
Chapter 1

Tutorial

In this chapter, the basic data structures are introduced, and some of the more basic operations are illus-
trated. Then some examples of how to use the data structures and procedures to solve some simple problems
are given. The first example program is a simple 4th order Runge–Kutta solver for Ordinary Differential
Equations. The second is a general least squares equation solver for over–determined equations. The third
example illustrates how to solve a problem involving sparse matrices. These examples illustrate the use of
matrices, matrix factorisations and solving systems of linear equations.

While the description of each aspect of the system is brief and far from comprehensive, the aim is to
show the different aspects of how to set up programs and routines and how these work in practice, which
includes I/O and error–handling issues.

1.1 The data structures and some basic operations

The three main data structures are those describing vectors, matrices and permutations. These have been
used to create data structures for linear programmes and used with data structures for sparse matrices etc.
To use the system reliably, you should always use pointers to these data structures and use library routines
to do all the necessary initialisation.

For example, to create a matrix A of size 3 × 4, a vector x of dimension 10, and a permutation p of
size 10, use the following code:

#include "matrix.h"

..............

main()

{

MAT *A;

VEC *x;

PERM *p;

..........

A = get_mat(3,4);

x = get_vec(10);

p = get_perm(10);

..........

}

This initialises these data structures to have the given size. The matrix A and the vector x are initially
all zero, while p is initially the identity permutation. They can be disposed of by calling freemat(A),
freevec(x), freeperm(p) if you need to re-use the memory for something else. The elements of each data
structure can be accessed directly. For example the (i, j) component of A is accessed by A->me[i][j], xi

by x->ve[i] and pi by p->pe[i].

1

2 CHAPTER 1. TUTORIAL

Their sizes are also directly accessible: A->m and A->n are the number of rows and columns of A respec-
tively, x->dim is the dimension of x, and size of p is p->size. Note that the indexes are zero relative just
as they are in ordinary C, so that the index i in x->ve[i] can range from 0 to x->dim− 1. Thus the total
number of entries of a vector is exactly x->dim.

While this alone is sufficient to allow a programmer to do any desired operation with vectors and matrices
it is neither convenient for the programmer, nor efficient use of the CPU. A whole library has been imple-
mented to reduce the burden on the programmer in implementing algorithms with vectors and matrices.
Firstly, to copy a vector from x to y it is sufficient to write y = cp_vec(x,VNULL). The VNULL is the vector
NULL, and usually tells the routine called to create a vector for output. Thus, the cp_vec function will
create a vector which has the same size as x and all the components are equal to those of x. If y has already
been created then you can write y = cp_vec(x,y). If y is NULL, then it is created (to have the correct size,
i.e. the same size as x), and if it is the wrong size, then it is resized to have the correct size (i.e. same size
as x). Note that for all the following functions, the output value is returned, even if you have a non-NULL
value as the output argument. This is be standard across the entire library.

Addition, subtraction and scalar multiples of vectors can be computed by calls to library routines:
v_add(x,y,out), v_sub(x,y,out), sv_mlt(s,x,out) where x and y are input vectors (with data type
VEC *), out is the output vector (same data type) and s is a double precision number (data type double).
There is also a special combination routine, which computes out = v1 + s v2 in a single routine:
v_mltadd(v1,v2,s,out). This is not only extremely useful, it is also more efficient than using the scalar–
vector multiply and vector addition routines separately.

Inner products can be computed directly: in_prod(x,y) returns the inner product of x and y. Note that
extended precision evaluation is not guaranteed. However, all calculations and results stored are at least
double precision throughout the entire library.

Equivalent operations can be performed on matrices: m_add(A,B,C) which returns C = A + B, and
sm_mlt(s,A,C) which returns C = sA. The data types of A, B and C are all MAT *, while that of s is type
double as before. The matrix NULL is called MNULL.

Multiplying matrices and vectors can be done by a single function call: mv_mlt(A,x,out) returns out =
Ax while vm_mlt(A,x,out) returns out = ATx, or equivalently, outT = xTA. Note that there is no
distinction between row and column vectors unlike certain interactive environments such as MATLAB or
MATCALC.

