Chapter 6

Sparse Matrix Operations

The following routines are described in the following pages:
$\left.\begin{array}{llr}\text { sp_get_mat, sp_free_mat, } & \text { allocate, free, resize } \\ \text { sp_resize, sp_compact } & \text { and compactify sparse matrix }\end{array}\right) 94$
sp_resize, sp_compact
sp_cp_mat, sp_cp_mat2
sp_get_val, sp_set_val
sp_mv_mlt, sp_vm_mlt
sp_col_access, sp_diag_access
sp_zero_mat
sp_fout_mat, sp_out_mat
sp_fin_mat, sp_in_mat
sp_get_idx, sp_get_row,
row_xpd, sp_row_merge,
_row_mltadd, row_set_val,
fout_row
spCHfactor, spICHfactor,
spCHsymb, spCHsolve
spLUfactor, spLUsolve,
spLUTsolve
spBKPfactor, spBKPsolve
pccg, cgs, lsqr
arnoldi
allocate, free, resize 94
copy sparse matrix 96
sparse matrix-vector multiplication 98zeros matrix101
spare matrix output104
row support routines 106
Cholesky factorise and solve 108
LU factorise and solve 110
sparse Bunch-Kaufmann-Parlett factorise and solve 112
Lanczos eigenvalue routines 116
Arnoldi routine 119

```
#include "matrix.h"
#include "sparse.h"
#include "sparse2.h"
```


NAME

sp_get_mat, sp_free_mat, sp_resize, sp_compact - allocate, free and resize sparse matrices

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
sp_mat *sp_get_mat(m, n, maxlen)
int m, n, maxlen;
void sp_free_mat(A)
sp_mat *A;
sp_mat *sp_resize(A,m,n)
sp_mat *A;
int m, n;
sp_mat *sp_compact(A,tol)
sp_mat *A;
double tol;
```


DESCRIPTION

The routine sp_get_mat () allocates and initialises a sp_mat data structure. It is initialised so that the sp_mat returned is $m \times n$, and that there are already maxlen elements allocated for each row. This is to avoid excessive memory allocation/de-allocation later on. Initially there are no elements in the matrix and so the len entry of every row will be zero just after calling this routine.

The routine sp_free_mat () de-allocates all memory associated with the sparse matrix structure A.
The routine sp_resize() re-sizes the matrix A to be size $m \times n$. Rows are expanded as necessary, and information is not lost unless the matrix is reduced in size.

It should be noted that the sparse matrix data structure requires a separate memory allocation for each row, unlike the dense matrix data structure. Thus more care must be taken with sparse matrix data structures to avoid excessive time spent in memory allocation and de-allocation.

An E_MEM error will be raised if the memory cannot be allocated.
Finally, the routine sp_compact() removes zero elements and elements with magnitude no more than tol from the sparse matrix A. It does this in situ and requires no additional storage. It may, however, raise an E_RANGE error if tol is negative.

EXAMPLE

```
sp_mat *A;
int i, j, m, n;
    ......
/* get sparse matrix, with room for 5 entires per row */
A = sp_get_mat(m,n,5);
    ......
sp_set_val(A,i,j,3.1415926);
    ......
/* double size of A matrix */
sp_resize(A, 2*m,2*n);
    ......
```

/* remove entries of size <= 10^\{-7\} */
sp_compact (A,1e-7) ;
/* destroy A matrix */
sp_free_mat(A)

SOURCE FILE: sparse.c

```
NAME
    sp_cp_mat, sp_cp_mat2 - Spare matrix copy routines
SYNOPSIS
#include "matrix.h"
#include "sparse.h"
sp_mat *sp_cp_mat(A)
sp_mat *A;
sp_mat *sp_cp_mat2(A,OUT)
sp_mat *A, *OUT;
```


DESCRIPTION

The routine sp_cp_mat () returns a copy of A so that the object returned can be freely modified without affecting A. (That is, it is a "deep" copy.) A new data structure is allocated and initialised in the process.

The routine sp_cp_mat2() copies A into OUT, using all allocated entries in OUT in doing so. In this way it avoids memory allocation and preserves the structure of the nonzeros of OUT as much as possible.

The routine sp_cp_mat2() is especially useful in conjunction with the symbolic and incomplete Cholesky factorisation routines. The idea is that the symbolic Cholesky factorisation allocates all the necessary nonzero entries; if a matrix with the original nonzero pattern is to be factored, it can be copied using sp_cp_mat2() into the symbolicly factored matrix, and the incomplete Cholesky factorisation routine can then be used to factor the copied matrix without fill-in or memory allocation. See the manual entries on spICHfactor() and spCHsymb() for more details.

EXAMPLE

