efforts, and always reports him."

Fortress and SecureMax are examples of add-in packages designed
specifically for security. Other vendors are taking a whole-enchilada
approach to Unix management, offering all of the management functions
needed to make Unix work like the big boys. Two such products are
CA-Unicenter and the Tivoli Management Environment.

Initially available only in HP/UX and Solaris versions, Computer
Associates' CA-Unicenter for Unix schedules work, monitors system
performance, and tracks problems. It also provides an audit trail of
access attempts; controls user sign-ons by date, time, and location; and
validates passwords. Although the system is still too new for managers
to offer much in the way of concrete impressions, Corporate Computing has
placed CA-Unicenter on its short list of top business tools (see "Best
Buys for 1993," January, page 133), and gave it high marks in its First
Look section (see "Unix's Missing Link," February, page 43).

Like CA-Unicenter, Tivoli Systems' package provides an entire suite of
Unix management tools. But more than that, some of the package's
capabilities will find their way into the Open Software Foundation's
OSF/1 operating system. That in itself represents a major advantage for
companies anticipating a new Unix that could become de rigueur for
cross-platform application development.

"Since Tivoli is the core technology of the OSF Distributed Management
Environment, we felt it was our best bet to ensure that our corporate
needs will be met," says Casey Canby, data center manager for Northwest
National Gas of Portland, Oregon. "Besides, there wasn't anything else
on the market to support our hardware environment," says Canby, who is
responsible for a mix of Sun, Hewlett-Packard, and IBM RS/6000 servers
and workstations.

Until now, Unix managers simply haven't had many choices. This year they
will. As a result, Unix may emerge from university laboratories to

assume a new and more secure place in the constellation of enterprise IS
tools.

Company: Woodside Technologies Inc.

Demax Software Inc.
Computer Associates International Inc.
TIVOLI Systems Inc.

Product: Fortress
SecureMax 3.0
CA-Unicenter for UNIX
Tivoli Management Environment

Topic: UNIX
Security
Trends
Outlook
User Ratings
Security Software
Management of EDP
Software Packages
Network Management Software

Record#: 13 746 825.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: UNIX Review April 1993 v11 n4 p42(6)
* Full Text COPYRIGHT Miller Freeman Inc. 1993.

Title: Easy UNIX security. (techniques, public-domain tools for

enhancing security on UNIX operating system platforms)
(Tutorial)

Author: Dichter, Carl

Abstract: Tools and techniques for enhancing UNIX operating system
security are discussed. Most UNIX systems have a file
containing encrypted versions of user passwords but can be
'cracked' by using a dictionary and rules to guess passwords.
Shadow passwords are an effective defense; the encrypted
passwords are kept in a different file which can be read only
by the system manager. A public-domain replacement for the
standard UNIX password program is available, and users should
be prevented from choosing bad passwords. Machines connected
to the Internet face such dangers as 'worm' and 'rabbit'
programs spread by electronic mail. Some sites disable the
'finger' program, which locates users at other sites, to
prevent infection, but a more effective and less intrusive
measure is a 'firewall' that acts as a secure gateway to the
outside world. Anonymous FTP (file transfer protocol) must be
properly configured so that crackers cannot get at
confidential system files. Managers should also ensure that
they do not have versions of system programs containing
well-known bugs crackers can exploit.

Full Text:

Security should be important to everyone. Many articles, including some
in UNIX REVIEW (February 1988 and November 1989), illustrate The
potential cost of a security breach may not mited to the intellectual
property of a company's data. Here at Motorola ASIC, for example, our
customers have confidential information that we are required to protect.

This article discusses inexpensive, reasonable, effective security
measures that do not impede productivity. Since security is important,
and it is now easy to improve, why wait any longer? On sites with any
sensitive data, all accounts need to be secure-- even those with trivial
information. Any account can give a potential "cracker" a foothold to
get further into your system, your network, the rest of the world.

To emphasize this point, I asked permission to audit a site of another
Fortune 500 company. I was given a normal user account. It took me less
than two hours to download, compile, and run Crack, a public-domain tool
to guess passwords. More than half the 200 users had easy passwords that
Crack could guess. Several of these users were managers who had
personnel information in their directories. Almost everyone had
sensitive information, such as schedules, specifications, or code.

Password security. In most UNIX systems, the /etc/passwd file contains
an encrypted version of the user's password. This encrypted version
cannot be decrypted to form the original password. The only way to know
whether a given string is the correct password is to encrypt the string
and compare it with the user's encrypted password in /etc/passwd,

/etc/shadow, or yppasswd (YP/NIS).

For added security, the UNIX password system adds some extra information
(called the "salt") to the password. The UNIX crypt(3) function takes an
entered password and the salt and creates an encrypted version
(containing the original salt as the first two characters). Also, to
prevent someone from trying out millions of passwords, most UNIX
implementations of crypt have a built-in delay loop.

crypt's encryption scheme purposely differs from the standard Data
Encryption Scheme (DES) so that it is harder to implement in hardware.
This feature is intended to keep crackers from making a "computer-age
siege engine."

Crack works by using a dictionary and rules to make password guesses. It
tries out these guesses with its own (or UFC) crypt using all salts found
in the password file. Crack's built-in crypt, and the optional UFC
crypt, are optimized for speed, and they don't have any intentional
delays.

One effective defense against this sort of attack is shadow passwords.
In a system with shadow passwords, the encrypted passwords are not kept
in/etc/passwd. They are kept in /etc/shadow, which should be readable
only by root.

Although shadow passwords are standard on many new systems (including
SVR4), your site may not be so lucky. Fortunately, at least one
implementation is available--appropriately called "Shadow."
Unfortunately, it does not yet support NIS/YP. However, some versions of
NIS (NIS+) support password shadowing.

As Larry Wall and Randal Swartz point out in Programming Peri,(1)
cracking the password file to find bad passwords is not enough--it is
better to prevent people from choosing bad passwords. Programming Peri
provides a replacement for the password program. (See perl_passwd in the
Tool Sources section at the end of this article.)

An improved version of the Perl passwd is also available. This improved
version handles YP/NIS (yppasswd), and it uses the dictionaries and rules
of Crack to determine password quality (see perl_passwd2 in the Tool
Sources section).

Some strict password programs, such as the first Peri passwd mentioned,
replace the normal password program and operate as a wrapper around
passwd and yppasswd.

Other strict passwd programs are available (see passwd+ and npasswd in
the Tool Sources section). Some of these programs also support password
aging and prevent reuse of old passwords.

Better passwords do not have to be especially long. My six-character
password is not guessed by the Crack program, even when the Crack
dictionaries are loaded with information about me. However, some of the
strict password programs do not allow short passwords, even if they are
cryptic.

Network security. If your machine, or network, is connected directly to
the Internet or a dialin modem, you face many dangers: mail, uucp, and
rcp can be used to spread "worms," "rabbits," or other nasties

("malware"). For example, a bug in the earlier BSD fingerd (finger
daemon) was the point of infection for the famous "Internet worm." Even a
bugfree finger helps crackers get information to crack an account or
confidential information about a project schedule and organization (from
.plan and .project).

To protect these Internet-connected systems, administrators at some sites
disable the finger daemon. But this measure has costs, too..You lose the
basic use of finger--to help users at different sites find out how to
contact each other. You also lose finger as a user's security tool.
When run without arguments, finger provides information about others who
are logged in, what their full name is, where they are logged in from,
and so on. Also, users can run finger on a dormant account to see
whether it shows an overly recent last login.

A more effective measure, and one that impinges less on productivity, is
a "firewall." A firewall is a system that acts as a secure gateway to the
outside world. If all Internet access is done through a firewall,
outsiders cannot finger your employees or telnet into your network, but
inside employees do not lose this ability. For more information, see
Bill Cheswick's "The Design of a Secure Internet Gateway,"(2) David
Curry's UNIX System Security: A Guide for Users and System
Administrators,(3) and Simson Garfinkel and Gene Spafford's Practical
UNIX Security.(4)

If your system has a modem, disable incoming use if possible (by
disabling auto-answer and making sure the port is not set up with a
getty). If the system must be used for incoming connections, consider
adding a security box, such as SecureID from Security Dynamics
(Cambridge, MA), to better authenticate users. Authentication requires
users to prove that they are who they claim to be. The Security Dynamics
system provides a credit-card-sized device for each remote user. This
card displays an additional password, which, when used with a personal
identification number (PIN), grants the employee access through the box.
After access is granted, the user goes through the normal routine: port
selection if you have a multiplexer, and then the UNIX login/password
mechanism.

Other security dangers are present if you allow anonymous FTP, Trivial
FTP (tftp), rlogin, and other network services. Unless anonymous FTP is
properly configured, a cracker can easily get/etc/passwd or other files
that can provide information to break in. Although tftp is intended to
be a safer form of FTP used for booting diskless nodes, some early
versions can be used to get/etc/passwd or other files.

Proper configuration is also the key to preventing users from accessing
your system via remote shell (rsh, riogin) or remote copy (rcp). For
example, the /etc/hosts.equiv file must contain only trusted hosts and
must not be writeable by any user except root. Additional protection can
be done on a per-user basis with a $HOME/.rhosts file.

Authentication is important in many types of communication, as we'll
explore later. Authentication is also an issue with rlogin, rsh, and
rcp. Kerberos is one way to address the problem, and it is included in
some packages, such as OSF's Distributed Computing Environment (DCE). A
public-domain Kerberos (see "Tool Sources" section) is available, and you
can get commercial support from Cygnus Support (Mountain View, CA).
Cygnus Support has fixes and workarounds for some of these problems and
limitations. For more information on Kerberos, see "Authentication of

Unknown Entities on an Unsecure Network of Untrusted Workstations.''(5)
Don't be intimidated by the long title--the paper is only a page long.

In Practical UNIX Security, Spafiord and Garfinkel point out that
Kerberos is only for single-user systems; it has serious security
problems otherwise. Spafiord has also told me that it may not work in
some heterogeneous environments. (Also see "Who Are You?" UNIX REVIEW,
November 1992.)

Another protection from misuse of services based on TCP/IP (such as tftp,
exec, ftp, rsh, telnet, riogin, finger) is provided in the TCP wrappers
written by Wietse Venema. Much more information on network security is
contained in Practical UNIX Security(1) and Managing NFS and NISf ther
security tools. When it comes to security, UNIX is not all that bad,
although it does have terrible defaults. The default user's umask may be
set to create files with wide-open permissions. System directories and
files may have wrong permissions, all hosts may be trusted, and all ports
may have a getty (login prompt). These bad defaults and inadvertently
opened "holes" (by users and administrators) can make security on UNIX
seem a herculean task.

Many tools, both commercial and in the public domain, make security more
convenient. In this article, we're concentrating on the freeware.
Despite the extensiveness of these packages and their low cost, they are
surprisingly easy to install and use.

Another resource is the Computer Emergency Response Team (CERT) set up by
DARPA. CERT has two especially useful functions: It responds to and
distributes reports of security problems, and it helps collect and
distribute security tools. CERT can be reached at (412) 268-7090 or cert
[@]cert.sei. cmu.edu.

In addition to the weaknesses of the UNIX password system, the bugs in
some network software, and sendmail (which has been fixed on most
systems), other types of operating-system bugs can be exploited by
crackers. A tool called crashme (by George Carrette) finds ways to crash
an operating system by executing random strings of data as if they were
programs. This causes exceptions and traps that should be properly
handled by the operating system-- without crashing or corrupting the
operating system environment. When the operating system does not
properly handle these exceptions, a bug exists.

At the least, crackers could exploit these bugs to crash your system.
However, they can do much worse. For example, Gordon Irlam (then of
Adelaide University) discovered a way to get the system to grant him
super-user status. This method was based on his knowledge of
operating-system bugs he had found with crashme and other methods. Since
Irlam is not a cracker, he reported this problem to CERq and the
operating system vendor.

Computer Oracle and Password System (COPS) is a collection of more than a
dozen security tools that together handle many areas of UNIX security.
The5 were developed at Purdue University, under the direction of Gene
Spafiord. The tools are implement. ed in two versions: one in C, the
other in Peri.

A Readme file for COPS states that COPS performs the following checks:

* File, directory, and device permissions or modes.

* Poor passwords.

* Content, format, and security of password and group files.

* The programs and files run in/etc/rc* and cron(tab) files.

* Existence of root SUID files, their writeability, and whether or not
they are shell scripts.

* A CRC check against important binaries or key files to report any
changes therein.

* Writeability of users' home directories and start-up files (.profile,
.cshrc).

* Anonymous ftp setup.

* Unrestricted tftp, decode alias in sendmail, SUID uudecode problems,
hidden shells inside inetd - * conf, or rexd running in inetd.conf.

* Miscellaneous root checks, such as current directory in the search
path, a "+" in/etc/host.equiv, unrestricted NFS mounts, and ensuring root
is in /etc/ftpusers.

* Dates of CERT advisories va. key files. This feature checks the dates
that various bugs and security holes were reported by CERT against the
actual date on the file in question. A positive result doesn't always
mean a bug was found, but it is a good indication that you should look at
the advisory and file for further clues. A negative result, obviously,
does not mean that your software has no holes, merely that it has been
modified in some way (perhaps only touched) since the advisory was sent
out.

To prevent security problems, make sure you are using a recent version of
TFTP and that both FTP and TFTP are properly configured.(1)

COPS uses the Kuang expert system, which takes a set of rules and tries
to determine whether your system can be compromised (for a more complete
list of all of the checks, look at the file release.notes or cops.report;
for more on Kuang, have a look at kuang.man).

According to its authors, Gene Kim and Gene Spafiord, Tripwire is a
file-integrity checker, a utility that compares a designated set of files
against information stored in a previously generated database. Any
differences are flagged and logged, and a user can be notified through
mail. When run against system files on a regular basis, any changes in
critical system files will be spotted, and appropriate damage control
measures can be taken immediately. Tripwire has been potted to most UNIX
variants (including BSD, System V, OSF/i, and Mach).

Department of Defense organizations can get Network Security Monitor
(NSM), a suite of routines that monitor and analyze network traffic, to
determine whether an intruder is present. NSM captures Ethernet traffic,
identifies new connections between host machines attached to the network,
matches 1 strings in the connection data, and permits either live or
off-line monitoring of intruders.

Secure mail. Security also is important with electronic mail. Two major

issues must be addressed to ensure secure electronic mail:

* The message should be seen only by its intended recipient
(authentication of recipient and privacy of message).

* The senders should be who they claim to be. When you consider the
important applications of e-mail, it is surprising that the second item
is so often overlooked. Many mail packages are appearing on the market
and in the public domain to meet these needs. A popular technique is
public-key encryption.

To help implement Internet Privacy-Enhanced Mail (PEM), RSA Data Security
provides a free cryptographic toolkit called RSAREF. This toolkit
supports RSA encryption and key generation as defined by RSA
Laboratories' Public-Key Cryptography Standards (PKCS), MD2 and MD5
message digests, and Data Encryption Standard (DES) in cipher-block
chaining mode. One implementation based on this toolkit, RIPEM from Mark
Riotdan, is also available for free. This implementation operates with
your mailer (for example, sendmail).

Other security issues. These security programs do not automatically give
you a secure system.

Three other things are needed: proper system administration, physical
security, and user participation. John Kinyon, Motorola's Manager of
Network Security, provides these tips:

* Know where your programs are coming from and what they are supposed to
do. This tracking includes shell scripts, PostScript files, spreadsheet
macros, and other bits of executables for various applications, as well
as binaries and operating-system updates.

* Make backups before installing software.

* Install the software in an execute-only mode.

* Put the executable files in a file system that is mounted as read-only.

* Install a tool that looks for suspicious changes in critical files.
Public domain and commercial programs exist for this purpose, such as
Tripwire.

* Install change-password programs that ensure thai obvious passwords are
not used.

Dan O'Neill of Cadence Design Systems suggests:

* Limit the number of people with root access: You can use Tom
Christiansen's op program to distribute limited root access on specific
machines.