Permutations are also an essential part of the package. Vectors can be permuted (px_vec(p,x,p_x)),
rows and columns of matrices can be permuted (px_rows(p,A,p_A), px_cols(p,A,A_p)), permutations can
be multiplied (px_mlt(p1,p2,p1_p2)) and inverted (px_inv(p,p_inv)). The NULL permutation is called
PNULL.

There are also utility routines to initialise or re-initialise these data structures:
zero_vec(x), zero_mat(A), id_mat(A) (which sets A = I of the correct size), rand_vec(x), rand_mat(A)
which sets the entries of x and A respectively to be randomly and uniformly selected between zero and one,
and px_id(p) which set p to be an identity permutation.

Input and output are accomplished by library routines in_vec(x), in_mat(A), and in_perm(p). If a
null object is passed to any of these input routines, all data will be obtained from the input file, which is
stdin. If input is taken from a keyboard then the user will be prompted for all the data items needed; if
input is taken from a file, then the input will have to be of the same format as that produced by the output
routines, which are: out_vec(x), out_mat(A) and out_perm(p). This output is both human and machine
readable!

If you wish to send the data to a file other than the standard output device stdout, or receive input
from a file or device other than the standard input device stdin, take the appropriate routine above, prefix
the routine name with an “f”, and add a file pointer as the first argument. For example, to send a matrix
A to a file called “fred”, use the following:

#include <stdio.h>

#include "matrix.h"

.............

1.1. THE DATA STRUCTURES AND SOME BASIC OPERATIONS 3

main()

{

FILE *fp;

MAT *A;

.............

fp = fopen("fred","w");

fout_mat(fp,A);

.............

}

These input routines allow for the presence of comments in the data. A comment in the input starts with a
“hash” character “#”, and continues to the end of the line. For example, the following is valid input for a
3-dimensional vector:

The initial vector must not be zero

x =

Vector: dim: 3

-7 0 3

For general input/output which conforms to this format, allowing comments in the input files, use the
input() and finput() macros. These are used to print out a prompt message if stdin is a terminal (or
“tty” in Unix jargon), and to skip over any comments if input is from a non-interactive device. An example
of the usage of these macros is:

input("Input number of steps: ","%d",&nsteps);

fp = stdin;

finput(fp,"Input number of steps: ","%d",&nsteps);

fp = fopen("fred","r");

finput(fp,"Input number of steps: ","%d",&nsteps);

The "%d" strings are the format strings as used by scanf() and fscanf(); the last argument is the pointer
to the variable (unless the variable is a string) just as for scanf() and fscanf(). The first two macro calls
read input from stdin, the last from the file fred. If, in the first two calls, stdin is a keyboard (a “tty” in
Unix jargon) then the prompt string "Input number of steps: " is printed out on the terminal.

The second part of the library contains routines for various factorisation methods. To use it put

#include "matrix.h"

#include "matrix2.h"

at the beginning of your program. It contains factorise and solve routines for LU, Cholesky and QR-
factorisation methods, as well as update routines for Cholesky and QR factorisations. Supporting these are
a number of Householder transformation and Givens’ rotation routines. Also there is a routine for generating
the Q matrix for a QR-factorisation, if it is needed explicitly, as it often is.

For using the sparse matrix routines in the library you need to put

#include "matrix.h"

#include "sparse.h"

at the beginning of your file. The routines contained in the library include routines for creating, destroying,
initialising and updating sparse matrices, and also routines for sparse matrix–dense vector multiplication,
sparse LU factorisation and sparse Cholesky factorisation. There are also routines for applying iterative
methods such as pre-conditioned conjugate gradient methods to sparse matrices.

4 CHAPTER 1. TUTORIAL

1.2 How to manage memory

Unlike many other numerical libraries, Meschach allows you to allocate, deallocate and resize the vectors,
matrices and permutations that you are using. To gain maximum benefit from this it is sometimes necessary
to think a little about where memory is allocated and deallocated. There are two reasons for this.

1. Memory allocation, deallocation and resizing takes a significant amount of time compared with (say)
vector operations, so it should not be done too frequently.