```
sp_mat *A, *B;
A = sp_get_mat (100,100,4);
for ( i = 0; i < A->m; i++ )
        sp_set_val(A,i,i+1,\ldots..);
......
/* copy A matrix */
B = sp_cp_mat(A);
    .....
for ( i = 0; i < B->m; i++ )
        sp_set_val(B,i,i+2,\ldots.);
sp_cp_mat2(A,B);
/* now B and A represent same matrix,
    but B has allocated (i,i+2) entries */
```


SEE ALSO

sp_get_mat() and sp_resize()
SOURCE FILE: sparse.c

NAME
sp_get_val, sp_set_val - Access to entries of a sparse matrix

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
double sp_get_val(A,i,j)
sp_mat *A;
int i, j;
double sp_set_val(A,i,j,val)
sp_mat *A;
int i, j;
double val;
```


DESCRIPTION

The routine sp_get_val() returns the value in the (i, j) 'th entry of A. If the $(i, j)^{\prime}$ 'th entry has not been allocated, then zero is returned. The routine sp_set_val() sets the value of the (i, j) 'th entry of A to val. If the (i, j) 'th entry is not already allocated, then if there is sufficient allocated space for the new entry, other entries will be shifted as needed; if there is not sufficient space, then the row will be expanded by row_xpd(). Setting the value of an entry to zero does not "de-allocate" the entry.

If i or j are negative or larger than or equal to $A->m$ or $A->n$ respectively, then an $E_{-} B O U N D S$ error will be raised.

EXAMPLE

```
sp_mat *A;
int i, j;
double val;
    ......
A = sp_get_mat (100,100,4);
sp_set_val(A,i,j,(double)(i+j));
    ......
val = sp_get_val(A,i,j);
```

SEE ALSO
row_set_val()
BUGS

A more efficient approach would be to use a balanced tree structure.

```
SOURCE FILE: sparse.c
```


NAME

sp_mv_mlt, sp_vm_mlt - sparse matrix-vector multiplication routines

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
VEC *sp_mv_mlt(A,x,out)
sp_mat *A;
VEC *x, *out;
VEC *sp_vm_mlt(A,x,out)
sp_mat *A;
VEC *x, *out;
```


DESCRIPTION

The routine sp_mv_mlt() sets out to be the matrix-vector product $A x$, and sp_vm_mlt() sets out to be the vector-matrix product $x^{T} A$ (or equivalently, $A^{T} x$). The vector out is created or resized if necessary, in particular, if out $==$ VNULL.

Both avoid thrashing on virtual memory machines. Unlike the dense matrix routines, there is no set of "core" routines for performing the underlying inner products etc efficiently.

EXAMPLE

```
sp_mat *A;
VEC *x, *y;
A = sp_get_mat(100,100,4);
x = get_vec(A->m);
/* compute y <- A.x */
y = sp_mv_mlt(A,x,VNULL);
/* compute y^T <- x^T.A */
sp_vm_mlt(A,x,y);
```


SOURCE FILE: sparse.c

NAME

sp_col_access, sp_diag_access - set up access paths

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
sp_mat *sp_col_access(A)
sp_mat *A;
sp_mat *sp_diag_access(A)
sp_mat *A;
```


DESCRIPTION

In order to achieve fast access down columns, extra access paths were added. However, operations such as setting values of (unallocated) entries upset these access paths. Rather than keep them up-to-date continuously, which is rather expensive in computational time, these access paths are only updated when requested.

There are flags in the sparse matrix data structure which indicate if these access paths are still valid: they are A->flag_col and A->flag_diag respectively. (Nonzero indicates they are valid.)

The fields of A that are set up by sp_col_access() are the A->start_row[] and A->start_idx [] fields. The values A->start_row[col] and A->start_idx[col] give the first row, and index into that row where the first allocated entry of column col. The other fields set up by sp_col_access() are the nxt_row and nxt_idx fields of each row_elt data structure in the sparse matrix A. For a more thorough description of how these may be used, see $\S 3.2$.

The sp_diag_access() function only sets the diag field of the sp_row data structure for each row in the sparse matrix A.

EXAMPLE

Using the column access fields to chase the entries in

```
sp_mat *A;
int i, j, idx;
sp_row *r;
row_elt *e;
    ......
/* set up A matrix */
sp_set_val(A,i,j,3.1415926);
    ......
sp_col_access(A);
/* chase column j of A */
i = A->start_row[j];
idx = A->start_idx[j];
while ( i >= 0 )
{
    r = &(A->row[i]);
    e = &(r->elt[idx]);
    printf("Value A[%d][%d] = %g\n", i, j, e->val);
    i = e->nxt_row;
    idx = e->nxt_idx;
}
```

Getting diagonal values:

```
sp_mat *A;
int i, idx;
double val;
    ......
sp_diag_access(A);
/* to get A[i][i] */
idx = A->row[i].diag;
if ( idx < 0.0 )
    val = 0.0;
else
    val = A->row[i].elt[idx].val;
```

BUGS
The flags are not guaranteed to remain correct if you modify the sparse matrix data structures directly, only if you use sp_set_val() etc.