* Many administrators find it valuable to control administrative files
(/etc/passwd,/etc/hosts, and others) under a configuration management
system (RCS or SCCS).

* Auto-logout helps when people forget to log off.

A screen lock can be valuable because you can leave your programs running
(even in foreground). However, some X-window versions can also be a

security hole: If your X-window server is remote and it dies (power
outage, reset), your workstation may be left as an unlocked, logged-in,
console.

When a program or script needs to run as another user (or group), there
is a right way and a wrong way to allow this. It is wrong to allow the
system to grant user and group ID based on the suid/sgid bits in the file
permissions. On most systems, this mechanism can be spoofed. It should
be disabled in the kernel, if possible, or disabled by an option to
mount(l) when file systems are mounted. The right way is to have the
script or program call a set user or group ID mechanism. In C, you can
use system calls (setuid, setgid). For Peri, a program called suidscript
is provided to make a C wrapper for Peri programs that sets the user or
group ID. Some newer shells provide setuid/setgid-type calls.

Careful administration can find security holes before they become
breaches. At one company, a system administrator found that a computer
vendor had set the FI function key to the root password--on all 12
terminals.

Extra care can also find the most unusual program behavior. Jerry Whelan
of Bradley University tracked an unauthorized network incursion down to
an unusual source: At another company, a person evaluating some
commercial software did not realize that the software went into a "global
network autodiscovery mode."

Your other job: Security. In addition to good system administration,
good security requires proper account administration by users. Users
need to be trained about the dangers of poor security and their own
responsibility for good security.

Consider users who leave passwords next to the terminal: Until your users
understand the importance of good security, and their responsibility for
it, your system cannot be secure. Users must be informed of the dangers
of bad security and the techniques of good security. For example, among
the techniques used by sophisticated crackers, "social engineering" has
evolved: the art of fooling users into giving them passwords or other
information. A classic scam (I did! it in 1971) was a fake login screen:
Users type in their login and password, the program records it, and then
logs them in. Users don't know it, but their passwords are no longer a
secret.

With proper user training, an explicit policy on security, and regular
use of the utilities described here, significant improvements in security
can be attained. .

Carl Dichter is a staff engineer/scientist at Motorola's ASIC Division.
He is coauthoring Software Engineering with Peri, due soon from Prentice
Hall. He can be reached at dichter[@] ureview.com

References

1. Wall, Larry, and Randal Swartz. Programming Peri. Sebastopol, CA:
O'Reilly & Associates, 1992.

2. Cheswick, Bill. "The Design of a Secure Internet Gateway."
research.att.com:/dist/Secure-Internet-Gateway. ps.

3. Curry, David (with Brian W. Kernighan, consulting editor). UNIX

System Security: A Guide for Users and System Administrators. Reading,
MA: Addison-Wesley, 1992.

4. Garfinkel, Simson, and Gene Spafiord. Practical UNIX Security.
Sebastopol, CA: O'Reilly & Associates, 1991.

5. Neuman, Clifford, and Jennifer G. Steiner. "Authentication of
Unknown Entities on an Unsecure Network of Untrusted Workstations,"
USENIX UNIX Security Workshop Proceedings, August 1988.

6. Stern, Hal. Managing NFS and NIS. Sebastopol, CA: O'Reilly &
Associates, 1991.

Recommended Reading

* Cheswick, Bill. "An Evening With Berferd: in which a Cracker is Lured,
Endured and Studied." Available from: research.att.com:
/dist/internet--Security/berferd.ps

* Spafiord, Gene. "The Internet Worm Program: An Analysis," ACM Computer
Communications Review, 19(1), January 1989, pp. 17-57. (Also issued as
Purdue Technical Report CSD-TR-823.)

* Proceedings of the USENIX Security Workshops and Symposia, USENIX
Association, Berkeley, CA. office[@]usenix.org, (510) 528-8649.

Tool Sources

Note: Anonymous FTP locations are given as "site: filename"

* COPS: V1.04, available at these locations: cert.sei.cmu.edu: pub/cops,
archive.cis.ohio-state.edu: pub/cops, or ftp.uu.net:
pub/security/cops_lO4.tar. Z.

* Crack/UFC: Crack v. 4.If and UFC Patchlevel 1. This is available from
the comp.sources. misc directory at any major Usenet archive or:
usenet/comp.sources.misc/volume26/crack/part*Z.

* Kerberos: Public domain version, support available from Cygnus Support
at ftp.uu.net:networking/athena/kerberos *.

* npasswd: (Clyde Hoover's "official" version), available at ftp.cc.
utexas.edu: pub/npasswd/npasswd.tar. Z.

* NSM: Available to Department of Defense organizations only, from Tim
Grance at the Air Force Cryptologic Support Center (AFCSC) at Kelly AFB,
TX.

* Passwd+: "alpha version, update 3" (beta version due soon), available
at dartmouth.edu: pub/passwd+.tar. Z or ftp.uu.net:
pub/security/passwd+.tar. Z.

* perl--passwd, contained in the examples for Programming Peri,
ftp.uu.net: published/oreilly/nutshell/perl/perl.tar. Z.

* perl_passwd2, which handles YP/NIS, is available from info.
mcs.anl.gov:/pub/systems/papers/perl_passwd.ps.

* Securelib, available from eecs.nwu.edu: pub/securelib.tar or

ftp.uu.net: pub/security/securelib. tar. Z.

* Shadow, available from the comp.sources.misc directory at any major
Usenet archive (see entry for Crack).

* TCP Wrappers, available from cert.sei.cmu.edu: pub/network
_tools/tcp_wrapper.shar, ftp.win. tue.nl: pub/security/log_tcp .shar.
Z, or ftp.uu.net: tcp_wrappers.tar. Z.

* Tripwire, available from ftp.cs.purdue.edu: pub/spar/COAST /Tripwire.

To find other tools, join the cert-tools mailing list. Send e-mail to
cert-tools-request[@]cert.org.

Acknowledgements

Thanks to all the security gurus who helped me and to Michele Vening,
documentation engineer and security buff.

Type: tutorial
Topic: Data Security

Operating Systems
Public Software
Tutorial
Network Management
UNIX
Security Software

Record#: 13 497 724.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: UNIX Review April 1993 v11 n4 p109(1)
* Full Text COPYRIGHT Miller Freeman Inc. 1993.

Title: Computer Security Institute. (hosting annual UNIX Security

Conference) (Recent Releases) (Brief Article)

Full Text:

If this issue's coverage of UNIX security leaves you hankering for even
more information, consider attending the Second Annual UNIX Security
Conference hosted by the Computer Security Institute, Nov. 11-12, 1993.
Held in conjunction with CSI's 20th Annual Computer Security Conference
at the Anaheim Hilton in Anaheim, CA, the conference will feature
discussions by technical experts of UNIX security basics, TCP/IP
security, intrusion detection, authentication, advanced UNIX security
administration, business resumption planning, and other topics.

Contact Computer Security Institute, 600 Harrison St., San Francisco, CA
94107. Tel.: (415) 905-2626, fax: (415) 905-2218.

Type: brief article
Topic: Conferences and Meetings

Data Security
Seminars
Security Software
Computer Security Institute
Trade and Professional Associations

Record#: 13 498 340.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: Digital News & Review Dec 7 1992 v9 n23 p34(1)
* Full Text COPYRIGHT Cahners Publishing Associates LP 1992.

Title: Anti-virus protection for Unix. (Woodside Technologies'

Fortress security program) (Brief Article) (Product
Announcement)

Full Text:

Woodside Technologies has introduced Fortress, a comprehensive graphical
user interface-based security program with anti-virus protection for
Unix. Unix users and system administrators can investigate and monitor
system security risks. The Unix security tool kit features four security
modules that run from a central menu. Users can check hazard areas
including Trojan horses, worms, viruses, and weak passwords by clicking
the appropriate icon from the main menu. Available now for Sun 4 and
Sparcstation hardware, the SunOS 4.1+ operating system, and Open Windows
versions 2.0 and 3.0, it is priced from $495 with quantity discounts.
Woodside Technologies is located at 474 Potrero Ave., Sunnyvale, CA
94086, (408) 733-9503.

CIRCLE NO. 341

Type: brief article

product announcement
Company: Woodside Technologies Inc.
Product: Fortress
Topic: Product Introduction

Security Software

Record#: 13 217 282.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: UNIX Review Nov 1992 v10 n11 p46(4)
* Full Text COPYRIGHT Miller Freeman Inc. 1992.

Title: Who are you? (Kerberos system's authentication processes)
Author: McNutt, Dinah

Abstract: MIT's Kerberos system provides a unique solution to the
authentication problem found in distributed computing
environments. Authentication involves the systematic
restriction and availability of a system to users depending on
whether users have legitimate access rights. The traditional
methods require passwords and user name log-ons. Kerberos
assumes a distributed environment. The environment
encompasses workstations that function in insecure locations
and with untrustworthy software, as well as servers that exist
in secure machine rooms with potentially untrustworthy
software.The environment also consist of Kerberos key
distribution machines operating in secure areas with trusted
software. The Kerberos system must be physically secure and
requires modification of all network services. The system can
provide protection from external attacks and accounts for
internal usage and access control.

Full Text:

A distributed computing environment has two main security issues:
authentication and authorization. Authentication is the process of
verifying that users are who they claim to be. Authorization involves
determining whether a user has legitimate access to a resource and
allowing the owner of a resource to define who has what type of access to
the resource. This article focuses on the problem of authentication and
describes Kerberos, which was developed at MIT as part of Project Athena,
as a solution to authenticating users.

The problem. Traditionally, authentication is done with a user name and
password combination that is verified against the entries in the system
password file at login time. If a user has root access, it is possible
for that user to masquerade as another by using the su command as the
root user. Another problem is maintaining consistent copies of the
password file (and propagating changes) on all of the systems. Sun's NIS
offers a reasonable solution for small networks, but it is not a viable
solution for a large number of users and workstations or for
heterogeneity.

Even with reasonable schemes for managing password files, accessing
resources on remote hosts requires either using a trusted host (or user)
mechanism or providing user names and passwords for accessing remote
services. These passwords are sent in the clear over untrusty networks.

UNIX has the concept of trusted hosts, where one host trusts another
host. Users from the trusted host do not have to enter a password to
access resources on the other host, as long as the user has an account on
both machines. For instance, if host zempo trusts host rockytop, then
user joe can remotely log in to host zempo from rockytop without entering
a user name and password. Trusted hosts are a very powerful feature, and
they make it easy for users to access network resources casually. UNIX

also has the concept of a trusted user, which is similar to a trusted
host, except a user from a specific host can be trusted and access your
account without entering a user name and password on your host.

The negative side of trusted hosts is that you must implicitly trust the
users and hosts on the systems you define as trusted. Not only must you
trust them, but you must trust your network not to allow hosts to
masquerade as each other.

If you do not define trusted hosts for your system or if you want to
access your system from untrusted hosts, you must provide a user name and
password that will be sent in clear text over the network. This makes
your system vulnerable to anyone eavesdropping on your network. A
solution to this problem is to encrypt the passwords, but this does not
prevent someone from capturing the network packets containing the
encrypted password and replaying the packets as if they were coming from
you (and your system).

Kerberos solves authentication and enables authorization. Therefore,
Kerberos provides a reliable mechanism for determining whether or not I
am really the user dinah on the host rockytop. The applications must use
the authentication information to make decisions about authorization. As
I mentioned earlier, both authentication and authorization are essential
for a secure environment, but without reliable authentication, any
authorization scheme can be compromised.

What is Kerberos? Kerberos assumes a distributed environment where you
have workstations in unsecure locations with untrusted software, servers
in moderately secure machine rooms with potentially untrusted software,
and Kerberos key distribution machines in secure areas with trusted
software.

Kerberos uses a third-party authentication scheme in which each Kerberos
client trusts the Kerberos server to identify the other clients on the
network. In addition, information is time-stamped so that if an
eavesdropper captures information (and can decipher it), the usefulness
of the information will expire within a relatively short period of time
(usually measured in hours).

Design goals of Kerberos are that:

* No clear text passwords be sent over the network

* No clear text passwords be stored on servers

* The exposure of client and server keys be minimal

* Compromises only affect the current session

* Authentication lifetime be minimal

* Authentication always be transparent during normal use

* Changes require minimal modifications to existing network applications.

When users request access to a Kerberized service their identities must
be established. Users do this by presenting a ticket to the server
providing the service along with the authenticator that proves the ticket
was not stolen. This process involves three steps:

* Obtaining the credentials required to request access to other services

* Requesting authentication for a specific service (such as NFS)

* Presenting the credentials to the server offering the specified
service.

Two types of credentials are used: tickets and authenticators. Both use
private key encryptions, but they are encrypted using different keys. A
ticket is used to transmit the identity of an individual to a server
securely and to gain a temporary session key. The authenticator contains
additional information to ensure that the client presenting the ticket
and the client to whom the ticket was issued are the same.

A ticket contains the name of the server, the name of the client, the IP
address of the client, a time stamp, a lifetime, and a random session
key. This information is encrypted using the Data Encryption Standard
(DES) and the private key of the server for which the ticket will be
used. The ticket may be used by the client to access that particular
server until the ticket expires. Then, another ticket must be obtained.
When the server decrypts the ticket, it should find its own service name
in the ticket. If it does, it compares the name of the client in the
ticket to the client in the authenticator. If they match, it knows the
client is who it claims to be.

An authenticator contains the name of the client, the IP address of the
client, and a time stamp. An authenticator may only be used once; a
client must create new authenticators at the moment of service requests.

Using Kerberos. Let's look at what happens when a user logs on to a
system that has been modified to use Kerberos. Once the user name has
been entered, the system sends a request to the authentication server
that contains the user's name and the name of a service called the
ticket-granting service (TGS). (I will use client name instead of user
name because the mechanism is the same for applications requesting
Kerberos authentication as it is for users. See the references at the
end of this article for more information on Kerberos naming conventions.)
If the authentication server has an entry for that user, it generates a
random session key that will be used between the client and the
ticket-granting server. It also generates a ticket that can be used by
the client to request access to services on the network. This ticket
contains the client's name, the name of the ticket-granting server, the
current time, the lifetime of the ticket (this is configurable, but
normally between 8 and 24 hours), the client's IP address, and the random
session key. This ticket is encrypted with a key that is only known to
the ticket-granting server and the authentication server. (Note that the
client has no knowledge of the key or the contents of the ticket.)

This ticket is sent back to the client (along with a copy of the random
session key) in encrypted form, using a key that is derived from the
client's Kerberos password by applying an encryption algorithm to the
password.

Next, the user is prompted for a password, which is converted to a DES
key and used to decrypt the response from the authentication server.
Note that the decryption is performed on the local system, and the user's
password is not sent out over the network. The decrypied ticket-granting
ticket and the session key are stored for future use (until the lifetime

of the ticket expires). The next step is to gain access to a service.

The client must obtain a separate ticket for each service it wishes to
use. Tickets must be obtained from the tgs; to access the tgs, you must
first have a ticket*granting ticket. This is why we automatically
received a ticket-granting ticket at login time. The request to the tgs
contains the name of the server for which a ticket is requested, the
ticket-granting ticket (which is encrypted using a password only known to
the authentication service and the TGS), and an authenticator (remember
that a client can build an authenticator as often as required). If the
request is valid, the TGS generates a new random session key to be used
between the client and the requested server. It also builds a ticket for
the server that contains the client's name, the server's name, the
current time, the client's IP address, and the new session key. The
lifetime of the new ticket is either the remaining life of the
ticket-granting ticket or the default for the server, whichever is
smaller. The ticket is encrypted with the server's private Kerberos key,
which is unknown to the client. The new ticket is sent back with the
session key and is encrypted using the session key that was part of the
ticket-granting ticket. This process prevents the user from having to
re-enter the password.

Finally, the client requests access to the service by sending the newly
acquired ticket and an authenticator to the server. The server decrypts
the ticket using its private Kerberos key. Then, using the session key
obtained from the decrypied ticket, it verities the information in the
authenticator, the client name, the IP address, and the current time. If
everything matches, the request to access the service is granted.