2. Allocating memory but not deallocating it means that it can’t be used by any other data structure.
Data structures that are no longer needed should be explicitly deallocated, or kept as static variables
for later use. Unlike other interpreted systems (such as Lisp) there is no “garbage collection” of
no-longer-used memory.

There are three main strategies that are recommended for deciding how to allocate, deallocate and resize
objects. These are “no deallocation” which is really only useful for demonstration programs, “allocate and

deallocate” which minimises overall memory requirements at the expense of speed, and “resize on demand”
which is useful for routines that are called repeatedly.

1.2.1 No deallocation

This is the strategy of allocating but never deallocating data structures. This is only useful for demonstration
programs run with small to medium size data structures. For example, the tut2.c program below has a line
in the main() routine which is

QR = cp_mat(A,MNULL); /* allocate memory for QR */

but there is no line with freemat(QR); in it. This is acceptable because the line QR = cp_mat(A,MNULL) is
only executed once, and so the allocated memory never needs to be explicitly deallocated.

This would not be acceptable if QR = cp_mat(A,MNULL) occurred inside a for loop. If this were so, then
memory would be “lost” as far as the program is concerned until there was insufficient for allocating the
next matrix for QR. The next subsection shows how to avoid this.

1.2.2 Allocate and deallocate

This is the most straightforward way of ensuring that memory is not lost. With the example of allocating
QR it would work like this:

for (... ; ... ; ...)

{

QR = cp_mat(A,MNULL); /* allocate memory for QR */

/* could have been allocated by get_mat() */

/* use QR */

......

......

/* no longer need QR for this cycle */

freemat(QR); /* deallocate QR so memory can be reused */

}

The allocate and deallocate statements could also have come at the beginning and end of a function or
procedure, so that when the function returns all the memory that the function has allocated has been
deallocated.

This is most suitable for functions or sections of code that are called repeatedly but involve fairly extensive
calculations (at least a matrix–matrix multiply, or solving a system of equations).

1.3. A ROUTINE FOR A 4TH ORDER RUNGE–KUTTA METHOD 5

1.2.3 Resize on demand

This technique reduces the time involved in memory allocation for code that is repeatedly called or used,
especially where the same size matrix or vector is needed. For example, the vectors v1, v2, etc. in the
Runge–Kutta routine rk4() are allocated according to this strategy:

rk4(...,x,...)

{

static VEC *v1=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL, *temp=VNULL;

.......

v1 = v_resize(v1,x->dim);

v2 = v_resize(v2,x->dim);

v3 = v_resize(v3,x->dim);

v4 = v_resize(v4,x->dim);

temp = v_resize(temp,x->dim);

.......

}

The intention is that the rk4() routine is called repeatedly with the same size x vector. It then doesn’t make
as much sense to allocate v1, v2 etc. whenever the function is called. Instead, v_resize() only performs
memory allocation if the memory already allocated to v1, v2 etc. is smaller than x->dim.

The vectors v1, v2 etc. are declared to be static to ensure that their values are not lost between function
calls. It is also important that they are initialised to be VNULL. If this is not done, then garbage will be
passed to v_resize() on the first call to rk4() which will most likely cause a program crash.

This strategy is not useful if the object being allocated is extremely large. The previous “allocate and
deallocate” strategy is much more efficient in those circumstances.

A compromise approach has been developed which I call memory thresholding, which sets a threshold on
the size of object that will be retained. In rk4() this is done by including the following code just before the
return statement(s).

#ifdef MEM_THRESH

if (v1->dim >= MEM_THRESH)

{

freevec(v1); freevec(v2);

freevec(v3); freevec(v4);

freevec(temp);

}

#endif

1.3 A routine for a 4th order Runge–Kutta method

The problem here is to solve (approximately) the ODE

x′ = f(t, x), x(t0) = x0

6 CHAPTER 1. TUTORIAL

for x(ti), i = 1, 2, 3, . . . where ti = t0+ i h and h is the step size. To compute xi+1 ≈ x(ti+1) from xi ≈ x(ti)
we use the formulae for the 4th order Runge–Kutta method:

xi+1 = xi +
h

6
{v1 + 2v2 + 2v3 + v4}

where

v1 = f(ti, xi)

v2 = f(ti +
1

2
h, xi +

1

2
hv1)

v3 = f(ti +
1

2
h, xi +

1

2
hv2)

v4 = f(ti + h, xi + hv3)

(1.1)

where the vi are vectors.
The procedure for implementing this method (rk4()) will be passed a pointer to the function f ; the

implementation of f could, in this system, create a vector to hold the return value each time it is called.
However, such a scheme is memory intensive and the calls to the memory allocation functions could easily
dominate the time performed doing numerical computations. So, the implementation of f will also be passed
an already allocated vector to be filled in with the appropriate values.