SOURCE FILE: sparse.c

NAME

sp_zero_mat - Zeros sparse matrix

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
sp_mat *sp_zero_mat(A)
sp_mat *A;
```


DESCRIPTION

Zeros the allocated entries of A. Does not change the "allocation" status of entries of A.

EXAMPLE

One way to clear the sparsity structure of a matrix follows:

```
sp_mat *A;
sp_zero_mat(A); /* zeros entries */
sp_compact(A,0.0); /* removes zero entries */
```

SOURCE FILE: sparse.c

NAME

sp_fout_mat, sp_out_mat - Sparse matrix output

SYNOPSIS

```
#include <stdio.h>
#include "matrix.h"
#include "sparse.h"
sp_fout_mat(fp,A)
FILE *fp;
sp_mat *A;
sp_out_mat(A)
sp_mat *A;
```


DESCRIPTION

The routine sp_fout_mat() produces a printed representation of the sparse matrix A on the file or stream fp. This representation can also be read in by sp_fin_mat().

The routine sp_out_mat() is just a macro

```
#define sp_out_mat(A) sp_fout_mat(stdout,(A))
```

which sends the output to stdout.
The form of the output consists of a header, a list of rows, each of which contains a sequence of entries. Each entry is made up of a column number, a colon, and the value for that entry. For example, the dense matrix

Matrix: 3 by 4				
row 0:	0	1	0	-1
row 1:	1	2	0	0
row 2:	0	0	1	1

can be represented as the sparse matrix with printed representation

```
SparseMatrix: 3 by 4
row 0: 1:1 3:-1
row 1: 0:1 1:2
row 2: 2:1 3:1
```


EXAMPLE

```
sp_mat *A;
int i, j;
FILE *fp;
sp_set_val(A,i,j,3.1415926);
sp_out_mat(A); /* prints to stdout */
if ( (fp=fopen("output.dat","w")) == NULL )
    error(E_EOF,"func_name");
sp_fout_mat(fp,A); /* prints to output.dat */
```

SEE ALSO
sp_fin_mat(), sp_in_mat()
SOURCE FILE: sparseio.c

NAME

sp_fin_mat, sp_in_mat - Input sparse matrix

SYNOPSIS

```
#include <stdio.h>
#include "matrix.h"
#include "sparse.h"
sp_mat *sp_fin_mat(fp)
FILE *fp;
sp_mat *sp_in_mat()
```


DESCRIPTION

The routine sp_fin_mat() allocates, initialises and inputs a sparse matrix of the size input from file/stream $f p$. The routine $s p$ _in_mat() is just a macro

```
#define sp_in_mat() sp_fin_mat(stdin)
```

If the input is not from a terminal, then the format must be the same as that produced by sp_fout_mat () or sp_out_mat(). If the input is from a terminal (isatty (fileno $(f p)$) $!=0$) then the user is prompted for the necessary values and information.

EXAMPLE

```
sp_mat *A;
FILE *fp;
A = sp_in_mat(); /* read matrix from stdin */
if ( (fp=fopen("input.dat","r")) == NULL )
    error(E_INPUT,"func_name");
A = sp_fin_mat(fp); /* read matrix from input.dat */
```

Example of interactive input session:

```
SparseMatrix: input rows cols: 10 15
Row 0:
Enter <col> <val> or 'e' to end row
Entry 0: 2 -7.32
Entry 1: 3 1.5
Entry 2: 0 2.75 # Note: entry ignored
Entry 2: 4 1.3
Entry 3: e
Row 1:
Enter <col> <val> or 'e' to end row
Entry 0: e # Note: empty row
Row 2:
Enter <col> <val> or 'e' to end row
Entry 0: ....
```

.

BUGS
Does not allow more than a hundred entries pre row.
The simple "editing" facilities of fin_mat() are not provided.
SOURCE FILE: sparseio.c

```
NAME
    sp_get_idx, sp_get_row, row_xpd, sp_row_merge, _row_mltadd, row_set_val, fout_row
- Sparse row support routines
```


SYNOPSIS

```
#include "matrix.h"
```

\#include "matrix.h"
\#include "sparse.h"
\#include "sparse.h"
int sp_get_idx(r,col)
int sp_get_idx(r,col)
sp_row *r;
sp_row *r;
int col;
int col;
sp_row *sp_get_row(maxlen)
sp_row *sp_get_row(maxlen)
int maxlen;
int maxlen;
sp_row *row_xpd(r,newlen)
sp_row *row_xpd(r,newlen)
sp_row *r;
sp_row *r;
int newlen;
int newlen;
sp_row *sp_row_merge(r1,r2,r_out)
sp_row *sp_row_merge(r1,r2,r_out)
sp_row *r1, *r2, *r_out;
sp_row *r1, *r2, *r_out;
sp_row *_row_mltadd(r1,r2,alpha,j0,r_out)
sp_row *_row_mltadd(r1,r2,alpha,j0,r_out)
sp_row *r1, *r2, *r_out;
sp_row *r1, *r2, *r_out;
double alpha;
double alpha;
int j0;
int j0;
double row_set_val(r,j,val)
double row_set_val(r,j,val)
sp_row *r;
sp_row *r;
int j;
int j;
double val;
double val;
void fout_row(fp,r)
void fout_row(fp,r)
FILE *fp;
FILE *fp;
sp_row *r;