A summary of this process is shown in Figure 1. It seems complicated,
but keep in mind that the user only had to enter the password one time.

Issues. One of the main problems in using Kerberos is that each network
service must be modified or Kerberized. Not only do you require the
source code for each application, but you must spend the effort to modify
the necessary programs.

Your Kerberos server must be a physically secure system dedicated to
providing the Kerberos service. This cost can be prohibitive for some
sites. However, as the price of UNIX systems continues to drop,
visualizing a Kerberos server that costs less than $5,000 for a large
site is not too difficult. Small sites could use an even less-expensive
solution. Keep in mind that access to services is denied if the Kerberos
server is unavailable, so you should plan for redundant servers.

As stated previously, Kerberos is a solution to network security. It
does not protect you if your systems are compromised, but it does make
you less susceptible to external attacks by providing internal
accountability and access control.

If a server or client password is obtained, it is possible for an
eavesdropper on the network to use that password to decrypt tickets.
Plainly put, sharing passwords is just as outrageously stupid as ever;
don't do it and don't tolerate it.

Getting Kerberos. For a copy of the Kerberos source code and papers on
Kerberos, contact MIT Software Center, W32-300, 20 Carlton St.,
Cambridge, MA 02139, (617) 253-7686. These files are also available via
anonymous ftp from athenadist. mit.edu.

Dan Geer and Jon Rochlis teach a tutorial at USENIX, Interop, and other
conferences. For information, contact the USENIX office at (714)
588-8649 or office@usenix.org.

Dinah McNutt is a customer support consultant at Tivoli Systems Inc.
Tivoli, based in Austin, TX, specializes in distributed system management
solutions for UNIX environments. She can be reached at dinah@
tivoli.com.

References

* Champine, George A., Dan Geer, and William N. Ruh. "Project Athena as
a Distributed Computer System," Computer, September 1990, pp. 40-51.

* Steiner, Jennifer G., Clifford Neuman, and Jeffrey I. Schiller.
"Kerberos: An Authentication Service for Open Network Systems," Usenix
Conference Proceedings, (Winter 1988).

* Garfinkel, Simson, and Gene Spafiord. Practical UNIX Security.
Sebastopol, CA: O'Reilly and Associates Inc., 1991.

* Russell, Deborah, and G.T. Gangemi. Computer Security Basics.
Sebastopol, CA: O'Reilly and Associates Inc., 1991.

* Champine, George A. MIT Project Athena: A Model for Distributed Campus
Computing. Digital Press, 1991.

* Geer, Dan, and Jon Rochlis. "Network Security: The Kerberos Approach,"
USENIX Summer 1992 Technical Conference (tutorial notes).

* Geer, Dan, Jon Rochlis, and Jennifer G. Steiner. "Security Issues in
II* N%

Topic: Data Security

Security Systems
Access Rights
Passwords
Massachusetts Institute of Technology
Source Code

Record#: 12 663 598.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: UNIX World Oct 1992 v9 n10 p73(3).

Title: New hope for UNIX security? (set of standards to improve

security on UNIX operating system)(includes related articles
on where to obtain more information and comparison of UNIX
system security features)

Author: Farrow, Rik

Abstract: A new set of standards emerging from the federal government
and Bell Communications Research Inc (Bellcore) promises to
improve UNIX operating system security. 'Minimum Security
Functionality Requirements for Multi-User Operating Systems'
(MSFR), a standard developed at the National Institute of
Standards and Technology (NIST) to cater to both vendors and
buyers in the commercial market, was created by Bellcore, the
National Security Agency and a variety of industry
participants. MSFR can be used as a guideline for upgrading
UNIX to meet the NSA's 'Orange Book' requirements. The lack
of security in UNIX has kept many commercial users from
adopting the system, and some doubt that even the new
standards will be widely accepted because the commercial
sector is reluctant to have the government involved and
because vendors do not want to create or adopt standards that
are not accepted in the user community. MSFR's success or
failure will depend partly on NIST's ability to promote the
standard and partly on the efforts of commercial supporters.

Topic: UNIX

Data Security
Management of EDP
Standards
Software Design
Operating Systems
United States. National Institute of Standards and Technology
United States. National Security Agency

Record#: 12 677 869.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: Software Magazine August 1992 v12 n11 p71(5)
* Full Text COPYRIGHT Sentry Publishing Company Inc. 1992.

Title: Open security an oxymoron?: Unix security features, tools

available, but users must set and follow procedures. (includes
related articles on OSF moving toward independence and Orange
Book security) (Open Systems)

Author: Johnson, Jim
Feit, Sidnie

Abstract: Security concerns are increasing as Unix finds increased use
in corporate networks. The majority of MIS professionals do
not believe Unix is as secure as proprietary systems.
Organizations must overcome the perception that Unix is a
security risk and reduce user resistance to security
procedures in order for open systems to work in the corporate
environment. User security functions should include
identification and authentication, access control,
accountability, audit trails, object reuse, accuracy,
reliability of service and data exchange. The Massachusetts
Institute of Technology (MIT) developed the Kerberos
encryptographics system to avoid network eavesdropping. A
variety of security systems are briefly described.

Full Text:

Unix security features, tools available, but users must set and follow
procedures

ABSTRACT MIS professionals worry that adding "open" systems such as
Unix to the corporate network will leave the organization vulnerable to
security breaches. But experts contend that Unix's bad reputation comes
more from cultural resistance to security than functional deficiencies.
The Open Software Foundation's DCE implementation of MIT's Kerberos
encryption system helps foil network eavesdroppers.

As Unix gains a stronger foothold in corporate computing networks,
security concerns surface. The academic and research community, where
Unix grew up, strongly advocated open systems that allowed the free
exchange of information and easy access for users. Not so the corporate
community, where data is a competitive asset that MIS protects.

Given the cultural differences between these two communities, can Unix
serve both? Or are "open systems" and "secure systems" mutually
exclusive? Experts maintain that open systems can work in the corporate
environment, but organizations must overcome two obstacles: the
perception that Unix is a security risk, and user resistance to security
procedures.

Only 11% of MIS professionals believe that Unix is as secure as
proprietary systems, according to the Demands Assessment Requirement
Tracking Service, provided by the Standish Group, Hyannis, Mass. One
reason for this negative perception is cultural, said Laurence Brown,
director of programs and operations at Unix International, Parsippany,
N.J. "Unix systems grew up in a programming community, a research
community and an academic community in which the interest was in being

able to share."

In those early days of Unix, "open" meant something different than it
does today. Small bands of users, "liberated" from the glass house, had
easy access to every resource. Every user was a privileged user, and
they could logon at any time. "In some of the universities where Unix
was heavily used, security was viewed as interfering with intellectual
freedom," said Alfred Spector, president of Transarc Corp., Pittsburgh.

Another reason for Unix's reputation among MIS professionals is its
highly publicized security breaches.

In 1988, the Internet Worm, a self-replicating program created by Robert
T. Morris, Jr. at Cornell University, Cornell, N.Y., affected
approximately 6,000 Unix-based systems attached to the government and
academic networks of Internet, Arpanet and Milnet. As it turned out,
however, security holes were not part of the Unix operating system, but
part of a mail program and information server.

Another incident occurred at the Lawrence Berkeley Lab, Berkeley, Calif.,
where a group of West German hackers broke into the lab's Unix network
and the supposedly secure Department of Defense Milnet network. The
hackers, who were selling information to the now defunct Soviet
intelligence agency, the KGB, had wandered around unencumbered in the
military industrial complex of computers for almost a year before being
apprehended.

Today's Unix systems are continually improving on security. The newest
versions of Unix System V from Unix System Laboratories (USL), Inc.,
Summit, N.J., and the OSF/1 operating system, based on technology from
the Open Software Foundation (OSF), Cambridge, Mass., both include
features that satisfy the requirements of the U.S. government's security
provisions. The OSF's Distributed Computing Environment (DCE) has many
built-in security features and includes application development tools
that simplify the construction of secure applications.

SECURITY HOLES

Getting users to establish and follow security procedures can be
difficult, however. In fact, the lack of attention to security issues by
users may be the real security hole, many contend.

Because users have neglected security in the past, few have a solid
understanding of what is involved in creating an overall secure
environment. Tightening security also has repercussions, such as less
access to data, more time spent for security checks and more computer
cycles used.

"Our large customers are worried about security, but I'm beginning to see
a pattern," said Roy Proudman, Ctos software product marketing manager at
Unisys Corp., Blue Bell, Pa. "They wheel in a security expert. He makes
demands. He gets in the way of operation. He becomes unpopular. He
gets shoved aside, and security disappears.

"The security expert understands. He's paranoid about what serious,
knowledgeable crackers can do, but the business operations people don't
see it as a risk," Proudman added.

In addition to being costly, implementing security can be hard on users

and systems administrators. Security systems tend to be complicated to
plan and implement.

Vendors are starting to address the complexity problem, however. "Within
our Top End product, we have implemented an interactive graphical
utility," said Randy Smerik, production development department manager at
NCR Corp., Dayton, Ohio, the network computing resource division of AT&T.
"This graphical utility is list box-oriented so that you can select
users, attributes and services by pointing and clicking."

Smerik added, though, that "you don't want to make security too easy.
It's sort of a mindset change we have to go through; when you have good
security, things aren't convenient." He explained that this lack of
convenience does not mean giving up a quality, user-friendly interface,
but it does mean more restrictions.

Implementing security does not have to be complicated, or inconvenient,
said Ralph Hakim, chief information officer at Insurers World, Boston.
The company uses the security features of the NetWare network operating
system from Novell, Inc., Provo, Utah. "The simplest mechanism and most
overlooked security feature is maintaining passwords," he maintained.
"The security management must make users change passwords on a regular
basis." He offered guidelines for preventing security breaches:

* Require unique user ID codes;

* Require users to identify themselves before performing an action;

* Keep the identity of all active users current;

* Disable user identification codes that have not been used for a period
of time (60 to 90 days);

* Temporarily disable user ID codes during extended employee leave; and

* Limit multiple logon sessions by a single user.

Jim Crear, manager of information technology at Instrumentation
Laboratories, Lexington, Mass., believes that password management is a
major key to security. "Our users are required to change their passwords
every 30 days." Crear said that the seven-digit alphanumeric passwords
are encrypted. The firm has a security officer in addition to a system
administrator.

"He is the only person who can change a user's password," said Crear.
The user notifies the security officer when he or she changes a password.
The security officer does not have access to the encrypted password
file, however; the user must make the change. "Therefore, if he [the
security officer] were to change a user's password, the user would point
to him in cases of violation," he added. The firm is using Security/3000
from Vesoft, Inc., Los Angeles, as well as security features of the MPE
operating system.

EIGHT SECURITY FUNCTIONS

In January 1992, the National Institute for Standards and Technology
(Nist) in Gaithersburg, Md., drafted "Minimum Security Functional
Requirements for Multi-user Operating Systems," which describes security
requirements to users. The eight security functions are as follows:

Identification and Authentication. The traditional method for user
identification and authentication is via a user ID and password. Since
this information often serves as the basis for many other security
operations, it is vital that the system protect user IDs and passwords
from unauthorized access or modification.

Nist also commends the value of alternate authentication mechanisms, such
as smart cards and biometrics such as hand geometry or thumb prints.
"Fundamentally, you want to be assured that only authorized users can
access your network," said Jim Geary, vice president of marketing at
Cambridge, Mass.-based Security Dynamics, a leading supplier of smart
card technology. "Therefore, we believe that the most important segment
within the whole model is user authentication."

Although methods such as smart cards, cryptographic-based validation and
biometrics are becoming more common, password systems are the most used
authentication mechanism for system access.

Access Control. Users must be prevented from gaining unauthorized access
to information or resources. The system should be able to control access
down to single user. Increasingly, computers are addressing this
requirement by supporting access control lists, which define who can run
an application and who can create, read or write a file.

"Today's microcomputers not only have enormous capacity to house critical
information and software assets, but they also represent the window into
the total enterprise computing environment," said John Worthen, president
of the Rocky Hill, Conn.-based Pyramid Development Corp., which develops
and markets security and security management tools for PCs and
workstations. "They must be protected via access control systems from
inadvertent loss of information, malicious hacker destruction or
compromise of data and virus disruption," he added.

Another mechanism is privilege control. Privilege control lets the
system assign a user the privileges necessary to accomplish the task at
hand, and no more. Sets of privileges can be bundled together to define
functional job responsibilities.

Features such as access control lists and privilege control are important
to industries such as health care, where sharing vital information is
critical, but so is protecting the confidentiality of the patient.

"The main benefit of open systems architecture is the level of
information sharing it creates throughout all components of an integrated
information system," said Wendy Roloff, director of corporate marketing
at CHC, Inc. in Houston, a supplier of health care information systems.
CHC developed security features in-house.

"This is particularly true in the health care environment, because
certain data in patient records are confidential, and not everyone who
has access to the system should have knowledge of sensitive patient
information," Roloff added. "A physician or nurse may have information
privileges that are not shared by a pharmacist or lab technician."

Accountability. The system must be able to link the work done on behalf
of a user with the user's identity.

Audit Trails. The system needs a way to find out whether security

violations have occurred and, if so, what information or other resources
were compromised. The usual mechanism is to run audits on a selected set
of events such as logins, file updates and program initializations.

Object Reuse. The system should ensure that resources can be reused
while preserving security. A user should not be able to read any kind of
data left in memory by another user, or read the contents of documents
that are in a shared printer queue.

Accuracy. The system should protect against unauthorized or undesired
modification of data. This includes modifications to the system. For
example, viruses should not be allowed to lodge themselves within systems
by hiding inside legitimate system or end-user programs.

"This is one of the hardest areas to protect. The people who are
launching the space shuttle care more about the unauthorized modification
of data than who is listening to their commands," said Dr. Paul Karger,
senior technical consultant, computer security, at the OSF. Karger,
while working for Digital Equipment Corp., Maynard, Mass., was also
reviewer of the Orange Book, the U.S. Department of Defense's Trusted
Computer Systems Evaluation Criteria, published in December 1985. "This
is the part of security that needs the most work," he added.

One solution is computing and saving an encrypted check sum, or summation
of digits used to verify the integrity of data, for every file in a
system. The check sum is recalculated when a file is accessed. If the
new value does not match the old, it indicates tampering. Of course, the
check sum program and the file holding the check sum must also be
protected.

Reliability of Service. The system needs to protect itself against
intentional or accidental monopolization by any user. No user should be
able to commandeer 100% of the CPU or disk space, or interfere with
time-critical operations.

Data Exchange. The system must promote the secure transmission of data
over communications channels.

Implementing the above functions may be difficult and costly. "First,
security has to be easy for programmers. It has to be relatively
straight-forward for the developer of an application to put security into
it," said Transarc's Spector. "Without the services of, for example, DCE
security, it's a real pain in the neck to go off and add security to a
program. A lot of programmers have never done it."

For successful implementation, security must also be easy to administer.
One of the problems in heterogeneous systems is that every sub-system may
have its own security model. So, when an organization adds a new user to
a system, it might be necessary to add that user five times into five
subsystems. That is inconvenient for administrators and users who might
then have five separate passwords.

"The third thing is that while users expect, and will tolerate, some
degradation in performance relating to security, it can't be
catastrophic," said Spector. "For example, a lot of users might like to
have end-to-end encryption across a network, where the client processor
encrypts its data before sending it out to the server [which] then
decrypts. That may be too expensive today. So, users may not use
network privacy on an end-to-end basis for that reason until DES [Data

Encryption Standard] chips are common in every machine."

Spector said that other aspects of security are affordable.
"Authentication is relatively inexpensive, as are authorization checks
and auditing," he said. End-to-end encryption is cheaper when done in
hardware. IBM,DEC and Xerox offer some fast end-to-end encryption
systems.