The procedure rk4() will also be passed the current time t, the step size h, and the current value for x.
The time after the step will be returned by rk4().

The code that does this follows.

#include <stdio.h>

#include "matrix.h"

/* rk4 -- 4th order Runge--Kutta method */

double rk4(f,t,x,h)

double t, h;

VEC *(*f)(), *x;

{

static VEC *v1=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL;

static VEC *temp=VNULL;

if (x == VNULL)

error(E_NULL,"rk4");

/* ensure that v1, ..., v4, temp are correct size */

v1 = v_resize(v1,x->dim);

v2 = v_resize(v2,x->dim);

v3 = v_resize(v3,x->dim);

v4 = v_resize(v4,x->dim);

temp = v_resize(temp,x->dim);

/* end of memory allocation */

(*f)(t,x,v1);

v_mltadd(x,v1,0.5*h,temp); /* temp = x+.5*h*v1 */

(*f)(t+0.5*h,temp,v2);

v_mltadd(x,v2,0.5*h,temp); /* temp = x+.5*h*v2 */

(*f)(t+0.5*h,temp,v3);

v_mltadd(x,v3,h,temp); /* temp = x+h*v3 */

(*f)(t+h,temp,v4);

1.3. A ROUTINE FOR A 4TH ORDER RUNGE–KUTTA METHOD 7

/* now add: v1+2*v2+2*v3+v4 */

cp_vec(v1,temp); /* temp = v1 */

v_mltadd(temp,v2,2.0,temp); /* temp = v1+2*v2 */

v_mltadd(temp,v3,2.0,temp); /* temp = v1+2*v2+2*v3 */

v_add(temp,v4,temp); /* temp = v1+2*v2+2*v3+v4 */

/* adjust x */

v_mltadd(x,temp,h/6.0,x); /* x = x+(h/6)*temp */

return t+h; /* return the new time */

}

Note that the last parameter of f() is where the output is placed. Often this can be NULL in which
case the appropriate data structure is allocated and initialised. Note also that this routine can be used for
problems of arbitrary size, and the dimension of the problem is determined directly from the data given.
The vectors v1, . . . , v4 are created to have the correct size in the lines

v1 = v_resize(v1,x->dim);

v2 = v_resize(v2,x->dim);

....

Here x->dim is the dimension of x and get_vec(dim) returns a pointer to a VEC data structure initialised
to hold a vector of size dim. For this technique to start off correctly we need to initialise the vi to be VNULL

(which is short for (VEC *)NULL). This is done by the declaration

static VEC *v1=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL;

The operations of vector addition and scalar addition are really the only vector operations that need to be
performed in rk4. Vector addition is done by v_add(v1,v2,out)where out=v1+v2, and scalar multiplication
by sv_mlt(scale,v,out) where out=scale*v.

These can be combined into a single operation v_mltadd(v1,v2,scale,out) where
out=v1+scale*v2. As many operations in numerical mathematics involve accumulating scalar multiples,
this is an extremely useful operation, as we can see above. For example:

v_mltadd(x,v1,0.5*h,temp); /* temp = x+.5*h*v1 */

We also need a number of “utility” operations. For example cp_vec(in, out) copies vector in to out.
There is also zero_vec(v) to zero a vector v.