```
sp_row *r;
```


DESCRIPTION

The routine sp_get_idx () uses binary search to find the location of the element in row r whose column number is col, which is returned. If the row r contains an entry with column number col, then the index idx into $r->e l t[i d x]$ (being the entry in that row) is given by idx $=s p _g e t _i d x(r, c o l)$. If there is no element in row r whose column is col, then idx $=s p _g e t _i d x(r, c o l)$ is negative, but $-(i d x+2)$ is the index where an entry with column number col would be inserted. An internal error is flagged by returning -1 .

The routine sp_get_row() allocates and initialises a sparse row data structure (type sp_row) with memory for maxlen entries.

The routine row_xpd() reallocates the row r to allocate room for at least newlen entries. If the current length (r->len) is already at least size newlen, then the row's allocated memory is approximately double in size.

The routine sp_row_merge() merges two sparse rows, with values in r1 taking precedence over values in r2 if they have the same column number.

The routine _row_mltadd() sets r_out to be r1+alpha.r2, by a "merging" process. The applies only to columns with column numbers greater than or equal to $j 0$.

The routine row_set_val() sets the j'th element of row r to be val. Memory allocation and shifting of entries is done as needed.

The routine fout_row() prints a representation of the sparse row r onto file/stream fp. This representation is not intended to be read back in.

EXAMPLE

Extracting a sparse matrix entry:

```
sp_mat *A;
sp_row *r, r1, r2;
row_elt *e;
int i, j, idx, idx1;
/* compute A[i][j] */
r = &(A->row[i]);
idx = sp_get_idx(r,j);
if ( idx < 0 )
    /* -(idx+2) is where an entry in
        column j would go if there were one */
    val = 0.0;
else
    val = r->elt[idx].val;
```

Shuffling a row:

```
/* build temporary sparse row r1
        containing shuffled entries of r */
r1 = sp_get_row(10);
for ( idx = 0; idx < r->len; idx++ )
{
    e = &(r->elt[idx]);
    old_col = e->col;
    new_col = ......;
    row_set_val(r1,new_col,e->val);
    /* r1 will be expanded if necessary */
}
```

Expanding a temporary row:

```
r1 = row_xpd(r1,2*r1->len + 1);
```

Printing out a row as a separate structure for debugging:

```
printf("Temporary row r1:\n");
fout_row(stdout,r1);
```

SOURCE FILE: sparse.c

```
NAME
    spCHfactor, spCHsolve, spICHfactor, spCHsymb - Sparse Cholesky factorisation and solve
SYNOPSIS
#include "matrix.h"
#include "sparse2.h"
sp_mat *spCHfactor(A)
sp_mat *A;
VEC *spCHsolve(LLT,b,out)
sp_mat *LLT;
VEC *b, *out;
sp_mat *spICHfactor(A)
sp_mat *A;
sp_mat *spCHsymb (A)
sp_mat *A;
```


DESCRIPTION

The main routine of these is spCHfactor () which performs a sparse Cholesky factorisation of the matrix A, which is performed in situ. The resulting system can be solved by spCHsolve() which returns out which is set to be the solution of A. out $=\mathrm{b}$ where LLT is the result of applying spCHfactor() to A. To illustrate, the following code solves the system $\mathrm{A} . \mathrm{x}=\mathrm{b}$ for x :

```
/* Initialise A and b */
    ......
spCHfactor(A);
/* A is now the Cholesky factorisation of original A,
        stored in compact form */
spCHsolve(A,b,x);
```

The other routines provide alternatives to spCHfactor(). The routine spCHfactor() allocates memory for fill-in as needed. As noted above regarding sp_col_access() etc, this destroys the column access data structure's validity, and so results in more time spent searching for elements within rows. This can be avoided if there is no fill-in.

The routine spICHfactor() performs Cholesky factorisation assuming no fill-in. It does not even check that fill-in would occur in a correct Cholesky factorisation. This routine is considerably faster than using spCHfactor(), but if the actual factorisation results in fill-in, the computed "Cholesky" factor used in spCHsolve() will not give correct solutions.

The routine spCHsymb() performs a "symbolic" factorisation of A. That is, no numerical calculations are performed. Instead, the A matrix after spCHsymb() has executed, contains allocated all entries where fill-in would occur. This means that spCHfactor() is effectively equivalent to spCHsymb() followed by spICHfactor(). The advantage with having two separate routines is that the fill-in can be computed once for a given pattern of nonzeros, and used for a number of sparse matrices with just that pattern of nonzeros with spICHfactor(). The code to do this would look something like this:

```
/* Initialise pattern matrix */
```

......