TOOL VARIETY

Security in a networked environment is trickier than security for a
single system. For example, an eavesdropper may have found a way to
watch the network traffic, easily spotting user IDs and passwords.

The Athena project at the Massachusetts Institute of Technology (MIT),
Cambridge, Mass., developed the Kerberos encryptographics system to foil
eavesdroppers. Kerberos is named after the multiheaded dog that guards
the gates of Hades. All the heads are alert at all times, and stored in
a very safe place. Each head interacts with the user, with various
checks and balances for stopping users from breaking into services they
have no right to use. The OSF's DCE incorporates an implementation of
Kerberos.

Third-party software vendors offer a variety of Unix security/auditing
software products for the many flavors of Unix. These include:
SecureMax-Network from Demax Software, Inc., in San Mateo, Calif., a
security management package that analyzes remote node security, makes
recommendations and monitors changes. SecureMax supports SunOS from Sun
Microsystems, Mountain View, Calif.

Unix Guardian, from Datalynx, Inc., San Diego, Calif., is account profile
and access security software that provides password control, access
control with time windows and automatic logoff. It supports SunOS and
DG/UX from Data General, Westborough, Mass.

The SafeWord Unix-Safe security system from Enigma Logic, Inc., Concord,
Calif., verifies user identity through passwords, and allows access
through a handheld password generator. The software supports Unix System
V from USL;SCO Unix and Xenix from The Santa Cruz Operation, Santa Cruz,
Calif.; Ultrix from Digital; and IBM's AIX.

From Information Security Corp., Deerfield, Ill., Secret-Agent is a
menu-driven public-key encryption utility, which includes digital
signatures, message authentication, Ascii conversion, data compression
and file erasure utilities. It supports SCO Unix and Sun's SunOS.

Security Audit from SunSoft, Inc., Mountain View, Calif., supports Unix
System V by detecting security violations, specifying corrective actions
and suggesting procedures to reduce security problems.

A menu-driven security administration system, Usecure from Systems
Center, Inc., Reston, Va., supports Sun Sparcstation/SunOS; DEC Ultrix;
HP-UX from Hewlett-Packard Co., in Cupertino, Calif.; USL's Unix System
V; and SCO Unix.

Supporting Unix System V, UniSec from UniSecure Systems, Inc., Newport,
R.I., prevents unauthorized access and unauthorized file changes.

CMW + from SecureWare, Inc., Atlanta, is a trusted X Window-based

multilevel workstation which binds on SecureWare's SMP+. It provides
mandatory access control, information labels, discretionary access
control, identification and authentication. It supports SCO Open Desktop
and Apple Macintosh A/UX from Apple Computer, Cupertino, Calif.

Sentinel from Intelligent Software Products, Inc., Lynbrook, N.Y.,
protects modems and terminals from unauthorized entry. It supports SCO
Unix and Xenix, Sun's SunOS and USL's Unix System V.

SoftLock from X-Lock Corp., Alpharetta, Ga., prevents access to the hard
disk when the computer is booted from a floppy diskette. It supports
Unix System V.

In addition, ACMW 4.0 from Addamax Corp., Champaign, Ill., is a
security-modified version of AT&T's SRV4.0 Version 3.0.

'BAD GUYS' GETTING SMARTER

Admittedly, life was simpler when our computer systems were unencumbered
by security mechanisms such as encryptographics systems and access
control software.

When computers lived in the glass house, the mainframe was easy to
secure: Combination door locks into the computer room limited access to
data, and backup tapes were secured in a vault. However, the environment
has changed. Data has grown more valuable as organizations increasingly
rely on their computer systems. And users require more external computer
services. Life is much more complex.

"Not only is life more complex, the bad guys are getting smarter," said
the OSF's Karger.

"Hackers, or crackers, have a lot of tools to break into your system and
steal your valuable data. You can go to your local mall bookstore and
buy a book on how to become a cracker. Therefore, the good guys need to
pay attention to network security issues and protect themselves."

Topic: Networks

Security
UNIX
Open Systems
Security Software
Methods

Record#: 12 552 265.
*** End ***

***** Computer Select, July 1993 : Articles *****

Journal: UNIX Review August 1992 v10 n8 p53(1)
* Full Text COPYRIGHT Miller Freeman Publications 1992.

Title: Practical UNIX Security. (Off the Shelf: Everything Else)

(Brief Article)

Full Text:

For larger or networked systems, I recommend Practical UNIX Security. It
is authoritative, detailed, and practical; it could keep you out of some
trouble.

Type: brief article
Topic: Books

Review

Record#: 12 420 817.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: UNIX Review August 1992 v10 n8 p53(1)
* Full Text COPYRIGHT Miller Freeman Publications 1992.

Title: UNIX System Security Handbook. (Off the Shelf: Everything

Else) (Brief Article)

Full Text:

Bellcore's UNIX System Security Handbook is an annotated checklist for
tightening up UNIXUNIX securitysecurity. It could be used safely by most novice
administrators and would improve security. The book is overpriced at
$49, however. Bellcore should have O'Reilly trim the over-abundant white
space, add some detail where needed, and issue it as a Nutshell Handbook.
Bellcore's order department is at Room 4D110, 290 W. Mt. Pleasant Ave.,
Livingston, NJ 07039. Its telephone numbers are (800) 527-1080
(voice)and (201) 740-6882 (fax).

Type: brief article
Topic: Books

Review

Record#: 12 420 969.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: UNIX World August 1992 v9 n8 p85(2).

Title: Auditing UNIXUNIX securitysecurity, effortlessly: Securemax/UX automates

checking files, permissions, and ownership for baseline
security. (Software Review) (Demax Software Inc.'s security
software, version 1.1) (Evaluation)

Author: Farrow, Rik

Abstract: Demax Software Inc's $495 Securemax/UX 1.1 security software
is a useful program for security administration on Sun
Microsystem workstations that will find most of the problems
that occur in a normal environment. Securemax/UX is easy to
install, which involves loading the software from a floppy
disk into a temporary directory; an installation script does
the rest. The software focuses on five areas of system
security. System Security checks system files, Network
examines weaknesses in UUCP security, Accounts checks the
password file for correctness of user accounts, Passwords
looks for missing passwords and File Systems checks all local
file systems for ownership of files. Securemax/UX is not
perfect. For example, the correction script includes no way
to reverse corrections, and it did not find a change in the
start-up file. It is easy to use, however, and its report and
correction tool can improve default security without requiring
an experienced security expert.

Type: software review

evaluation
Company: Demax Software Inc.
Product: SecureMax/UX 1.1
Topic: Evaluation

Security Software

Record#: 12 455 874.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: LAN Computing May 1992 v3 n5 p37(2)
* Full Text COPYRIGHT Professional Press Inc. 1992.

Title: Oxymoron obliteration; UNIX and security - Systems Center's

USECURE resolves the contradiction in terms that characterizes
UNIX systems today. (Software Review) (Evaluation)

Author: Miller, David M.

Abstract: USECURE 3.0.3 from Systems Center's Unitech Software Inc
provides easy-to-use, consistent security for Unix systems.
There are two components to the program: UPASS, for password
and user management; and USHELL, which replaces the Bourne
shell and provides a high degree of control over user
activities. USECURE 3.0.3 encrypts its data files and
requires the insertion of an encryption key for use.
Passwords can be user-defined or automatically generated. The
program replaces some traditional UnixUnix securitysecurity control files
and programs and modifies users' security information. It is
important to follow installation procedures closely. The
documentation is clear and understandable.

Full Text:

If the words "UNIX" and "security" are never in your mind at the same
time, you're not alone. Until recently, the two terms were seldom
mentioned in the same breath. But as UNIX gains acceptance as a
commercial operating system, security is one area that vendors will
quickly improve. Enter USECURE from Systems Center's Unitech Software
division. USECURE adds an extra level of consistent, easy-to-use
security to many UNIX systems. We ran USECURE version 3.0.3 on our HP
9000/834 running HP-UX version 7.0.

INSTALLATION

Systems Center products are managed with a package called UCONTROL, which
is installed first. UCONTROL provides a menu-driven method of
installing, upgrading and removing Systems Center products.

Installation is nearly automatic. During installation, you're prompted
to enter the serial number and activation codes necessary to validate
UCONTROL and any other System Center package you've purchased.

Because USECURE replaces some of the traditional UNIXUNIX securitysecurity control
files and programs, and because it can modify users' security
information, it is important to strictly follow the installation
checklist and to read the release notes and other USECURE documentation
before proceeding with the installation.

Some installation tasks are worth explaining because they highlight
USECURE features. For example, you're asked to specify the login name of
the system security officer. The SSO has full security rights and is the
only person authorized to make systemwide changes. However, the SSO does
not have to be root, so an extra measure of security is realized here.

USECURE encrypts its data files. You are required to enter an encryption

key for USECURE to use. Passwords can be user-defined or automatically
generated. You determine your preference initially at installation.

CONFIGURATION

USECURE comprises of two components: UPASS, for password and user
management and USHELL-- the really restricted shell.

We configured UPASS first. UPASS provides a menu system in which to do
this, but you also can edit the UPASS main configuration file manually,
once you know the names and possible settings of each parameter.

Figure 1 shows the systemwide parameter configuration screen, accessed
from UPASS' primary menu. System settings determine the locations of
various UPASS files and the messages users will receive related to their
passwords.

You also establish those users who can help you maintain system security.
Persons designated as UPASS operators will receive system security

messages, but they can do little else. UPASS administrators can perform
security related duties for other users, but they cannot affect the
security of the SSO or other administrators, nor can they change the
system configuration.

Other password related items you might consider are placing a limit on
the number of times a user can guess his password, what the minimum and
maximum password lengths should be, how long a password may exist before
the user must change it and the use of separate dial-up passwords. User
settings such as the default shell and default TERM variable value can be
set up in this menu also.

Control can be exercised on the user level also. The User configuration
menu lets you determine if particular users can have dial-up access, what
their password lifetime is, when they get reminded to change their
password, what ports they are allowed to use, specific settings for some
environment variables such as PATH, the initial umask for files, their
login shell, and what days and hours they are allowed access. User
specific settings override systemwide settings where there is overlap.

Individual ports can be secured. The Port menu allows you to determine
ports that can be used for dial up, the number of failed login attempts
allowed, how long the user must wait before trying to log in again and
how long the user has to log in. You can even restrict a port to
specific users and restrict the hours that the port is available for
logins.

UPASS' primary menu Password Management option provides specific control
over users' passwords. The SSO can change a password, lock/unlock it to
restrict/allow access or re-initialize the password to force a user to
enter a new password immediately upon his next login.

Individual users are managed from the User Management primary menu
option. In addition to modifying, deleting or acquiring the status of
existing users, SSOs can enter typical new user information such as their
user ID, group, home directory and login shell. A comments field is
included to enter information such as the user's department, phone
number, and so on.

Login groups are cared for via the Group Management primary menu option.

You can modify and delete user groups as well as create new ones.

SHE SELLS USHELL

USHELL (ush) is a replacement for the Bourne shell and provides a high
level of control over what your users can do on your system.

Figure 2 is USHELL's systemwide configuration screen that establishes
parameters for all USHELL class users. These parameters establish how
detailed an activity log you need for audits, whether or not you force
users to follow a secondary login procedure, and whether or not you want
USHELL to check commands entered by the user (including internal shell
commands such as cd and pwd) against an allowed command list.

Other features you can configure are the maximum number of minutes a user
can stay logged on or have an idle terminal before being automatically
logged off. Input and output redirection and the use of pipes can be
restricted also.

If you configure USHELL to check each command entered by the user, USHELL
compares the command against a systemwide, groupwide and/or individual
"allowed commands list" you can establish.

Here, you establish the name of the command the user will enter, the
specific directory in which the command resides, the specific file that
will be run, and whether or not the user can invoke the command with
switches and parameters. The last column lists users who are not allowed
to use this command.

Further tailoring is possible. You can specify up to five profile
command files that each USHELL user will run upon logging in. You also
can establish a list of specific terminals that a user will be allowed to
log in to. For example, you could restrict a user's dial-up access to a
specific port.

Users become USHELL users when they are assigned /bin/ush as their login
shell. This can be done through the UPASS/USHELL menu system or from the
command line. In the event you are not using UPASS (UPASS and USHELL can
be used independently), you can simply edit your /etc/passwd file to
modify the user's password record.

Security officers have access to detailed audit trails of each user's
activity. Log files are maintained on a user-by-user basis. A new log
is created each time a user logs into the system. USHELL's menu allows
the security officer to print, display and delete log files.

While you'll do a fair amount of work getting things configured, the user
notices nothing unless they try to access things they shouldn't. From a
user's perspective, nothing has changed.

DOCUMENTATION

UCONTROL's documentation is separate from System Center's other packages,
such as USECURE. I appreciated the inclusion of typical configuration
scenarios to use as guides in configuring my own system. The
documentation is clear and understandable.

UNIX and security. Businesses banking in UNIX systems can't allow this
contradiction in terms to exist any longer. In addition to knowing your

users, a package like USECURE can give you the peace of mind needed to
tackle your real MIS challenges while allowing users to freely do their
jobs.

Type: software review

evaluation
Company: Systems Center Inc.

Unitech Software Inc.
Product: USECURE 3.0.3
Topic: Data Security

Software Packages
Evaluation

Record#: 12 182 986.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: HP Professional April 1992 v6 n4 p58(4)
* Full Text COPYRIGHT Professional Press Inc. 1992.

Title: Oxymoron obliteration. (Unitech Software Inc.'s USECURE 3.0.3

for UNIX systems) (Software Review) (From the Lab)
(Evaluation)

Author: Miller, David B.

Abstract: Unitech Software Inc's Usecure data security software provides
security to UNIX systems that most users never believed would
be possible. The tested version of Usecure runs on an HP
9000/834 with HP-UX 7.0. Installation is very simple;
Usercure prompts the user to enter serial numbers and
activation codes to validate the software. Usecure replaces
the usual UNIXUNIX securitysecurity files; the user needs to follow a
checklist provided and read the documentation before
installation. UPASS and USHELL are the two main components of
Usecure, and configuration of these establishes the security
procedures for the system. USHELL replaces the Bourne shell
and gives the manager control over which users have access to
what on the system. All decisions about security and access
are made when Usecure is set up and can be customized to
particular needs. The documentation for Usecure is clear and
well-written. Pricing ranges from $1,000 to $4,000.

Full Text:

If the words "UNIX" and "security" are never in your mind at the same
time, you're not alone. Until recently, the two terms were seldom
mentioned in the same breath. But as UNIX gains acceptance as a
commercial operating system, security is one area which vendors will
quickly improve.

Enter USECURE from Systems Center's Unitech Software division. USECURE
adds an extra level of consistent, easy-to-use security to many UNIX
systems. We ran USECURE version 3.0.3 on our HP 9000/834 running HP-UX
Version 7.0.

Installation

Systems Center products are managed with a package called UCONTROL, which
is installed first. UCONTROL provides a menu-driven method of
installing, upgrading and removing Systems Center products.

Installation is nearly automatic. During installation, you're prompted
to enter the serial number and activation codes necessary to validate
UCONTROL and any other System Center package you've purchased.

Because USECURE replaces some of the traditional UNIXUNIX securitysecurity control
files and programs, and because it can modify users' security
information, it is important to strictly follow the installation
checklist and to read the release notes and other USECURE documentation
before proceeding with the installation.

Some installation tasks are worth explaining because they highlight

USECURE features. For example, you're asked to specify the login name of
the system security officer (SSO). The SSO has full security rights and
is the only person authorized to make system wide changes. However, the
SSO does not have to be root, so an extra measure of security is realized
here.

USECURE encrypts its datafiles. You are required to enter an encryption
key for USECURE to use. Passwords can be user defined or automatically
generated. You determine your preference initially at installation.

Configuration

USECURE is comprised of two components: UPASS, for password and user
management and USHELL -- The Really Restricted Shell.

We configured UPASS first. UPASS provides a menu system in which to do
this, but you also can edit the UPASS main configuration file manually,
once you know the names and possible settings of each parameter.