Here is an implementation of the f function for simple harmonic motion:

/* f -- right-hand side of ODE solver */

VEC *f(t,x,out)

VEC *x, *out;

double t;

{

if (x == VNULL || out == VNULL)

error(E_NULL,"f");

if (x->dim != 2 || out->dim != 2)

error(E_SIZES,"f");

out->ve[0] = x->ve[1];

out->ve[1] = - x->ve[0];

return out;

}

8 CHAPTER 1. TUTORIAL

As can be seen, most of this code is error checking code, which, of course, makes the routine safer but a little
slower. For a procedure like f() it is probably not necessary, although then the main program would have
to perform checking to ensure that the vectors involved have the correct size etc. The ith component of a
vector x is x->ve[i], and indexing is zero-relative (i.e., the “first” component is component 0). The ODE
described above is for simple harmonic motion: x′

0 = x1, x
′

1 = −x0, or equivalently, x
′′

0 + x0 = 0.
Here is the main program:

#include <stdio.h>

#include "matrix.h"

main()

{

VEC *x;

VEC *f();

double h, t, t_fin;

double rk4();

input("Input initial time: ","%lf",&t);

input("Input final time: ", "%lf",&t_fin);

prompter("Input initial state:\n"); x = in_vec(VNULL);

input("Input step size: ", "%lf",&h);

printf("# At time %g, the state is\n",t);

out_vec(x);

for (; ;) /* forever do... */

{

t = rk4(f,t,x,min(h,t_fin-t));

printf("# At time %g, the state is\n",t);

out_vec(x);

if (t+h > t_fin)

break;

}

}

Here the initial values are entered as a vector by in_vec(). If in_vec() is passed a vector, then this vector
will be used to store the input, and this vector has the size that x had on entry to in_vec(). The original
values of x are also used as a prompt on input from a tty. If a NULL is passed to in_vec() then in_vec()

will return a vector of whatever size the user inputs. So, to ensure that only a two-dimensional vector is
used for the initial conditions (which is what f() is expecting) we should use

x = get_vec(2); x = in_vec(x);

To compile the program, given that it is all in a file tut1.c is:

cc -o tut1 tut1.c meschach.a

or, if you have an ANSI compiler,

cc -DANSI_C -o tut1 tut1.c meschach.a

Here is a sample session with the above program:

% tut1

Input initial time: 0

Input final time: 1

1.3. A ROUTINE FOR A 4TH ORDER RUNGE–KUTTA METHOD 9

Input initial state:

Vector: dim: 2

entry 0: -1

entry 1: b

entry 0: old -1 new: 1

entry 1: old 0 new: 0

Input step size: 0.1

At time 0, the state is

Vector: dim: 2

1 0

At time 0.1, the state is

Vector: dim: 2

0.995004167 -0.0998333333

.................

At time 1, the state is

Vector: dim: 2

0.540302967 -0.841470478

By way of comparison, the state at t = 1 for the true solution is x0(1) = 0.5403023058, x1(1) = −0.8414709848.
The “b” that is typed in entering the x vector allows the user to alter previously entered components; in
this case once this is done, the user is prompted with the old values when entering the new values. The user
can also type in “f” for skipping over the vector’s components, which are then unchanged. If an incorrectly
sized initial value vector x is given, the error handler comes into action:

% tut1

Input initial time: 0

Input final time: 1

Input initial state:

Vector: dim: 3

entry 0: 3

entry 1: 2

entry 2: -1

Input step size: 0.1

At time 0, the state is

Vector: dim: 3

3 2 -1

"tut1.c", line 79: sizes of objects don’t match in function f()

Sorry, aborting program

%

The error handler prints out the error message giving the source code file and line numbers as well as the
function name where the error was raised. The relevant section of f() in file tut1.c is:

if (x->dim != 2 || out->dim != 2)

error(E_SIZES,"f"); /* line 79 */

The standard routines in this system perform error checking of this type, and also checking for undefined
results such as division by zero in the routines for solving systems of linear equations. There are also error
messages for incorrectly formatted input and end-of-file conditions.