```
spCHsymb(pattern);
for ( i = 0; i < num_matrices; i++ )
{ /* set up A matrix -- same nonzero pattern */
    sp_zero_mat(pattern);
    sp_cp_mat2(A,pattern);
    spICHfactor(pattern);
    /* set up b vector */
    spCHsolve(pattern,b,x);
}
```

The spICHfactor () routine can also be used to provide a good pre-conditioner for the pre-conditioned conjugate gradient routines pccg() and sp_pccg().

BUGS
An E_POSDEF error may be raised by spICHfactor () even if the A matrix is positive definite.
An E_POSDEF error will be raised by spCHsymb() if a diagonal entry is missing.
SEE ALSO
sp_cp_mat2, sp_zero_mat, pccg, sp_pccg
SOURCE FILE: spCHfactor.c

```
NAME
    spLUfactor, spLUsolve, spLUTsolve - sparse LU factorisation (Gaussian elimination)
SYNOPSIS
#include "matrix.h"
#include "sparse2.h"
sp_mat *spLUfactor(A,pivot,alpha)
sp_mat *A;
PERM *pivot;
double alpha;
sp_mat *spILUfactor(A,alpha)
sp_mat *A;
double alpha;
VEC *spLUsolve(LU,pivot,b,x)
sp_mat *LU;
PERM *pivot;
VEC *b, *x;
VEC *spLUTsolve(LU,pivot,b,x)
sp_mat *LU;
PERM *pivot;
VEC *b, *x;
```


DESCRIPTION

The routine spLUfactor () performs Gaussian elimination with partial pivoting on A with a Markowitz type modification to avoid excessive fill-in. The alpha parameter determines the trade-off between fill-in and numerical stability; the row that is swapped with the pivot row is the one with the smallest number of nonzero entries after the pivot column which has magnitude at least alpha times the largest magnitude entry in the pivot column. This parameter must therefore be between zero and one inclusive. If it is set to zero then alpha is effectively set to machine epsilon, MACHEPS.

Note that A is over-written during the factorisation, and that pivot must be set before being passed to spLUfactor().

The routine spILUfactor() computes a modified incomplete $L U$ factorisation without pivoting. Thus no fill-in is generated and all pivot (i.e. diagonal entries) are guaranteed to have magnitude $\geq \alpha$ by adding to the diagonal entries. Thus in exact arithmetic it computes $L U=A+D$ for some diagonal matrix D. Since it is not a factorisation of A, it cannot be used directly to solve systems of equations.

The routine LUsolve() solves the system $A x=b$. The routine LUTsolve() solves the system $A^{T} x=b$. Both of these use the the matrix as factored by spLUfactor(). Neither of these can be used in situ with $\mathrm{x}=\mathrm{b}$.

EXAMPLE

Code for solving the sparse systems of equations $A x=b$ and $A^{T} y=b$ is given below:

```
/* Set up A and b */
......
pivot = get_perm(A->m);
x = get_vec(A->n);
```

```
y = get_vec(A->m);
spLUfactor(A,pivot,0.1);
x = spLUsolve(A,pivot,b,x);
y = spLUTsolve(A,pivot,b,y);
```

An example of the use of spILUfactor() will be given under the entry for $\operatorname{pccg}(), \operatorname{cgs}()$ and 1 sqr().
BUGS
There may be problems with spLUsolve() and spLUTsolve() if A is not square.
The routine spLUfactor() does not implement a full Markowitz strategy.
SEE ALSO
spCHfactor(), MACHEPS, LUfactor()
SOURCE FILE: spLUfctr.c

NAME

spLUfactor, spLUsolve, spLUTsolve - sparse Bunch-Kaufmann-Parlett factorisation

SYNOPSIS

```
#include "matrix.h"
#include "sparse2.h"
sp_mat *spBKPfactor(A,pivot,blocks,alpha)
sp_mat *A;
PERM *pivot, *blocks;
double alpha
VEC *spBKPsolve(A,pivot,blocks,b,x)
sp_mat *A;
PERM *pivot, *blocks;
VEC *b, *x;
```


DESCRIPTION

The routine spBKPfactor() performs the symmetric indefinite factorisation methods of Bunch, Kaufmann and Parlett as described for BKPfactor(). However, this routine uses a Markowitz type strategy to determine what pivoting to do; the alpha argument is a lower limit on the relative size of the pivot block. The pivot which satisfies this lower limit and which has the smallest number of entires in the pivot row(s) is used. The value of alpha must be greater than zero but less or equal to one. The value of one gives essentially the pivoting as occurs in BKPfactor () for the same matrix. This approach follows that of ... in

The actual factored matrix is stored in the upper triangular part of A; the strictly lower triangular part of A is left unchanged.

The routine spBKPsolve() is really just a translation of BKPsolve() to the sparse case, using just the upper triangular part of A.

EXAMPLE

A simple example of the use of these routines is