Figure 1 shows the system wide parameter configuration screen, accessed
from UPASS's primary menu. System settings determine the locations of
various UPASS files and the messages users will receive related to their
passwords.

You also establish those users who can help you maintain system security.
Persons designated as UPASS operators receive system security messages,
but they can do little else. UPASS administrators can perform security
related duties for other users, but they cannot affect the security of
the SSO or other administrators, nor can they change the system
configuration.

Other password related items you might consider are placing a limit on
the number of times a user can guess his password, what the minimum and
maximum password lengths should be, how long a password may exist before
the user must change it, and the use of separate dialup passwords. User
settings such as the default shell and default TERM variable value can be
set up in this menu also.

Control can be exercised on the user level also. The User configuration
menu lets you determine if particular users can have dialup access, what
their password lifetime is, when they get reminded to change their
password, what ports they are allowed to use, specific settings for some
environment variables such as PATH, the initial umask for files, their
login shell and what days and hours they are allowed access.

Individual ports can be secured. The Port menu allows you to determine
ports that can be used for dialup, the number of failed login attempts
allowed, how long the user must wait before trying to login again and how
long the user has to login. You can even restrict a port to specific
users and restrict the hours that the port is available for logins.

Reports you can generate from UPASS's menu system include a system log,
password change report, a report of logins and who performed them, and an
su listing. Other report formats provided by UPASS include listings of
successful and unsuccessful logins and successful and unsuccessful pwd
attempts.

UPASS's primary menu Password Management option provides specific control
over users' passwords. The SSO can change a password, lock/unlock it to

restrict/allow access or reinitialize it to force a user to enter a new
password immediately upon his next login.

Individual users are managed from the User Management primary menu
option. In addition to modifying, deleting or acquiring the status of
existing users, SSOs can enter typical new user information such as user
IDs, group, home directory and login shell. A comments field is included
to enter information such as the user's department, phone number, etc.

Login groups are cared for via the Group Management primary menu option.
You can modify and delete user groups as well as create new ones.

USHELL Sea Shells

USHELL (ush) is a replacement for the Bourne shell and provides a high
level of control over what your users can do on your system.

Figure 2 is USHELL's System Wide configuration screen that establishes
parameters for all USHELL class users. These parameters establish how
detailed an activity log you need for audits, whether or not you force
users to follow a secondary login procedure and whether or not you want
USHELL to check commands (including internal shell commands such as cd
and pwd) against an allowed command list.

Other features you can configure are the maximum number of minutes a user
can stay logged on or have an idle terminal before being automatically
logged off. Input and output redirection and the use of pipes can be
restricted also.

If you configure USHELL to check each command entered by the user, USHELL
compares the command against a system-wide, group-wide and/or individual
allowed commands list.

Here, you establish the name of the command the user will enter, the
specific directory in which the command resides, the specific file that
will be run and whether or not the user can invoke the command with
switches and parameters. The last column lists users who are not allowed
to use this command.

Further tailoring is possible. You can specify up to five profile
command files that each USHELL user will run upon logging in. You also
can establish a list of specific terminals that a user will be allowed to
login to. For example, you could restrict a user's dialup access to a
specific port.

Users become USHELL users when they are assigned/bin/ush as their login
shell. This can be done through the UPASS/USHELL menu system or from the
command line. In the event you are not using UPASS (UPASS and USHELL can
be used independently), you can simply edit your/etc/passwd file to
modify the user's password record.

Security officers have access to detailed audit trails of each user's
activity. Log files are maintained on a user-by-user basis. A new log
is created each time a user logs into the system. USHELL's menu allows
the security officer to print, display and delete log files.

While you'll do a fairr amount of work getting things configured, the
user notices nothing unless they try to access things they shouldn't.
From a user's perspective, nothing has changed.

Documentation

UCONTROL's documentation is separate from System Center's other packages,
such as USECURE. I appreciated the inclusion of typical configuration
scenarios to use as guides in configuring my own system. The
documentation is clear and understandable.

UNIX and security. Businesses banking in UNIX systems can't allow this
contradiction in terms to exist any longer. In addition to knowing your
users, a package like USECURE can give you the peace of mind needed to
tackle your real MIS challenges while allowing users to freely do their
jobs.

Type: software review

evaluation
Company: Unitech Software Inc.
Product: Usecure
Topic: Data Security

Evaluation
Security Software

Record#: 12 079 742.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: UNIX World April 1992 v9 n4 p59(3).

Title: Improve your security. (developing a UNIX system security

policy)(includes a related article describing security
resources)

Author: Farrow, Rik

Abstract: Security experts claim that companies have more to fear from
internal security breaches than external hackers; they insist
that a computer security program begin with measures intended
for employees. UNIX systems are distributed by nature, which
makes security planning more difficult, but there are many
simple steps managers can take to make their UNIX systems more
secure. A security policy that clearly states the rules of
computer use is the first step, after which an audit of the
system's hardware and software is conducted to indicate
security weak spots. The weakest link in a computer system is
often users; the security policy must specify penalties for
breaking the rules as well as listing the rules themselves.
The security audit will provide a status report on system
security by examining file and directory permissions and
ownership. The trend toward smaller computers and components
makes physical security more difficult; system access controls
and UNIXUNIX securitysecurity features are also discussed.

Topic: UNIXUNIX

Data SecuritySecurity
Strategic Planning
Management of EDP
MIS
Access Controls
User Behavior
Security Systems
Methods
Training of Employees

Record#: 12 021 154.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: DEC Professional March 1992 v11 n3 p94(4)
* Full Text COPYRIGHT Professional Press Inc. 1992.

Title: Basic tools for UNIXUNIX securitysecurity. (ULTRIX operating system

features for data security)(column) (UNIX) (Technical)
Author: Bourne, Philip E.

Abstract: ULTRIX, DEC's UNIX-like operating system, offers users tools
to prevent unauthorized access to data. Version 4.2 carries a
C2 security rating, substantially higher than the earlier
versions which carried a D rating. Users can expect this
rating to be even higher in the future when Open Desktop, the
replacement system for ULTRIX, is implemented. Open Desktop
is based on the OSF/1 operating system and will be able to be
configured as a B1 system. The C1 rating of the current
release of ULTRIX includes audit and password control
functions. Users should carefully consider whether or not
they need to audit their systems, since auditing both requires
effort and uses disk space. Accounting is a powerful but
poorly documented method for detecting break-ins. Using
accounting functions can give managers both the identification
and activity of an intruder.

Full Text:

This month we explore some basic but often overlooked features that can
assist you in detecting break-ins to BSD-based UNIX systems, including
ULTRIX. Great strides have been made in making UNIX more secure. Early
versions of BSD UNIX had a D security rating, whereas ULTRIX V4.2 (and
VMS, for that matter) has a C2 rating. The closer to A, and the higher
the number, the more secure the system.

ULTRIX users can expect even higher levels of security in the future.
The OSF/1 operating system, which is the foundation of Open Desktop and
is slated to replace ULTRIX on RISC platforms, can be configured with
simple BSD UNIXUNIX securitysecurity features. Alternatively, it can be configured
as a B1 system, with B2 and B3 features such as least privilege, trusted
management facility, and access control lists (ACL). ACLs, the fine
control over which users and which groups of users can access an
individual file, come as no surprise to managers of VMS systems.
However, they are new to UNIX.

Least privilege and the trusted management facility do away with the
all-privilege-or-no-privilege concept of root versus user access. A
graduation of privileges means, for example, that you can define
operator-level accounts that permit read and write access to selected
filesystems for making 0 level dumps but that do not permit the operator
to have other privileges reserved solely for the root account, for
example, the ability to edit the password file, /etc/passwd. Future
releases of OSF/1 are expected to reach a complete B3 rating, implying,
among other things, more sophisticated auditing.

With security features such as auditing and improved password control
(part of the C2 rating), you can easily overlook some of the basic
commands and utilities, which have been around since the early versions

of UNIX, for detecting break-ins. Let's look at some of these tools,
concentrating on those that receive scant or no coverage in the ULTRIX
documentation.

Auditing

Should you audit? How you answer this question reveals a great deal about
your security policy. Auditing requires effort and understanding on your
part and consumes system resources, notably disk space. Whether auditing
is justified depends on bow security-conscious you need to be. To
understand what is required to audit an ULTRIX system, refer to Figure 1.
It provides a useful preamble to the ULTRIX Security Guide for System
Administrators, which is part of the ULTRIX documentation and is rich in
detail but poor in putting the components of the auditing subsystem in
perspective.

The audit tool is powerful. However, it must be administered closely,
and it requires a significant amount of free disk space and some CPU and
memory use. Human nature dictates that many of us will not consider
auditing our systems until it is too late, that is, until a break-in is
already suspected that requires detailed interrogation. If this occurs,
how do you make the best of a bad situation? You resort to the standard
BSD UNIX tools.

Figure 2 summarizes some of the events that you can monitor using basic
BSD UNIX commands for signs of security violations. Your most powerful
counterweapons are the accounting logs, if you happen to be running the
BSD accounting program /etc/acct for billing or other purposes.

Accounting

Accounting is poorly described in the ULTRIX documentation, but several
books cover BSD accounting in detail. UNIX System Administration
Handbook by Evi Nemeth, et al. (PrenticeHall, 1989), and Essential
System Administration by Aeleen Frisch (O'reilly & Associates, 1991) are
excellent sources of information. The ULTRIX accounting software comes
as an optional software subset loaded with the etc/setld command. Once
loaded, accounting is toggled on and off, usually at boot time from the
file etc/rc.local, with the command /etc/accton.

If a specific accounting file is not specified, each time a process
terminates, the kernel writes a record to the default file, /usr/adm/acct
- a rich source of information in looking for potential security
violations. As you can imagine, this file grows quickly and usually is
summarized daily. The command /etc/sa (summarize accounting) serves this
purpose and is a tool to search for security violations. Figure 3
illustrates the use of sa in conjunction with grep for interrogating the
accounting file in search of an intruder.

If you have some notion that a particular account is being used to
infiltrate the system, you can interrogate the accounting records
belonging specifically to that account. In the first example, sa -m
summarizes the information in the accounting files, providing a single
record for each user. The files interrogated are the accounting file,
/usr/ adm/acct, and the accounting summary file, usr/adm/savacct
(produced with sa -s). This output is piped to grep, which displays the
record corresponding to our login name intruder. This display includes
the total number of processes activated by our potential intruder, the
total CPU time in minutes, the total number of input and output

operations, and the average memory use in kilobytes per second for all
these processes.

This is a useful start, but it gives no indication of what the intruder
was actually doing while he was logged on. The next step is to use the
command sa -u, which summarizes the accounting file by user
identification (UID) for each user, followed by command name and the
amount of CPU and memory used by this command. By interrogating the
password file /etc/passwd, we have determined that the UID of the
potential intruder is 103. Then, using grep, we have filtered the output
of the accounting summary to contain just those records for user 103.
This tells us that the potential intruder used tcsh, the T" shell, which
is an enhanced C" shell.

Could our intruder have changed this program in some way? Before we worry
about that question, we need to consider plugging the gap. We could of
course modify the file /etc/passwd to prevent the intruder from accessing
the account, but he may have access to other accounts, in which case an
we have done is alert him. Figure 4 illustrates some other standard BSD
UNIX commands that are at our disposal in our quest to thwart the
intruder.

First, the command ac -d intruder provides a daily summary of connect
time for the login name intruder, and it may help to establish a pattern
of when the intruder accesses the system. Second, the command last -d
intruder shows, in reverse chronological order, when the intruder logged
in and, perhaps more important, from where he logged in. In this
example, the intruder accessed the system via a network connection to a
pseudodevice (/dev/ttyp*), always from the host named cuhhmd. If
intrusion is always from a single host, you may wish to solicit the help
of the administrator of that host to establish whether this is the source
of the intrusion or whether that host was infiltrated from yet another
host. Also, note that the potential intruder used ftp to copy a file to
or from your computer.

The third example, cat usr/adm/ shutdownlog, summarizes when the system
was last shut down and by whom. This may not be important for central
servers where administrators are likely to notice shutdowns, but client
shutdowns and reboots are easily missed. In a worst-case scenario, the
intruder could have been rebooting the client system to use a modified
kernel, which could potentially cause problems on other systems. Of
course, to reboot the system, the intruder has already gained root access
to the system, so you are in serious trouble already. At the very least,
a change to all passwords is required, and to be sure, the system may
need to be either restored from dump tapes known to predate any intrusion
or rebuilt from the original distribution tapes.

In the fourth example, lastcomm sendmail intruder ttyp1 illustrates the
resolution with which a user can be interrogated. When and for how long
the user intruder accessed the command sendmail from the pseudodevice
/dev/ ttyp1 is displayed. Accessing sendmail implies that the intruder
used the mail program.

Finally, the command cat /usr/ adm/sulog displays the log reporting use
of the su (become superuser) command. This would readily indicate
whether the intruder has access to the root password and, because failed
attempts are also reported, any attempt at guessing the password.

Instrusions should be dealt with by passing the information either to the

people responsible in your organization or directly to the Computer
Emergency Response Team, based in Pittsburgh. n

Type: column

technical
Company: Digital Equipment Corp.
Product: Ultrix
Topic: UNIX-Like Operating Systems

Data Security
Software Design

Record#: 11 935 742.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: DEC User March 1992 p20(3).

Title: Sense of security. (UNIX operating system)
Author: Vincent, Jo

Abstract: Some analysts argue that the VMS operating system is more
secure than Unix. Others would defend Unix, claiming that
security features are available for the product, but it is up
to the user to request and implement them. The current
version of Unix, System V version 4.1 ES (Enhanced Security)
is currently undergoing certification to the B2 security
level. A recent report on UnixUnix securitysecurity by SRI International
indicates that account security, network and file network
security are the three areas most users are concerned about.
The increase in distributed computing within corporations has
led to more problems for systems administrators, who are
concerned with unauthorized access to company files. One of
the main problems with Unix is that the security device that
accompanies the system comes switched-off. The user must
therefore learn how to activate the feature before security
can be implemented.

Product: VMS
Topic: Access Controls

UNIXUNIX
Data securitysecurity
Operating systems
Comparison

Record#: 12 039 934.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: UNIX Review March 1992 v10 n3 p38(10)
* Full Text COPYRIGHT Miller Freeman Publications 1992.

Title: Security on UNIX systems: how to build security into your open

systems and measure its effectiveness. (includes related
articles on the National Computer Security Center and its
security level designations, typical security features, and an
example of a covert channel) (Tutorial)

Author: Bunch, Steve

Abstract: Traditionally, UNIX systems have been used in environments
where users have implicit trust in their co-workers and, as a
result, UNIXUNIX securitysecurity has been only fair. With the migration
of UNIX into more vulnerable environments, steps have been
taken to improve the security, or trustedness, of UNIX
systems. Both the National Institute of Standards (NIST) and
the National Computer Security Center (NCSC) are involved in
the development and evaluation of security of computer
systems. The NCSC publishes the Orange Book, a compilation of
security requirements aimed at government computer systems but
also applicable in large part to commercial open systems. The
NIST is currently at work on a set of specifications that
combines those in the Orange Book and specifications
established in Europe. Vendors may or may not choose to
formally evaluate systems according to NIST or NCSC
guidelines. Often there is a trade-off between the level of
trustedness and the number of available features on a system;
it is up to the customer to decide whether features or
security is to be given priority in a purchase decision.

Full Text:

The security of UNIX systems has traditionally been considered only
fairly good-and only if they are well-administered. As UNIX systems are
used in more commercial contexts, the need to rely on system security is
growing. UNIX systems are being used to hold information that is as
valuable as the contents of bank vaults, but how do we know if the
systems are worthy of that level of trust? When is "pretty good" not good
enough? What is better? How do you tell how good it is?

This article is an overview of the base security technology being
incorporated into commercial UNIX systems. It is meant to help you
understand the technology better, so you can cut through the marketing
hype and ask vendors questions that will get you the answers you need for
your application.