To round off the discussion of this program, note that we have seen interactive input of vectors. If the
input file or stream is not a tty (e.g., a file, a pipeline or a device) then it expects the input to have the

same form as the output for each of the data structures. Each of the input routines (in_vec(), in_mat(),
in_perm()) skips over “comments” in the input data, as do the macros input() and finput(). Anything

10 CHAPTER 1. TUTORIAL

from a ‘#’ to the end of the line (or EOF) is considered to be a comment. For example, the initial value
problem could be set up in a file ivp.dat as:

Initial time

0

Final time

1

Solution is x(t) = (cos(t),-sin(t))

x(0) =

Vector: dim: 2

1 0

Step size

0.1

The output of the above program with the above input (from a file) gives essentially the same output as
shown above on pp. 6–7, except that no prompts are sent to the screen.

1.4 A least squares problem

Here we need to use matrices and matrix factorisations (in particular, a QR factorisation) in order to find
the best linear least squares solution to some data. Thus in order to solve the (approximate) equations

Ax ≈ b for x

where A is an m× n matrix (m > n) we really need to solve the optimisation problem

min
x

‖Ax− b‖22.

If we write A = QR where Q is an orthogonal m ×m matrix and R is an upper triangular m × n matrix
then

‖Ax− b‖2 = ‖Rx−QT b‖2 = ‖

[

R1

O

]

x−

[

QT
1

QT
2

]

b‖2(1.2)

where R1 is an n× n upper triangular matrix. If A has full rank then R1 will be an invertible matrix, and
the best least squares solution of Ax ≈ b is x = R−1

1 QT
1 b.

These calculations can be be done quite easily as there is a QRfactor() function available with the
system. QRfactor() is declared to have the parameters (in ANSI C)

MAT *QRfactor(MAT *A, VEC *diag, VEC *beta);

The matrix A is overwritten with the factorisation of A “in compact form”; that is, while the upper triangular
part of A is indeed the R matrix described above, the Q matrix is stored as a collection of Householder vectors
in the strictly lower triangular part of A and in the diag and beta vectors. The QRsolve() function knows
and uses this compact form and solves QRx ≈ b with the call QRsolve(A,diag,beta,b,x), which also
returns x.

Here is the code to obtain the matrix A, perform the QR factorisation, obtain the data vector b, solve
for x, and determine what the norm of the errors (‖Ax− b‖2) is.

#include <stdio.h>

#include "matrix.h"

#include "matrix2.h"

main()

{

1.4. A LEAST SQUARES PROBLEM 11

MAT *A, *QR;

VEC *b, *x, *diag, *beta;

/* read in A matrix */

printf("Input A matrix:\n");

A = in_mat(MNULL); /* A has whatever size is input */

if (A->m < A->n)

{

printf("Need m >= n to obtain least squares fit\n");

exit(0);

}

printf("# A =\n"); out_mat(A);

diag = get_vec(A->m);

beta = get_vec(A->m);

/* QR is to be the QR factorisation of A */

QR = cp_mat(A,MNULL);

QRfactor(QR,diag,beta);

/* read in b vector */

printf("Input b vector:\n");

b = get_vec(A->m);

b = in_vec(b);

printf("# b =\n"); out_vec(b);

/* solve for x */

x = QRsolve(QR,diag,beta,b,VNULL);

printf("Vector of best fit parameters is\n");

out_vec(x);

/* ... and work out norm of errors... */

printf("||A.x-b|| = %g\n",v_norm2(v_sub(mv_mlt(A,x,VNULL),b,VNULL)));

}

Note that as well as the usual memory allocation functions like get_mat(), the I/O functions like in_mat()
and out_mat(), and the factorise–and–solve functions QRfactor() and QRsolve(), there are also functions
for matrix–vector multiplication: mv_mlt(MAT *A, VEC *x, VEC *out). and also vector–matrix multipli-
cation (with the vector on the left): vm_mlt(MAT *A, VEC *x, VEC *out), with out=x.A. There are also
functions to perform matrix arithmetic — matrix addition m_add(), matrix–scalar multiplication sm_mlt(),
matrix–matrix multiplication m_mlt().

Several different sorts of matrix factorisation are supported: LU factorisation (also known as Gaus-
sian elimination) with partial pivoting, by LUfactor() and LUsolve(). Other factorisation methods include
Cholesky factorisation CHfactor() and CHsolve(), and QR factorisation with column pivoting QRCPfactor().