```
sp_mat *A, *BKP;
PERM *pvt, *blks;
VEC *b, *x;
    ......
/* set up A matrix */
    ......
pvt = get_perm(A->m);
blks = get_perm(A->m);
BKP = sp_cp_mat(A);
spBKPfactor(BKP,pvt,blks,0.1);
/* set up b vector */
    ......
x = spBKPsolve(BKP,pvt,blks,b,VNULL);
```


SEE ALSO

BKPfactor(), BKPsolve(), spLUfactor(), spLUsolve().
SOURCE FILE: spbkp.c

NAME

pccg, cgs, lsqr - Conjugate gradient like methods

SYNOPSIS

```
#include "matrix.h"
#include "sparse2.h"
int cg_numiters;
VEC *pccg(A,A_params,M_inv,M_params,b,tol,x)
MTX_FN A, M_inv;
VEC *b, *x;
double tol;
void *A_params, *M_params;
VEC *sp_pccg(A,LLT,b,eps,x)
sp_mat *A, *LLT;
VEC *b, *x;
double eps;
{ return pccg(sp_mv_mlt,A,spCHsolve,LLT,b,eps,x); }
VEC *cgs(A,A_params,b,r0,tol,x)
MTX_FN A;
VEC *x, *b;
VEC *r0;
double tol;
void *A_params;
VEC *sp_cgs(A,b,r0,tol,x)
sp_mat *A;
VEC *b, *r0, *x;
double tol;
{ return cgs(sp_mv_mlt,A,b,r0,tol,x); }
VEC *lsqr(A,AT,A_params,b,tol,x)
MTX_FN A, AT;
VEC *x, *b;
double tol;
void *A_params;
VEC *sp_lsqr(A,b,tol,x)
sp_mat *A;
VEC *b, *x;
double tol;
{ return lsqr(sp_mv_mlt,sp_vm_mlt,A,b,tol,x); }
int cg_set_maxiter(maxiters)
int maxiters;
```


DESCRIPTION

In the routines $\operatorname{pcg}(), \operatorname{cgs}()$ and lisqr(), the type MTX_FN is just given by (in ANSI C)
typedef VEC $*(* \mathrm{MTX}$ _FN) (void $*$ params, VEC $* \mathrm{x}, \mathrm{VEC} *$ out);
That is, the matrices are defined implicitly by functions; functions that take a vector x and computes (and returns) out $=$ A. x . This is the standard form of functional representation used here. The params parameter is for user-defined data structures, for additional flexibility.

Each of $\operatorname{pccg}(), \operatorname{cgs}()$ and $\operatorname{lsqr}()$ has an associated $s p_{-} \ldots$ counterpart that has a slightly simpler interface and uses sp_mat data structures.

Also common to the different iterative routines is the routine cg_set_maxiter () which sets the maximum number of iterations to maxiters (and returns the old value of maxiters). The default limit to the number of iterations is 10000 . The actual number of iterations used in the last call of pccg()$, \operatorname{cgs}()$, etc is stored in cg_num_iters.

The routine $\operatorname{pcg}()$ is a general pre-conditioned conjugate gradient routine. It returns its estimate for the solution x of $\mathrm{A} . \mathrm{x}=\mathrm{b}$ to within the tolerance tol. (That is, the 2-norm of the residual is no more than tol times the 2 -norm of b .) The function M_inv represents the inverse of the preconditioner; that is the computed out vector is the solution of M.out = in. The pointers A_params and M_params are for user-defined data structures for describing A and M_inv respectively.

The matrices represented must be symmetric and positive definite for this routine to work correctly. Symmetry cannot be tested for, although pccg will raise a E_POSDEF error if it detects a violation of positive definiteness.

The routine sp_pccg() provides a simpler interface to $\operatorname{pccg}()$ that uses sparse matrices directly. The matrix A is the sparse matrix for which the solution x of $A . x=b$ is wanted. The sparse matrix LLT contains the Cholesky factor(s) of M, the pre-conditioner, as produced by spCHfactor() or spICHfactor().

For example, the "Incomplete Cholesky/Conjugate Gradients" method can be implemented simply as

```
/* Set up A matrix */
```

```
M = sp_cp_mat(A);
spICHfactor(M);
sp_pccg(A,M,b,1e-6,x);
    ......
```

for obtaining answers with a residual of $\leq 10^{-6}\|b\|_{2}$.
The routine cgs is an implementation of the "Conjugate Gradient Squared" algorithm of P. Sonneveld, CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. \& Stat. Comp., 10, pp. $36-52$, (1989). This can be used for solving square nonsymmetric systems of equations A.x $=\mathrm{b}$. On a successful return, the residual has 2 -norm no more than tol. The vector ro should be the same size as x and it is suggested that it should be initialised to be random.

The routine lsqr is an implementation of the LSQR algorithm of Paige and Saunders LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Soft., 8, pp. 43-71, (1982). The matrix A may be nonsquare. The routine must also be passed a functional representation AT of the transpose of A . The computed x is (close to) a minimiser of $\|A x-b\|_{2}$.

Each of pccg, cgs and lsqr may raise an E_ITER error if there are too many iterations are required to achieve the desired accuracy.

EXAMPLE

An example of using pre-conditioned conjugate gradients $(\operatorname{pccg}())$ is given above.
Using CGS with ILU (incomplete $L U$ factorisation) preconditioning:

```
struct LUobj {
```

```
    sp_mat *A, *LU;
    PERM *pivot;
        };
/* ilu_pc -- returns out <- (LU)^{-1}A.x */
static VEC *ilu_pc(luo, x, out)
LUobj *luo;
VEC *x, *out;
{
    static VEC *tmp = VNULL;
    tmp = v_resize(tmp,luo->A->m);
    sp_mv_mlt(luo->A,x,tmp);
    return spLUsolve(luo->LU,luo->pivot,tmp,out);
}
/* cgs_ilu -- uses CGS with ILU preconditioning */
VEC *cgs_ilu(A,b,tol,out)
sp_mat *A;
double tol;
VEC *b, *out;
{
    LUobj luo;
    sp_mat *LU;
    PERM *pivot;
    VEC *r0;
    tracecatch(
        LU = sp_cp_mat(A);
        spILUfactor(LU,1e-2);
        r0 = get_vec(A->m);
        rand_vec(r0);
        pivot = get_perm(A->m);
        luo.A = A;
            luo.LU = LU;
            luo.pivot = pivot;
            out = cgs(ilu_pc,&luo,b,r0,tol,out);
        , "cgs_ilu");
    freeperm(pivot);
    freevec(r0);
    sp_free_mat(LU);
    return out;
}
SEE ALSO
spCHfactor(), spICHfactor()
SOURCE FILE: conjgrad.c
```


NAME

lanczos, lanczos2-Lanczos eigenvalue routines

SYNOPSIS

```
#include "matrix.h"
#include "sparse2.h"
void lanczos(A_fn,A_params,m,x0,a,b,beta2,Q)
MTX_FN A_fn;
void *A_params;
int m;
VEC *x0, *a, *b;
double *beta2;
MAT *Q;
void sp_lanczos(A,m,x0,a,b,beta2,Q)
sp_mat *A;
int m;
VEC *x0, *a, *b;
double *beta2;
MAT *Q;
{ lanczos(sp_mv_mlt,A,m,x0,a,b,beta2,Q); }
VEC *lanczos2(A_fn,A_params,m,x0,evals,err_est)
VEC *(*A_fn)();
void *A_params;
int m;
VEC *x0;
VEC *evals;
VEC *err_est;
VEC *sp_lanczos2(A,m,x0,evals,err_est)
sp_mat *A;
int m;
VEC *x0;
VEC *evals;
VEC *err_est;
{ return lanczos2(sp_mv_mlt,A,m,x0,evals,err_est); }
```


DESCRIPTION

The Lanczos algorithm is a method for finding eigenvalues of large symmetric matrices.
The routine lanczos() is a basic "raw" Lanczos routine that sets vectors a and b to be the entries of a tridiagonal matrix

$$
T=\left[\begin{array}{cccc}
a_{0} & b_{0} & & \\
b_{0} & a_{1} & b_{1} & \\
& b_{1} & a_{2} & \ddots \\
& & \ddots & \ddots
\end{array}\right]
$$

which is $Q^{T} A Q, Q$ a matrix of (near-)orthonormal vectors generated by the Lanczos algorithm. This Q matrix will be accumulated if Q is not NULL; otherwise Q is ignored. The m parameter is the limit on the
number of iterations of the basic Lanczos algorithm, although it may terminate sooner if it detects an exact zero in one of the b 's. This early termination is considered very unlikely. Also set by lanczos() is the beta2 parameter; this is the value of b_{m}, were the algorithm to continue. This parameter is important for the error estimates developed by lanczos2().

Note that A is represented by a function as for the conjugate gradient routines. The routine sp_lanczos() provides an alternative that directly uses a sparse matrix data structure.

A more complete code for finding the eigenvalues is:

```
sp_mat *A;
VEC *a, *b, *x0;
double dummy;
/* Set up A matrix */
    ......
x0 = get_vec(A->m);
rand_vec(x0);
a = get_vec(A->m);
b = get_vec(A->m-1);
sp_lanczos(A,num_iter,x0,a,b,&dummy,MNULL)
trieig(a,b,MNULL);
/* Eigenvalues now stored in a */
    ......
```

Some possible problems with a standard Lanczos method should be noted. The basic idea of the Lanczos method is once the vectors $q_{1}, q_{2}, \ldots, q_{j}$ have been computed, q_{j+1} is computed by first computing $A q_{j}$ and then orthogonalising this vector against $q_{1}, q_{2}, \ldots, q_{j-1}$ and q_{j}. Since A is symmetric, it can be shown that $A q_{j}$ is orthogonal (in exact arithmetic) to all but q_{j-1} and q_{j}. Orthogonalising $A q_{j}$ against these two vectors and then normalising gives q_{j+1}.

However, because of inexact arithmetic the q 's are not in general orthogonal. Things are worse than this. Because of the three term recurrence, there is no guarantee that q_{i} and q_{j} are even nearly orthogonal if if i and j are far apart. This shows up in the results of the Lanczos algorithm most obviously as eigenvalues appearing with spurious multiplicities. There are also occasional spurious interior eigenvalues computed by the Lanczos algorithm due to this loss of orthogonality.

Loss of orthogonality can be avoided — by storing all the generated q 's and orthogonalising $A q_{j}$ against all previous q 's. This is done in the Arnoldi algorithm.

If you only want extreme eigenvalues, then there is no need for this reorthogonalisation. A more complete discussion of reorthogonalisation and alternative strategies, see Golub and Van Loan's Matrix Computations, 2nd Ed'n, pp. 484-489.

If you wish to compute just eigenvalues without reorthogonalisation there is the routine lanczos2(). It uses the methods of Cullum and Willoughby, as given in Sparse Matrix Proc., pp. 220-255 (1978), Ed. I.S. Duff and G.W. Stewart, SIAM Publications. It returns a sorted vector of the eigenvalues evals together with the error estimates err_est. Denote the i 'th eigenvalue by λ_{i} and the i^{\prime} 'th error estimate by e_{i}. Then there is an eigenvalue of A in the range $\left[\lambda_{i}-e_{i}, \lambda_{i}+e_{i}\right]$. If one of these intervals completely contains another, then the latter eigenvalue may be ignored.

For computing eigenvectors, the following code can be used:

```
/* Setup A matrix */
    ......
Q_lan = get_mat(x0->dim,num_steps);
lanczos(mlt_fn,num_steps,x0,a,b,&tmp,Q_lan);
Q_eig = get_mat(num_steps,num_steps);
```

```
id_mat(Q_eig);
/* continued over... */
cp_vec(a,e_vals);
trieig(e_vals,b,Q_eig);
/* select which eigenvalue of T to use */
i = ...... /* by looking at e_vals array */
q = get_col(Q_eig,i,VNULL);
e_vec = mv_mlt(Q_lan,q,VNULL);
BUGS
```

As noted above, lanczos() does not return eigenvalues, only the a and b vectors.
No re-orthogonalisation is done by either lanczos() or lanczos2().
SEE ALSO
trieig(), symmeig()
SOURCE FILE: lanczos.c

NAME

arnoldi, sp_arnoldi - Arnoldi routines

SYNOPSIS

```
#include "matrix.h"
#include "sparse.h"
#include "sparse2.h"
MAT *arnoldi(A,A_param,x0,k,h_rem,Q,H)
VEC * (*A)(); /* functional representation of A */
void *A_param;
VEC *x0;
int k;
double *h_rem;
MAT *Q, *H;
MAT *sp_arnoldi(A,x0,k,h_rem,Q,H)
sp_mat *A;
VEC *x0;
int k;
double *h_rem;
MAT *Q, *H;
```


DESCRIPTION

Both of these routines compute an $k \times k$ matrix $H=Q^{T} A Q$ whose eigenvalues should approximate those of A; in exact arithmetic the columns of Q would be orthogonal. This matrix H is then returned. The matrix H represents the action of A on the Krylov subspace spanned by $\left\{x_{0}, A x_{0}, \ldots, A^{k-1} x_{0}\right\}$, and the columns of the Q matrix form a basis for this subspace. Details can be found in, for example, Matrix Computations, $\S 9.3$, pp. 501-502, 2nd edition, (1989).

The eigenvalues of A (represented by a sp_mat data structure can be approximately computed by

```
H = get_mat(k,k);
S = get_mat(k,k);
Q = get_mat (A->m,k);
Q2 = get_mat(k,k);
evals_re = get_vec(k);
evals_im = get_vec(k);
    ......
sp_arnoldi(A,x0,k,&h_val,Q,H);
S = cp_mat(H,S);
schur(S,Q2);
schur_evals(S,evals_re,evals_im);
```

To go on to compute approximate eigenvectors:

```
X2_re = get_mat(k,k)
X2_im = get_mat(k,k);
schur_vecs(S,Q2,X2_re,X2_im);
X_re = mv_mlt(Q,X2_re,MNULL);
X_im = mv_mlt(Q,X2_im,MNULL);
```

Note that both the H and Q matrices must be created before calling arnoldi() or sp_arnoldi(). The h_rem parameter is the value $h_{k+1, k}$ would have if the H matrix was $(k+1) \times(k+1)$. If a complete invariant subspace had been found, then (in exact arithmetic) this quantity would be zero.

SEE ALSO

schur(), schur_evals() and schur_vecs()

BUGS

Neither routine uses re-orthogonalisation techniques.
SOURCE FILE: arnoldi.c

Contents

6 Sparse Matrix Operations