I use the words "secure/security" and "secure system" interchangably with
"trusted/trustedness" and "trusted system." The preferred terminology in
many environments, especially where the word "security" appears to
promise too much, is "trusted." No distinction is intended here.

Computer security technology. Most computer users think computer
security makes it harder to get their jobs done. That is often going to
be true, generally because of potentially harmful security weaknesses in
the way people are accustomed to working. In a bank, the vault

combination is not given to every cashier, but in a computer
installation, many employees usually have access to the computer. With
the quality of protection provided by most computer systems today, giving
most employees access is like giving them the keys to the vault (along
with a key to the front door so they can come in on weekends). Users
have to accept the fact that adopting security technology will require a
change in the way they do things.

The UNIX system was designed to be used in environments where users don't
think they have any real secrets from each other and trust their
co-workers implicitly. Computer security is based on the premise that
either or both of those assumptions could be false. Most uses of UNIX
systems in commercial environments would be considered dangerous if the
system did not provide good protection against malicious insiders, since
such insiders are by far the biggest threat to any business.

The threats. One job of a computer system is to guard data from specific
kinds of threats. In a cooperative environment, people often assume the
only threat is carelessness. The security features tend to protect you
from mistakes, such as deleting an important system file. However, in
most environments, the severe threats come from misplaced trust: people
who have legitimate access but abuse their access privileges. Outsiders
who can casually or maliciously access your computers and its data also
pose a threat. Often an outsider gains access via user carelessness:
telling the "repairman" who calls on the telephone everything they type
when they log in (including the password) so that an imaginary problem
can be "diagnosed." The defense a system must provide varies with the
specific threat. Some threats are easy to defend against; some are not.
Some must by necessity be handled administratively rather than with
system software.

Some typical threats include:

* Reading a password "hidden" on a cheat sheet in the top desk drawer

* Lending someone your login

* Reading data over someone's shoulder

* Changing or accessing data left unprotected on a system

* Changing data the user is authorized to change, but should not

* Using a terminal left logged in overnight or at lunch to access data

* Stealing floppy disks with back-up data on them

Overly permissive default protections on newly created files

* Incorrect administration of user information or system protections.

Defense vs. Commercial Usage. In the past, computer security was mainly
of interest to the Department of Defense, which has highly sensitive
information to protect. In recent years, privacy and other legislation
has forced other government agencies to worry much more about security
than they used to. Banks and other commercial computer users are also
being forced to worry about computer security as they pass around large
amounts of money, stocks, and options, with paper trails that are
sluggish by comparison. The formerly esoteric realm of computer security

is coming into the mainstream.

Historically, government and commercial organizations have implemented
the absolute legal minimum computer security controls. The
implementation of stricter controls costs more than the potential losses.
This cost/benefit ratio is now moving in the direction of stricter
security.

Secrets vs. Data Integrity. Two distinct aspects of accessing
computer-stored information are reading it and writing (or modifying) it.
Denying users access to some information-keeping secrets-is different

from preventing them from creating new information. The difference
between these types of access resembles the difference between the way a
security agency feels about the names of its informants in a foreign
government and the way a banker feels about the bank account balances
stored in computer systems. Protecting information from disclosure has
historically been extremely important to the defense community, which has
secrets to protect but does not as often depend on the integrity of any
individual copy of that information. Integrity has been more important
to the commercial world, which manages money and other valuables using
computers that contain the master version of the information but does not
need to protect that information from disclosure as strongly (since
little true harm typically would come from it). Of course, both types of
users care about both kinds of protection, and in a computerized world
with increasingly strong information-protection laws, both types of
security are important.

Features and Assurances. The distinction between features and assurances
is useful in understanding trusted systems. A feature is a visible
security facility in the system that users must be aware of, such as
protection mechanisms on files or passwords when they log in (see
sidebar). Assurances are mechanisms and activities that make it possible
to trust the system security features to operate correctly. These may or
may not be visible to users.

To make a system as trustworthy as possible, vendors usually build and
run exhaustive security test suites that test all the security features
of the system. They might write formally proven security models; they
might perform penetration testing in which experts attempt to break into
the system; they might keep track of the person who originated each
individual line of code in the system-just in case the programmer turns
out to be careless or malicious. The goal of these techniques and
specific (usually not user-oriented) security features is to uncover
security flaws before the system reaches users and to discover and
prevent security failures after it reaches the field. Such assurances
increase users' confidence that the system and its security features are
implemented correctly and will work as intended. In the Orange Book, the
NCSC (discussed later) has explained the minimum level of assurance it
requires from a system at various security levels.

This feature/assurance distinction is important to understand. Features
can be provided to perform some security-related function, but in a
system full of serious bugs, such features may provide no protection
whatsoever. Similarly, a system with many assurances may be highly
secure when used according to its designers' intent, but if the system
does not provide the right features for its end use, people may find the
system hard to use and circumvent the protection features. The
engineering of a trusted computer system is not just the inclusion of
some new system calls and commands. It requires carefully analyzing a

customer's needs and designing features that satisfy those needs,
combined with the appropriate assurances to meet the intended use of the
system.

NIST and the NCSC. Two U.S. government agencies are heavily involved in
the specification and evaluation of the security of computer systems.
The National Institute for Science and Technology (NIST) is responsible
for computer security in the private sector. The National Computer
Security Center (NCSC), a part of the National Security Agency (NSA), has
responsibility for evaluating the security potential of systems that
might be sold to the U.S. government.

The NCSC has published a guide commonly known as the Orange Book (because
of its orange cover)-its actual name is the "Trusted Computer System
Evaluation Criteria" or TCSEC. In the Orange Book, levels of trustedness
are defined, ranging from a low of D to a high of Al (see sidebar). D is
essentially no security protection (for example, an IBM PC). The
somewhat esoteric B3 and Al ratings require that the system be designed
from the beginning to be evaluated at those levels. The Orange Book was
originally written to satisfy the security needs of the U.S. government,
not commercial users. For example, it has few specific requirements for
integrity features. It also uses a security model based on hierarchical
and nonhierarchical classification of the sensitivity of information
(based on the DOD classification system: Top Secret, Secret, and so on),
which does not exactly match what most companies use as a model.

However, the majority of the Orange Book requirements do apply to
commercial use. The UNIX system itself provides many additional
important features, and system vendors who want to sell Unix-based
systems in the commercial marketplace have been striving to provide
features over and above the minimum mandated for the target evaluation
level. The result is that even though the Orange Book is being used
beyond its original intent, it is proving to be a solid framework on
which to build commercial systems. It also provides a framework for
evaluating many areas of functionality and assurance that all trusted
systems share. Perhaps its most valuable role has been to serve as a
common yardstick against which different systems can be measured.

To increase the level of security offered by U.S. computer vendors, the
U.S. government several years ago mandated that all computer systems
bought by the federal government must be evaluated at least at the C2
level by 1992. This policy may not be applied absolutely in 1992, but
many vendors are still striving to have C2 level systems in that
timeframe.

Security standards. Most western governments, and several organizations
within the U.S. government besides the NCSC and NIST, have produced
their own security documents. These documents variously include or
reference the Orange Book, offer similar information in a different form,
or offer alternate security requirements based on different assumptions
or end applications. Few, if any, genuine incompatibilities exist in
these different requirements, but the union of all the sets of
requirements is a very large set.

NIST is currently working on a unified standard that addresses the
primary European requirements, the Orange Book requirements, and
commercial requirements. A question that has not really been answered
adequately is whether all the security features and requirements
discussed in these standards meet real-world needs. Since systems

implementing them are just beginning to appear, we are entering a period
of discovery in which we will be getting the answer. Early results
indicate that some kinks may need to be worked out.

Computer vendors implementing security functionality in their systems are
generally using common interfaces in an attempt to satisfy the existing
specifications they feel are necessary for their markets as well as their
nongovernment customers who need better security. Unfortunately,
different vendors have, in some cases, targeted different customers for
security-enhanced systems, and they have often invented different
interfaces to satisfy these and their commercial needs.

Application writers and users would clearly like to see common interfaces
among vendors, and similar if not identical concepts being presented by
the system and its documentation. The industry needs interface standards
to reduce this interface divergence and to create an environment in which
independent software vendors (ISVs) can produce applications that use
security features and are portable among different vendors' systems with
minimal effort. No security-interface standards have been established,
although there have been several working papers and many proposals. This
situation will be changing over the next few years as standards are
completed and implemented.

Several efforts to create standards for UNIXUNIX securitysecurity features are
underway. The first was the /usr/group Subcommittee on Security, formed
in 1986. This group eventually passed the baton to the POSIX P1003.6
group, which is currently proposing a security extension to POSIX.
Unlike the P1003.1 group, which was able to adopt pre-existing
technology, P1003.6 was forced to invent new functionality. It has taken
a number of years to reach this stage, but the P1003.6 draft standard is
now out for balloting. However, since it is operating so close to the
leading edge of technology, resolution and formal adoption is likely to
take a while. Because of the rapid commercial deployment of security
features, the P1003.6 committee may be able to adopt more de facto
practice in the future, more like P1003.1 operated, rather than inventing
so much.

Although X/Open produced a position paper on auditing that was adopted as
a starting point by P1003.6, it has not recently been active in security.
It is now returning to this area, however.

As previously mentioned, NIST is addressing security technology in a set
of unified security requirements, but this is not an interface definition
and is not available yet.

Porting bases for security technology. The most important influences in
the security area are likely to be de facto standards in the form of
porting bases. Several technology vendors have been selling security
functionality add-on kits in the past, and most of the large vendors have
had security efforts of their own in progress for many years. However,
most UNIX system vendors today have aligned with OSF or USL as the base
for their ongoing UNIX system technology and source base. USL's System V
Release 4.1 Extended Security (ES) and OSF's OSF/1 system will be major
porting bases for building UNIX systems for the next few years. Both of
these systems include security features. The 4.1ES system is being
formally evaluated by the NCSC against its B2 requirements on an AT&T
reference platform. Vendors using this porting base will need to perform
an evaluation on their own platform.

The OSF/I system is targeted at the B1 security level, although OSF
itself is not performing an NCSC evaluation on a reference implementation
of OSF/L. OSF's member companies, often in conjunction with the supplier
of the OSF/I security technology to OSF, are performing such evaluations
on their own products. The same technology has also been licensed by
several vendors to incorporate into non-OSF/1, nonSvr4.1ES-based systems.
For the purposes of this discussion, such systems will generally have

the same properties as we describe here for OSF/1.

USL's source base has the more stringent assurance requirements of the B2
goal, and the actual porting base is being evaluated by the NCSC at that
level. These factors give USL's source base an advantage from the
security standpoint. However, by porting either USL's or OSF's source
base, a system vendor obtains a reasonable set of security features and
an idea of the level to which the system could be evaluated. Both of
these systems can be configured to provide C2- or B-level feature sets,
allowing vendors to tailor their own products (based on these source
bases) to different customer requirements. Note that the use of common
porting bases by a large number of system vendors has a subtle catch.
While the vendors will all benefit from the efforts of the source-base
suppliers to remove security flaws from the system, the vendors will all
suffer from any flaws that escape into the source base. A set of
well-known security bugs in BSD-based UNIX systems was exploited by the
infamous Internet Worm that a few years ago infected many systems from
several vendors. Source-base providers have a serious responsibility to
promptly inform their customers (the system vendors) of security flaws
and to provide fixes. They must try to keep those flaws closely held
until vendors have had an adequate chance to propagate fixes to their
field installations, but this is not always possible.

Later in the 1990s, the effects of de jure standards will be felt by all
vendors and source-base providers. Both OSF and USL have agreed to
become compliant with the POSIX 1003.6 standard when it is finalized, and
both are doing everything they can to anticipate it. While the details
of implementation and interface in the P1003.6 standard differ from these
systems, the concepts are compatible. Source-level interface
compatibility with P1003.6 will provide a level of functionality
sufficient to implement many security-aware applications.

Application porting and ISV issues. Will all these security features
break existing programs? Probably not as often as you might fear, but
there may be big differences in what users can conveniently do.
Nonprivileged programs that do not make unwarranted assumptions will
seldom break because of security mechanisms-unless the user tries to do
something that is illegal on a system with higher security.

On the other hand, some security mechanisms are meant to prevent
information propagation that people take for granted. While the programs
may work, they may become less useful. For example, the mail feature of
an office-automation program may send mail just fine, but recipients
might have to log into the system at the same security level as the
sender or they would never find out that mail has arrived. If they
cannot log in at that level, they may never get the mail. Programs may
encounter new error situations, but generally the error codes for
failures caused by these new features are compatible with old ones.

Some programs must perform operations that have become privileged on more
secure systems, however, which can lead to fairly glaring problems. For
example, an office-automation package that is accustomed to being able to

write directly into a printer spool directory may find itself unable to
do so and may no longer print. A program that temporarily assumes the
identity of the super-user to abort an operation will abruptly lose that
capability. Such programs must be recoded to work in ways consistent
with a higher degree of protection. They are failing for a reason,
generally because their implementation has a security flaw. ISVs and
users who write privileged software will have to make changes to work
within the new security framework of trusted systems. Most applications
that previously worked without special privileges will continue to work
on a trusted system, possibly with some new security-imposed
restrictions, as previously noted.

Some security features, particularly Mandatory Access Controls (MAC) (see
sidebar), will be a force-fit into some environments and applications.
For example, a database package cannot be adapted simply to deal
correctly with sensitivity levels, which may make their use unwieldy for
so cations. Or, the administrative roles implemented in the system may
cut across department boundaries. Many companies do not categorize the
sensitivity of their information at all, and many that do ("company
proprietary," "internal use only") have a fairly large error margin.
("Sure, I know it says 'company private,' but he's a good customer. Go
ahead and give him a copy."). The computer's enforcement of these
security policies will be absolute, but people aren't used to such
strictness. Either the pre-existing practice must change to match the
features, or the features must adapt to meet the practice. Feedback to
vendors when this sort of situation occurs is critical to develop
efficient security features and company security policies.

ISVS and users who want to take advantage of new vendor-provided security
features must learn new concepts. These concepts will generally be
portable from vendor to vendor, but the interfaces offered by vendors
cluster into a small number of sets depending on the source of the
vendors' security technology. All interfaces will be migrating to future
standards like P1003.6 as they develop.

To protect their investment in security additions, ISVS and programmers
should write their programs using abstracted primitives and interfaces of
their own definition, then write a software layer to translate that to
the vendor-provided set of interfaces. Later, when porting the software
to a different system, only the small interface layer need be rewritten.
The bulk of the application can remain unchanged. Programmers should
study the features of several vendors' systems before deciding what
common subset of functionality they should use in their applications.
Programmers should target their applications to work with a specific
feature set that corresponds roughly to the Orange Book levels (probably
the lowest usable one), since most vendors are making it possible for end
users to configure their system to different levels. Assuming all
vendors will provide functionality similar to that provided in the
P1003.6 draft, for example, is reasonably safe.

NCSC levels and evaluation. The NCSC is currently performing evaluations
of all higher-security systems (B2 and above) and will likely continue to
do so. However, although the NCSC is also performing all evaluations at
lower levels, it is likely that this responsibility eventually will pass
to NIST. NIST's proposed approach is that the system evaluation for
certification to be done via the National Voluntary Laboratory
Accreditation Program, in which the actual evaluation is performed by an
accredited laboratory (as is now done for POSIX certification).
Evaluations at the C2 and BI levels are significantly less stringent and

thorough than at the B2 level. C2 and B1 evaluations also have simpler
requirements for maintaining the rating of the system as it evolves
(essentially, the vendors evaluate the security relevance of their
changes). As a result, most systems on the market with security
enhancements will be at these levels. The levels above B2 are currently
the realm of security professionals, and we'll ignore them here.

A particular vendor will decide-generally dictated by its customer base
and market-whether to formally evaluate a system (either with the NCSC or
NIST) as compliant with formal security requirements. This choice is
based on the vendor's customers' knowledge about security, what firm
security requirements are written into typical bids the vendor responds
to, and whether the vendor perceives an adequate return on investment in
security measures.