Pivoting involve permutations which have their own PERM data structure. Permutations can be created
(get_perm()), read & written (in_perm() and out_perm()), multiplied (px_mlt()), inverted (px_inv())
and applied to vectors (px_vec()).

This program was put into the file tut2.c and compiled using

cc -o tut2 tut2.c meschach.a -lm

A sample session using tut2 follows:

% tut2

Input A matrix:

Matrix: rows cols:5 3

12 CHAPTER 1. TUTORIAL

row 0:

entry (0,0): 3

entry (0,1): -1

entry (0,2): 2

Continue:

row 1:

entry (1,0): 2

entry (1,1): -1

entry (1,2): 1

Continue: n

row 1:

entry (1,0): old 2 new: 2

entry (1,1): old -1 new: -1

entry (1,2): old 1 new: 1.2

Continue:

row 2:

entry (2,0): old 0 new: 2.5

....

.... (Data entry)

....

A =

Matrix: 5 by 3

row 0: 3 -1 2

row 1: 2 -1 1.2

row 2: 2.5 1 -1.5

row 3: 3 1 1

row 4: -1 1 -2.2

Input b vector:

entry 0: old 0 new: 5

entry 1: old 0 new: 3

entry 2: old 0 new: 2

entry 3: old 0 new: 4

entry 4: old 0 new: 6

b =

Vector: dim: 5

5 3 2 4 6

Vector of best fit parameters is

Vector: dim: 3

1.47241555 -0.402817858 -1.14411815

||A.x-b|| = 6.78938

The Q matrix can be obtained explicitly by the routine makeQ(). The Q matrix can then be used to
obtain an orthogonal basis for the range of A. An orthogonal basis for the null space of A can be found by
finding the QR-factorisation of AT .

1.5 A sparse matrix example

To illustrate the sparse matrix routines, consider the problem of solving Poisson’s equation on a square using
finite differences, and incomplete Cholesky factorisation. The actual equations to solve are

ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4uij = h2 f(xi, yj), for i, j = 1, . . . , N

1.5. A SPARSE MATRIX EXAMPLE 13

where u0,j = ui,0 = uN+1,j = ui,N+1 = 0 for i, j = 1, . . . , N and h is the common distance between grid
points.

The first task is to set up the matrix describing this system of linear equations. The next is to set up the
right-hand side. The third is to form the incomplete Cholesky factorisation of this matrix, and finally to use
the sparse matrix conjugate gradient routine with the incomplete Cholesky factorisation as preconditioner.

Setting up the matrix and right-hand side can be done by the following code:

#define N 100

#define index(i,j) (N*((i)-1)+(j)-1)

......

A = sp_get_mat(N*N,N*N,5);

b = get_vec(N*N);

h = 1.0/(N+1); /* for a unit square */

......

for (i = 1; i <= N; i++)

for (j = 1; j <= N; j++)

{

if (i < N)

sp_set_val(A,index(i,j),index(i+1,j),-1.0);

if (i > 1)

sp_set_val(A,index(i,j),index(i-1,j),-1.0);

if (j < N)

sp_set_val(A,index(i,j),index(i,j+1),-1.0);

if (j > 1)

sp_set_val(A,index(i,j),index(i,j-1),-1.0);

sp_set_val(A,index(i,j),index(i,j),4.0);

b->ve[index(i,j)] = -h*h*f(h*i,h*j);

}

Once the matrix and right-hand side are set up, the next task is to compute the sparse incomplete Cholesky
factorisation of A. This must be done in a different matrix, so A must be copied.

LLT = sp_cp_mat(A);

spICHfactor(LLT);

Now that that is done, the remainder is easy:

out = get_vec(A->m);

......

sp_pccg(A,LLT,b,1e-6,out);

printf("Number of iterations = %d\n",cg_numiters);

......

and the output can be used in whatever way desired.
For graphical output of the results, the solution vector can be copied into a square matrix, which is then

saved in MATLABTM format using m_save(), and graphical output produced by MATLABTM.

14 CHAPTER 1. TUTORIAL

1.6 How do I?

For the convenience of the user, here a number of common tasks that people need to perform frequently,
and how to perform the computations using Meschach.

1.6.1 solve a system of linear equations

If you wish to solve Ax = b for x given A and b (without destroying A), then the following code will do this:

MAT *LU;

PERM *pivot;

......

LU = get_mat(A->m,A->n);

LU = cp_mat(A,LU);

pivot = get_perm(A->m);

LUfactor(LU,pivot);

x = LUsolve(LU,pivot,b,x);

1.6.2 solve a least-squares problem

To minimise ‖Ax− b‖22 =
∑

i((Ax)i − bi)
2, the most reliable method is based on the QR-factorisation. The

following code performs this calculation assuming that A is m× n with m ≥ n:

MAT *QR;

VEC *diag, *beta;

......

QR = get_mat(A->m,A->n);

QR = cp_mat(A,QR);

diag = get_vec(A->n);

beta = get_vec(A->n);

QRfactor(QR,diag,beta);

x = QRsolve(QR,diag,beta,b,x);

1.6.3 find all the eigenvalues (and eigenvectors) of a general matrix

The best method is based on the Schur decomposition. For symmetric matrices, the eigenvalues and eigen-
vectors can be computed by a single call to symmeig(). For non-symmetric matrices, the situation is more
complex and the problem of finding eigenvalues and eigenvectors can become quite ill-conditioned. Provided
the problem is not too ill-conditioned, the following code should give accurate results:

/* A is the matrix whose eigenvalues and eigenvectors is sought */

MAT *A, *T, *Q, *X_re, *X_im;

VEC *evals_re, *evals_im;

......

T = get_mat(A->m,A->n);

Q = get_mat(A->m,A->n);

T = cp_mat(A,T);

/* compute Schur form: A = Q.T.Q^T */

schur(T,Q);

/* extract eigenvalues */

evals_re = get_vec(A->m);

evals_im = get_vec(A->m);

schur_evals(T,evals_re,evals_im);

/* Q not needed for eiegenvalues */

1.6. HOW DO I? 15

X_re = get_mat(A->m,A->n);

X_im = get_mat(A->m,A->n);

schur_vecs(T,Q,X_re,X_im);

/* k’th eigenvector is the k’th column X_re +

i. k’th eigenvector of X_im */

1.6.4 solve a large, sparse, positive definite system of equations

An example of a large, sparse, positive definite matrix is the matrix obtained from a finite-difference ap-
proximation of the Laplacian operator. If an explicit representation of such a matrix is available, then the
following code is suggested as a reasonable way of computing solutions:

/* A.x == b is the system to be solved */

sp_mat *A, *LLT;

VEC *x, *b;

......

/* set up A and b */

......

x = get_mat(A->m);

LLT = sp_cp_mat(A);

/* preconditioning using the incomplete Cholesky factorisation */

spICHfactor(LLT);

/* now use pre-conditioned conjugate gradients */

x = sp_pccg(A,LLT,b,1e-7,x);

/* solution computed to give a relative residual of 10^{-7} */

If explicitly storing such a matrix takes up too much memory, then if you can write a routines to perform
the calculation of Ax for any given x, the following code may be more suitable (if slower):

VEC *mult_routine(user_def,x,out)

void *user_def;

VEC *x, *out;

{

......

}

......

x = get_vec(b->dim);

/* argument 2 is NULL => no preconditioning */

x = pccg(mult_routine,(void *)NULL,user_def,b,1e-7,x);

The user_def argument is for a pointer to a user-defined structure (possibly NULL, if you don’t need this)
so that you can write a common function for handling a large number of different circumstances.

16 CHAPTER 1. TUTORIAL

Contents

1 Tutorial 1

1.1 The data structures and some basic operations . 1
1.2 How to manage memory . 4

1.2.1 No deallocation . 4
1.2.2 Allocate and deallocate . 4
1.2.3 Resize on demand . 5

1.3 A routine for a 4th order Runge–Kutta method . 5
1.4 A least squares problem . 10
1.5 A sparse matrix example . 12
1.6 How do I? . 14

1.6.1 solve a system of linear equations . 14
1.6.2 solve a least-squares problem . 14
1.6.3 find all the eigenvalues (and eigenvectors) of a general matrix 14
1.6.4 solve a large, sparse, positive definite system of equations 15

17