What level is enough? It's hard sometimes to decide what level of system
is needed for a given commercial environment. The NCSC has a published
guideline to help decide for the government environment, but it is not
applicable in commercial applications. There are two issues: feature
content and confidence level in the quality of the system implementation
(related to the assurances used in its production). A system claiming
"B3 features" or "B1 features" is saying nothing whatsoever about the
level at which the system can be evaluated, just that it has all the
features required at that level. Similarly, a system might have all the
feature content mandated for an Al system, but be completely insecure
because of bugs. Both facets matter.

The weakest link in security of most commercial UNIX systems will be the
users and system administration, so features that help users and
administrators avoid mistakes are potentially the most valuable. Also
valuable are features that help keep honest people honest by improving
the chances that if they aren't, they'll be caught (and letting them know
the feature is in use). By these criteria, the most critical security
features (auditing, good password checking, system integrity,
documentation) are present at the C2 level; this is, therefore, the
minimum working feature set. The "trusted path" to the system and the
tighter control over system integrity, privilege, and system
administration required at the B2 level are extremely useful in a
commercial setting.

Access-Control Lists, an access-control mechanism that probably best
matches the way companies control information today, first becomes a
mandatory feature at the B3 level. The most visible feature added at the
B levels, Mandatory Access Control modeled on the controls used for DOD
classified information, is not as directly applicable as ACLs to
implementing existing security practices in most commercial environments.
Further, it is much less convenient in daily use. However, because of

its power, it will be desirable in some situations despite its
disadvantages. ACLs tend to be a better model for commercial usage
because commercial users generally want to protect information by
establishing the list of people who can see or change it. However, in
the DOD world where MAC originated, information has inherent properties
that determine what its sensitivity is, and individuals have related
properties that determine what they can or cannot see. Most vendors
supply features beyond the minimum set required for a target evaluation
level, since they want their system to be attractive to a wide variety of
users. For example, many commercial systems will include all the above
features, even in a system targeted for the B1 level of trust.

The issue that really matters is the true difficulty of violating the
system's security. The most important sources of confidence in a
system's trustability are good design, the smallest possible number of
features and interfaces, good specifications, good documentation, and
good testing. A well-thought-out system is less likely to have subtle
flaws. A system that is small can be more completely analyzed and will
have fewer feature cross-product interactions that could have security
repurcussions. A well-documented system is much easier to understand and
less likely to be compromised through accidental misuse. A system whose
security features have been exhaustively tested, perhaps by experts
attempting to penetrate them, is less likely to contain errors that can
be exploited by a nonexpert.

A system whose security has been examined by an outside body like the
NCSC will tend to be more completely examined. The NCSC evaluation
criteria reflect how thoroughly all such aspects of the system must be
inspected to achieve a given level, with the higher levels corresponding
to stronger requirements. Therefore, a successful evaluation on the NCSC
scale is a good way for a nonexpert to judge. Higher levels correspond
to more careful examination of each element that makes the system more
likely to withstand attack. Given that few vendors have evaluated
systems today. this is admittedly not a good enough answer, but it will
improve with time.

Some system vendors will have done a much better job than necessary for a
given rating and in fact have systems more worthy of trust than formally
evaluated systems of higher ratings. However, vendors with the security
expertise to achieve this quality are rare. Today, buyers may need to
learn enough about the vendor and the process the vendor used to produce
its system so they can judge the likelihood of the system to correctly
implement its security features. Since many potential purchasers of
trusted systems need to learn about security anyway, this evaluation
could be made into an excellent education opportunity.

Later 1990s software technology. The technology of building secure
systems has not changed

In much in the last ten years. The leading edge of the technology is
advancing, the number of "worked examples" has increased, and the
folklore available to system designers has become more extensive, but in
the trenches the work that's done to secure a system has not undergone
any revolutions. The number of practitioners outside the DOD has risen,
however, so more people are beginning to be aware of trusted system
technology. The most important progress in security technology in recent
years is its wider availability on commercial systems.

Practical experience and theory show that the most important things that
can be done to improve the security of UNIX systems are to reduce the
size of the part of the system that must be highly privileged, and to
implement the system on top of a well-structured starting point. These
concepts are related, and they coincide with two of the major goals that
have generated so much interest in micro-kernels in recent years.

Considerable effort is being put into micro-kernels like the Mach
operating system, created at CarnegieMellon University with DOD funding,
and the Chorus system, built with private funding by Chorus Systems in
France. Micro-kernels are a promising way to reduce the size of the
privileged part of the operating system and hence simplify the job of
providing a higher level of trust. But a lot of research has yet to be

performed before highly trustable systems based on this approach to
security technology are available commercially. The basic technology
being employed, a security kernel, is around 15 years old.

It will not be another 15 years before products come out. Commercial
time-sharing systems based on micro-kernels will become available in the
1992-1993 timeframe, but general-purpose time-sharing UNIX systems that
exploit the modularity and size of an underlying micro-kernel to achieve
higher than B1 ratings will be several years behind that. Research
prototypes will appear sooner, but they will not be ready for prime time
yet.

Technology advances and security. As previously mentioned, software
technology for securing operating systems has not changed markedly in the
last few years. However, in those same years, hardware has been leaping
ahead in speed and capacity. This has had some effects on the overall
security of systems. As hardware gets faster, systems become more
susceptible to certain kinds of security problems.

For example, covert channels become more insidious and hard to fix. A
covert channel is an information leak that uses side effects to transfer
information rather than normal data transfer channels. The speed of such
channels, when based on a physical device like a disk or the CPU, scales
at least linearly with the speed of the device being used. Similar and
difficult-to-solve problems are introduced by shared-memory
multiprocessors. This area is ripe for research and discovery.

If all the dead bodies of failed secure UNIX projects are any indication,
securing the UNIX system is a hard problem. Given that all UNIX systems
must have some degree of security in the future, this is actually a
worrisome point. The high-jump bar is being raised, and an increasing
share of the time spent in any UNIX system is spent doing activities
required for security. This isn't necessarily bad, however, as many of
those activities raise the overall quality of the product.

Some of the extra effort that goes into a secure UNIX system will go into
supporting and building the additional security features. However, the
majority of the needed features will be made available from the porting
bases. An area of added value that vendors can address will be features
required for specific commercial uses, such features needed for niche
markets.

Assurances. It can take a lot of effort to give customers enough
confidence in the protection provided by a system that they are willing
to bet the company on it. Vendors can undertake many engineering
activities during their development activity to help provide that
assurance:

* Careful configuration control. Careful configuration control is
straightforward to accomplish and a really good idea, anyway.

* Penetration testing. Penetration testing, that is, attempts by experts
to defeat the system security features, is not especially hard and can be
reasonably effective. It can be time-consuming, and true experts at
cracking systems are rare. Since it is not an exhaustive procedure, not
much real confidence should be expected from this unless it has gone on
for a long period of time with no successes.

* Security testing. Security testing is detailed testing of all

functionality with respect to a tightly written interface specification,
including trying all error and illegal cases. It can be exhaustive and
exhausting, but it is very important.

* Informal security policies. A clear statement of the security policy
the system is to uphold is a crucial starting point for the
implementation or installation of a secure system. When a secure system
is being built, an informal statement of the intended operation of the
security mechanisms of the system is a powerful way to communicate to
developers, documentors, and users what the goal of the system is and how
it is to accomplish that goal. Such policies should be among the first
things written when the development or adoption of a secure system is
contemplated.

Formal security policies. Formal security policies help clarify exactly
what the system is supposed to do. Like a good requirements
specification, this kind of documentation is useful for everything from
writing user documentation to making penetration tests.

Proofs of correctness. Proofs of correctness of specifications are
feasible today but are expensive and not often used. Proofs of
correctness of code are beginning to work for some special cases. This
is perhaps the ultimate goal in any system: to be able to mathematically
prove that the system does what it's supposed to. This is an active
research area.

The previously mentioned examples were listed roughly in increasing order
of difficulty. In this short list, every item represents an activity
that raises the overall quality of the system being built, independent of
security.

In the process of doing the above, vendors are forced to control their
product better and will necessarily find and eliminate bugs (not all of
which will be security bugs). One pragmatic problem with this is that
customers demand visible features, and vendors tend to use up their
resources trying to supply them. Efforts that do not deliver new
features are often not financially justifiable. Vendors must balance the
need for features with the desire to provide a product that is truly
trustable.

Many of the NCSC's assurance requirements are really directed at making
sure vendors use a good development methodology, do adequate testing,
control their product, and use the best available technology for building
their programs. If the NCSC guidelines did not force vendors to do these
things, vendors often would not do them.

It is a vendor's decision whether to spend development resources on
features or on achieving higher levels of trust. It is a customer's
decision whether to buy a system that offers features at the cost of
trust, or vice versa.

The 1990s will see an increase in the degree of security that systems
must offer, and a large number of UNIX systems with security features
will become commercially available. This is being driven by the
requirements of customers. As UNIX systems move into wider commercial
and government usage, customer requirements for features and higher
levels of trust will become more stringent.

The feature set needed by commercial users in performing their functions

will not be a perfect match for some of the security features vendors are
now implementing. The biggest challenge for vendors and users for the
next few years will be to develop better models of commercial security
and to invent and implement features that directly implement those
models.

Until now, vendors and agencies like the NCSC have been in control of the
definition and implementation processes because they have had the job and
the expertise to do so. After the current generation of systems reaches
the field and commercial users have a chance to try it out, they may
develop a better idea of what they really need, and they will have
developed the expertise to communicate those needs back to vendors.

Steve Bunch is the chief scientist at the Motorola Computer Group's
Urbana Design Center in Urbana, Ill. Motorola's Urbana Design Center is
responsible for UNIX SVR4 for the Computer Group. Bunch has been
involved in security since 1976, was involved in the first Ncsc-certified
UNIX system (Gould's UTX/325), and was one of the instigators of the
joint Usl-Motorola-umdahl project that produced UNIX SVR4.1 ES. He may
be contacted at srb@aurbana.mcd.mot.com.

A Covert Channel Example

Here's a simplified example of two cooperating processes, which shouldn't
be able to communicate, exploiting a covert channel. (The hard Problems
you'll encounter in making t s work well are glossed over or ignored.)

Assume a system is running two processes, A and B. A is forbidden by the
MAC rules to send information to B using any of the system's normal data
transfer methods, although they can both read system files at a lower
security level than either. A and B will collude to send data using the
"time of last read" property of a low-security file they can both read.

A and B initialize by opening the shared file and start their activity at
a pre-arranged time.

A sends a 1 to B by reading from the file at some time within a given
one-second interval. This updates the time of last read to that second.
A sends a 0 to B by not reading the file in a particular second.

B monitors the time of last read of the file by checking its status once
each second. If the file has been read during that second, then the time
stamp will so indicate, and a 1 has been detected. If not, a 0 has been
detected.

This simple example transfers data at the rate of one bit per second. It
seems slow, but at that rate, a significant memo can be leaked from A to
B in a few hours. Depending on the memo, that might be a serious
security problem. This channel actually works and is capable of much
faster operation on many UNIX systems. This may be the best-known covert
channel in the UNIX system, and specific provision was made in the POSIX
1003.1 standard to permit it to be dramatically slowed by vendors without
violating the standard. Better-secured UNIX systems have slowed the
channel substantially, and the best-secured ones will announce or log, as
it is happening, that this channel is being exploited.

NCSC And its Levels

The National Computer Security Center (NCSC) was established in 1982.

its charter includes the responsibility to establish and maintain
...technical standards and criteria for the security evaluation of
trusted computer systems that can be incorporated readily into the
Department of Defense component life-cycle process As part of this
charter, the NCSC produced a document known as the "Department of Defense
Trusted Computer System Evaluation Criteria" (TCSEC). This document,
also known as the Orange Book because of the color of its cover, defines
a series of four major divisions of protection (D, C, B, A) each with
certain security-relevant characteristics. These four divisions are
further subdivided into more precise levels of trustworthiness. The
chart below summarizes the defined levels and their key properties.

The NCSC also publishes a series of technical guides that give guidance
on specific topics such as vendor information, configuration management,
trusted facilities management, auditing, and so on. This set of guides
is collectively known as the "Rainbow Series." The NCSC can be contacted
at: National Computer Security Center, ATTN: C11, 9800 Savage Rd., Ft.
George G. Meade, MD 20755-6000,

The table below lists the Ncsc-defined levels in decreasing order of
trustworthiness and securityrelated feature content. The table shows the
name of the level and the key features added when going up to that level
from the lower ones. Note that each level contains all features from the
lower levels. The Orange Book contains many details describing the level
of testing, design documentation, formality of security policy, covert
channel analysis and bandwidth, and so on, required at each level. This
chart concentrates on those features that are highly visible to the end
user. The detail is visible indirectly, in the level of trust the user
can place in the system.

The NCSC maintains an Evaluated Products List, which describes the
products that have been evaluated by the Center to satisfy the
requirements at a specific level and offers additional summaries of
in-progress evaluations. The NCSC can be contacted for further
information. To date, Unix-based systems have been evaluated at levels
from C2 to 62. Commercial security-enhanced products, like the IBM
mainframe application Top Secret, have typically been evaluated at the C2
level. Some specialized systems have been evaluated as high as the Al
level. The C1 level has not proven interesting in practice for most
applications and is not really used for general-purpose systems. Since
potential buyers who ask for specific levels typically specify at least
C2, this is not surprising.

Typical Security Features

The following list describes the major security features described in the
Orange Book and present in trusted systems at various levels of trust.
Most features below are present to a greater or lesser degree in all
current security-enhanced UNIX systems.

Identification and Authentication (I&A). This part of the system checks
your password when you log in, perhaps ages that password so you must
change it as often as your administrator thinks you should, and so on.
Some I&A systems can be easily extended by end users to include
additional devices such as magnetic card readers.

Auditing. The auditing function makes an indelible record of the
security-relevant events that occur on a system. This includes users
logging in and out, accessing data files, printing documents, changing a

password, and so on. Auditing is probably the single most important
feature for commercial use of the UNIX system. it's a feature that keeps
honest people honest (because it records their actions and makes it
likely that they'll be caught) and helps catch dishonest ones. The basic
functions of auditing are fairly common among implementations, but
considerable difference exists in the details. Audit trail analysis
tools, overhead cost to system performance, and audit file size are key
areas where differences arise.

Discretionary Access Controls (DAC). DAC is access controls that an
owner can place on a file, such as, 1 owner can read and write, others
can only read." In UNIX, the well-known mode bits or file-protect bits on
a file serve this function. A much more powerful and useful feature for
commercial use, Access Control Lists or ACLS, has been borrowed from the
Multics system. (In fact, the UNIX file-access mode concept is a
simplified version of Multics' ACLs, so this amounts to a return to
UNIX'S roots.) ACLs permit specifying the access permitted to each member
of an almost arbitrarily long list of individual users, not just to
owner, group, and others. For example, Joe, the owner of the payroll
file, could state that he has read-write permissions on the file; all
other members of the payroll department and two specific people in the
personnel department have read-only permission; everyone else has no
access. Such an access control list can be summarized as:

Access ACL Entry

rw joe.payroll

r pete.personnel

r fran.personnel

r *.payroll

- *.*

As implemented in most UNIX systems, an ACL can be attached to any file
or directory (and most other objects with mode bits).

Trusted Path. The Trusted Path feature provides a reserved keyboard
sequence (or in some cases, turning off or unplugging the terminal) that
is always intercepted by the system, and always puts users into a
conversation with the system. With this feature, users can walk up to a
terminal, enter the reserved sequence, and be absolutely sure they won't
be spoofed into typing a password by a program left running on the
terminal.

Administrative Least Privilege. This general area of functionality
contains several concepts and admits to many implementations. The basic
problem is that the UNIX system's super-user is simply too powerful for
safety. So, some systems implement less-privileged administrative roles.
A user operating in such a role has just enough privilege to perform
some administrative task and no more. For example, a system might define
a printer administrator, with privileges to delete any job from any print
queue, reconfigure printers, move jobs from one print queue to another,
and so on. Unlike the super-user, someone acting in the role of printer
administrator would not be able to read another person's mail or modify
system files unrelated to printing.

Mandatory Access Controls MAG). Mandatory access control mechanisms are
controls that assign a sensitivity level to all information in a system
and assign a clearance level to all users. The term mandatory refers to
the fact that the protection on a given piece of information is not
solely under the control of the owner of the information but is enforced
absolutely by the system as additional restrictions above and beyond the
user's DAC rules. The levels can be hierarchical (in a strict
lower-to-higher order in which someone cleared for a level is cleared for
anything lower) , non-hierarchical, or a combination. MAC is a feature
mandated by the Orange Book at the B and A levels. The actual mechanisms
are modeled after the DOD classified information model, but they have
applicability in non-classified environments. This mechanism has two
goals: users can only see information at levels for which they are
cleared, and users cannot give information to someone who is not cleared
to see it.

The MAC mechanism operates at all times, on all accesses to all data
objects in the system, and may deny access that other mechanisms (such as
DAC) would otherwise permit. This can reduce mistakes. For example, a
commercial system could be set up to operate with four strictly
hierarchical classification levels, called, say, "Executive
Only".."Management," "Employees," and "Public." The mandatory access
control mechanism would make it necessary for an executive who had
created a memo with the classification "Executive Only" to take a
specific action to downgrade the file before someone with a lower
clearance could access it. This might be used, for example, to help
protect intermediate drafts of a memo from being read by accident.

Type: tutorial
Topic: UNIXUNIX

Data SecuritySecurity
Networks
Standards
Open Systems
Tutorial

Record#: 11 936 668.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: Government Computer News Jan 20 1992 v11 n2 p49(1)
* Full Text COPYRIGHT Ziff-Davis Publishing Co. 1992.

Title: National Guard sites use off-the-shelf UnixUnix securitysecurity.

(security software)
Author: Schwartz, Karen D.

Abstract: The Army National Guard reports they are using off-the-shelf
UnixUnix securitysecurity software applications because officials do not
believe the Unix operating system is completely secure.
Systems Center Inc's Ucontrol application is used in 55 sites.
The package consists of four modular products which help the
National Guard to secure its personnel, financial and
logistics information in a database at each of the 55 sites.
Ucontrol is an attractive option because it provides excellent
tape library and backup functions, as well as security
features. It helps to pinpoint critical data and maintains an
on-line audit trail, as well as automatically verifying
backed-up data. The National Guard did not experience
security problems before using Ucontrol, but the software was
purchased to guard against potential problems.

Full Text:

The Army National Guard has standardized off-the-shelf UnixUnix securitysecurity
software because officials said they do not believe the operating system
and hardware provide complete security.

Fifty-five sites, including each of the 50 states, Washington, Guam, the
Virgin Islands, Puerto Rico and headquarters in Alexandria, Va., use
Ucontrol from Systems Center Inc. of Reston, Va. The packagae is made up
of four modular UnixUnix securitysecurity software products.

The half-million-member military reserve organization uses Uncontrol to
help secure its financial, personnel and logistics data stored in a
database at each site. Oracle RDBMS from Oracle Corp. is the database
program.

Each site has from one to our Unisys 5000 minicomputers running Unix
System V. Each location has one Uncontrol site license. The minis total
118 at the 55 locations, connected through the Defense Data Network, said
Ed Byrne, technical director for the Chief of the Army National Guard.

Unix is not as efficient as Ucontrol in some areas of security, Byrne
said. The Unisys "doesn't offer us much in the way of security or
efficient tape backups and library functions," he said.

Guard officials chose Ucontrol primarily for its security features and
backup and tape library functions, Byrne said. Ubackup is Ucontrol's
module for tape and library backups. Ubackup records the status and
backup location of all files and directories while identifying critical
information. It maintains an on-line audit trail and automatically
verifies backed-up data.

Guard units use Ubackup's tape library function for backing up daily and

weekly production at each location. Headquarters does a collective
backup each month, Byrne said.

"The basic Unix operating system doesn't give you a library function,"
Byrne said. "Every time you back up, you have to dump a tape to see what
is on it. This provides a listing of what is on the tape, which can save
time if you are looking for something specific."

Usecure is Ucontrol's module for password administration, with audit
trails, terminal restrictions, superuser limitations, automated password
administration and per user, per system or user-generated password
capabilities.

Usecure gives the Guard "an element of security that wasn't there
before," Byrne said.

Uqueue is the print spooler and queue manager. It lets the user
reshuffle jobs within a queue, transfer jobs between queues, assign
devices to queues and assign more than one device to a queue. It also
supports batch job processing and multiple queries while maintaining an
audit trail of print activities.

While some units choose to use Uqueue, others do not, Byrne said.

Upass is Ucontrol's optional module for added security. It layers over
existing log-in procedures.

It stores passwords as one-way encrypted data and manages log-in attempts
on a port-by-port basis.

The Army National Guard chose the optional Upass module for an extra
level of security, Byrne said.

"Access through the network is easy to achieve," he said. "Along with
the database password sign-on read-write authority, it also gives us a
password validation that a person has to go through to get access to
information. That is important to us for protection from viruses."

At the time the Guard began looking for additional UnixUnix securitysecurity, it ran
a notice in the Commerce Business Daily, but Ucontrol was the only
off-the-shelf package offered, Byrne said. "We had lots of offers from
people that wanted to customize for us," he said, "but we were committed
to a commercial solution."

"Before Ucontrol we really didn't have anything for security," Byrne
said. "We didn't experience any difficulty but there was a potential for
problems. It isn't so much that we run sensitive information, but it is
just a common-sense approach to data processing."

Company: Systems Center Inc.
Product: Ucontrol
Topic: United States. National Guard

Security Software
UNIXUNIX
Data SecuritySecurity

Record#: 11 897 493.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: HP Professional Jan 1992 v6 n1 p40(4)
* Full Text COPYRIGHT Professional Press Inc. 1992.

Title: UNIXUNIX securitysecurity comes of age; market forces are reversing UNIX's

once-dubious reputation for security. (Cover Story)
Author: Caccamo, Wayne

Abstract: The manner in which the Unix environment developed has made it
particularly vulnerable in the past to security breaches.
Unix was devised as a development environment and earned its
initial popularity in the academic and government markets
where users were accustomed to developing their own security
measures. Because Unix normally lacks the security tools that
are common with proprietary systems, a system administrator
must either develop the tools in-house or obtain them from a
third-party vendor. Vendors are beginning to address such
areas as password administration, access control and auditing
for user accountability. Such developments are market-driven,
both by demand from the government sector and through the
efforts of both the Open Software Foundation and UNIX
International. User-friendly interfaces for the
administration of system and network security are beginning to
appear, and HP's OpenView is emerging as an industry standard
for the management of mixed Unix and non-Unix systems.

Full Text:

The future of UNIX system security is bright, but it wasn't always that
way. UNIX was born a development environment, it grew up, went to school
and became ery popular within the academic community. There UNIX
acquired some radical values, didn't always practice "safe sex" hence the
viruses - and obtained a dubious reputation for security. Nevertheless,
UNIX graduated and entered the business world.

At first, the young UNIX didn't have the management and administration
tools necessary to make it with Fortune 500 companies. Now UNIX has gone
back for its M.B.A. concentrating on commercial security - an important
credential in large corporations.

From rags to riches, this is the story of how UNIX acquired a shabby
reputation for security and why that reputation is changing. Indeed,
market forces are shaping the future for a more secure UNIX, without
sacrificing any of its well-known talents for portability,
interoperability and emerging leadership in performance and usability.

UNIX'S rather weak reputation for security is rooted in its original
orientation as an development environment rather than a business system.
Engineers typically ensure that they have access to any file or resource
and, therefore, disable any security features that might interfere with
their ability to get work done quickly.

Subsequently, these "wide-open" systems often would be delivered to
customers unmodified. Today, reputable UNIX vendors deliver systems in
more restrictive configurations and include instructions on how to
install systems securely.

UNIX Goes To School

AS NEWS OF THIS SIMPLE and elegant development environment spread
throughout the academic community, beginning of openness and information
sharing was fostered. Universities began to acquire the UNIX source code
and books were published providing source code to the UNIX kernel - the
very blueprint of the security mechanism.

With the keys to UNIX systems widely distributed, systems were highly
vulnerable to security breaches.

The UNIX kernel has changed so much since these documents were published
in the 1970s, they no longer represent a significant threat. And
although information on UNIX source code is still publicly available, the
source code is now legally protected.

Nevertheless, the policy of openness and information sharing among the
technical and academic communities persisted, contributing to the
explosive growth and popularity of UNIX systems and, consequently,
networks, hackers and even crackers. As a result, both the virtues of
this environment and its flaws, especially with respect to security, have
come to light.

Most experts agree that UNIX isn't necessarily any less secure than those
proprietary operating systems it might be cohabitating with or replacing.
There are just as many problems with other operating systems, but

vendors and users of those proprietary systems usually prefer not to
discuss such flaws. For instance, it is cheaper for a bank to absorb a
$1 million loss resulting from an MVS mainframe break-in than to bear the
cost of negative publicity.

More recently, well-publicized virus or worm attacks on UNIX systems have
exploited some combination of well-known bugs, poorly written superuser
programs, careless system administration, or the introduction of free
software from public bulletin boards or user special interest groups.

For example, the estimated $89 million loss resulting from the Internet
break-in of 1988 has done much to refuel concerns with UNIXUNIX securitysecurity.
Unfortunately, most people assume that all such incidents are a direct
result of security vulnerabilities intrinsic to UNIX. But responsibility
for most intrusions should not be attributed to the nature of UNIX, but
to the nature of an open access network that happens to involve UNIX
systems.

In general, putting a computer on a network automatically makes it less
secure, regardless of whether the nodes on the network are running UNIX
or some proprietary operating system. Ultimately, the only way to
protect the flow of data over the network from electronic eavesdroppers
or network "spoofers" is to physically secure and isolate it from the
rest of the world. Nevertheless, somehow UNIX has been pronounced guilty
by association with such electronic misadventures.

UNIX Enters The Business World

DESPITE SOME BAD PUBLICITY, the sphere of UNIX'S acceptance grew out of
the academic and government sectors and into the commercial marketplace.
Initially, however, UNIX lacked the required pre-packaged security
facilities - the academic and government users had grown accustomed to

developing these features in-house.

It comes as no surprise then that more than 90 percent of all UNIXUNIX
securitysecurity problems are caused by mistakes made by users and system
administrators, not by viruses and crackers.

Perhaps more than any other operating system, UNIXUNIX securitysecurity can be either
made or broken by the system administrator. A seasoned UNIX
administrator can employ a host of tools which, in the appropriate
combinations, can accomplish almost any job. However, unlike proprietary
systems, these tools traditionally are not pre-arranged for the
administrator.

Rather, they must either be developed in-house or be purchased from a
third party. And, because UNIX'S orientation in the past was that of a
development rather than production environment, few such tools have been
available.

UNIX Goes Back For Its MBA

UNIX'S SUCCESS IN THE marketplace has attracted a host of developers of
sophisticated system administration packages providing security audits,
password management and monitoring facilities.

Vendors of UNIX systems have enhanced their offerings with user-friendly
interfaces for administering system and network security. In addition,
HP provides an emerging industry standard interface for managing networks
of UNIX and NON-UNIX systems called HP Openview.

In an attempt to meet the needs of ever-expanding target markets,
security enhancements and functionality are being built into the UNIX
operating environment. Most vendors are bolstering UNIXUNIX securitysecurity in the
areas of password administration, access control, and auditing for
increased user accountability. Thus, in many areas including security,
UNIX functionality has evolved to the point that it is on a par with or
better than proprietary environments.

Clearly, the need for enhanced UNIXUNIX securitysecurity is being addressed.
Ultimately, however, no level of operating system security is a
substitute for establishing a security policy document that considers the
particular needs of an installation. The primary responsibility for
complying with and enforcing policy falls on the user and administrator
community and not with the operating system - UNIX or otherwise.

UNIX'S Career Outlook

THERE ARE TWO market forces driving continuous improvement to UNIX system
security. First, affinity for UNIX in the defense-related market is
pushing vendors to provide the highest levels of security to meet that
market's rigorous requisites.

Second, both the Open Software Foundation (OSF) and UNIX International
(UI) are trumpeting enhanced security as a predominant design and
strategic theme.

The defense-related marketplace, including the U.S. Department of
Defense (DOD) and its suppliers, represent the leading-edge of security
needs, at least with respect to data confidentiality. The DOD, already
the largest UNIX user in the world, has taken a strategic turn toward

UNIX in the past few years.

Vendors are scrambling to satisfy the more stringent DOD security
requirements defined by the National Computer Security Center's (NCSC)
Trusted Computer System Evaluation or "Orange Book" criteria. The NCSC
evaluates operating systems and assigns various ratings or levels of
security including: Cl, C2, Bl, B2, B3 and Al.

Currently, DOD purchasers are requesting systems that provide a BI level
of security or higher. HP now offers Bl level security for HP-UX.
Called HP-UX BLS, this operating system addresses the more complex
multilevel security needs typical in the defense-related community. The
security enhancements to HP-UX found in HP-LTX BLS outpace the
requirements of commercial customers. Some of the security features
provided by the B-level product most likely will be required by
commercial customers in the future.

The second important driving force is the competitive environment. Both
OSF and Ul are focusing on improved security as a central design theme.
Both plan to offer B-level security. Moreover, OSF is planning to
address even higher levels of security (i.e., B3, Al) by implementing a
more modular Mach-based kernel design. Such a redesign and
implementation of the kernel is considered necessary to address the
system architecture criterion specified by the highest levels of
security.

Another important OSF security initiative addresses the special threats
in the area of network authentication and access control associated with
the client-server paradigm of computing. OSF'S Distributed Computing
Environment (DCE), which will be implemented on both HP-UX and OSF
versions of UNIX from HP, will provide network authentication services,
an area not covered in the Orange Book.

Because OSF is building in core functionality, such as security from the
ground up rather than retrofitting the operating system, users will not
have to sacrifice system usability, performance or compatibility in order
to take advantage of new security features.

UNIX has matured in many areas important to commercial users, and as a
result has a promising future in business environments. Look for
industry-leading versions of the operating system, such as HP-UX, to
distance UNIX from proprietary alternatives in providing secure, open
computing. -Wayne Caccamo is an HP product manager, HP-UX Security,
based in Cupertino, CA.

Type: cover story
Topic: Operating Systems

Data Security
Access Controls
Enhancements
UNIX

Record#: 11 868 777.
*** End ***

***** Computer Select, December 1992 : Articles *****

Journal: Software Magazine Jan 1992 v12 n1 p106(1)
* Full Text COPYRIGHT Sentry Publishing Company Inc. 1992.

Title: SecurityCheck. (Raxco Software Inc.'s security software)(New

Products: Minicomputers: Systems Support)(brief article)
(Product Announcement)

Full Text:

From Raxco Software, Rockville, Md., the SecurityCheck package is a
security assessment software solution for Unix systems.

SecurityCheck has a Motif-style graphical user interface that provides an
overall view of a system's security. The product looks at various areas
of UnixUnix securitysecurity, including user passwords, file system security, network
facilities setup and integrity and end-user file security. These checks
also look for potential viruses, worms and Trojan horses.

A user can define batch procedures that will run automatically on a daily
basis. SecurityCheck also automatically generates shell scripts to
correct problems and upgrade security to a desired level.

The product supports Digital's Ultrix and Sun Microsystems' SunOS
operating systems. License fees range from $495 for a single-user system
to $6,995 for a 50-node workstation network.

Type: brief article

product announcement
Company: Raxco Software Inc.
Product: SecurityCheck
Topic: Product Introduction

Security Software

Record#: 11 732 270.
*** End ***

