
Chapter 6

Sparse Matrix Operations

The following routines are described in the following pages:

sp get mat, sp free mat, allocate, free, resize 94
sp resize, sp compact and compactify sparse matrix

sp cp mat, sp cp mat2 copy sparse matrix 96
sp get val, sp set val accessing entries 97
sp mv mlt, sp vm mlt sparse matrix–vector multiplication 98
sp col access, sp diag access sets up some access paths 99
sp zero mat zeros matrix 101
sp fout mat, sp out mat spare matrix output 102
sp fin mat, sp in mat sparse matrix input 104
sp get idx, sp get row, row support routines 106
row xpd, sp row merge,

row mltadd, row set val,

fout row

spCHfactor, spICHfactor, Cholesky factorise and solve 108
spCHsymb, spCHsolve

spLUfactor, spLUsolve, LU factorise and solve 110
spLUTsolve

spBKPfactor, spBKPsolve sparse Bunch–Kaufmann–Parlett factorise and solve 112
pccg, cgs, lsqr conjugate-gradient like iterative methods 113
lanczos, lanczos2 Lanczos eigenvalue routines 116
arnoldi Arnoldi routine 119

To use these routines use the include statements

#include "matrix.h"

#include "sparse.h"

#include "sparse2.h"

93

94 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp get mat, sp free mat, sp resize, sp compact – allocate, free and resize sparse matrices

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

sp_mat *sp_get_mat(m, n, maxlen)

int m, n, maxlen;

void sp_free_mat(A)

sp_mat *A;

sp_mat *sp_resize(A,m,n)

sp_mat *A;

int m, n;

sp_mat *sp_compact(A,tol)

sp_mat *A;

double tol;

DESCRIPTION

The routine sp_get_mat() allocates and initialises a sp_mat data structure. It is initialised so that the
sp_mat returned is m × n, and that there are already maxlen elements allocated for each row. This is to
avoid excessive memory allocation/de-allocation later on. Initially there are no elements in the matrix and
so the len entry of every row will be zero just after calling this routine.

The routine sp_free_mat() de-allocates all memory associated with the sparse matrix structure A.

The routine sp_resize() re-sizes the matrix A to be size m× n. Rows are expanded as necessary, and
information is not lost unless the matrix is reduced in size.

It should be noted that the sparse matrix data structure requires a separate memory allocation for
each row, unlike the dense matrix data structure. Thus more care must be taken with sparse matrix data
structures to avoid excessive time spent in memory allocation and de-allocation.

An E_MEM error will be raised if the memory cannot be allocated.

Finally, the routine sp_compact() removes zero elements and elements with magnitude no more than
tol from the sparse matrix A. It does this in situ and requires no additional storage. It may, however, raise
an E_RANGE error if tol is negative.

EXAMPLE

sp_mat *A;

int i, j, m, n;

......

/* get sparse matrix, with room for 5 entires per row */

A = sp_get_mat(m,n,5);

......

sp_set_val(A,i,j,3.1415926);

......

/* double size of A matrix */

sp_resize(A,2*m,2*n);

......

95

/* remove entries of size <= 10^{-7} */

sp_compact(A,1e-7);

......

/* destroy A matrix */

sp_free_mat(A)

SOURCE FILE: sparse.c

96 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp cp mat, sp cp mat2 – Spare matrix copy routines

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

sp_mat *sp_cp_mat(A)

sp_mat *A;

sp_mat *sp_cp_mat2(A,OUT)

sp_mat *A, *OUT;

DESCRIPTION

The routine sp_cp_mat() returns a copy of A so that the object returned can be freely modified without
affecting A. (That is, it is a “deep” copy.) A new data structure is allocated and initialised in the process.

The routine sp_cp_mat2() copies A into OUT, using all allocated entries in OUT in doing so. In this way
it avoids memory allocation and preserves the structure of the nonzeros of OUT as much as possible.

The routine sp_cp_mat2() is especially useful in conjunction with the symbolic and incomplete Cholesky
factorisation routines. The idea is that the symbolic Cholesky factorisation allocates all the necessary nonzero
entries; if a matrix with the original nonzero pattern is to be factored, it can be copied using sp_cp_mat2()

into the symbolicly factored matrix, and the incomplete Cholesky factorisation routine can then be used to
factor the copied matrix without fill-in or memory allocation. See the manual entries on spICHfactor()

and spCHsymb() for more details.

EXAMPLE

sp_mat *A, *B;

......

A = sp_get_mat(100,100,4);

for (i = 0; i < A->m; i++)

sp_set_val(A,i,i+1,...);

......

/* copy A matrix */

B = sp_cp_mat(A);

......

for (i = 0; i < B->m; i++)

sp_set_val(B,i,i+2,...);

sp_cp_mat2(A,B);

/* now B and A represent same matrix,

but B has allocated (i,i+2) entries */

SEE ALSO

sp_get_mat() and sp_resize()

SOURCE FILE: sparse.c

97

NAME

sp get val, sp set val – Access to entries of a sparse matrix

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

double sp_get_val(A,i,j)

sp_mat *A;

int i, j;

double sp_set_val(A,i,j,val)

sp_mat *A;

int i, j;

double val;

DESCRIPTION

The routine sp_get_val() returns the value in the (i, j)’th entry of A. If the (i, j)’th entry has not
been allocated, then zero is returned. The routine sp_set_val() sets the value of the (i, j)’th entry of A
to val. If the (i, j)’th entry is not already allocated, then if there is sufficient allocated space for the new
entry, other entries will be shifted as needed; if there is not sufficient space, then the row will be expanded
by row_xpd(). Setting the value of an entry to zero does not “de-allocate” the entry.

If i or j are negative or larger than or equal to A->m or A->n respectively, then an E_BOUNDS error will
be raised.

EXAMPLE

sp_mat *A;

int i, j;

double val;

......

A = sp_get_mat(100,100,4);

......

sp_set_val(A,i,j,(double)(i+j));

......

val = sp_get_val(A,i,j);

SEE ALSO

row_set_val()

BUGS

A more efficient approach would be to use a balanced tree structure.

SOURCE FILE: sparse.c

98 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp mv mlt, sp vm mlt – sparse matrix–vector multiplication routines

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

VEC *sp_mv_mlt(A,x,out)

sp_mat *A;

VEC *x, *out;

VEC *sp_vm_mlt(A,x,out)

sp_mat *A;

VEC *x, *out;

DESCRIPTION

The routine sp_mv_mlt() sets out to be the matrix–vector product Ax, and sp_vm_mlt() sets out to
be the vector–matrix product xTA (or equivalently, ATx). The vector out is created or resized if necessary,
in particular, if out == VNULL.

Both avoid thrashing on virtual memory machines. Unlike the dense matrix routines, there is no set of
“core” routines for performing the underlying inner products etc efficiently.

EXAMPLE

sp_mat *A;

VEC *x, *y;

......

A = sp_get_mat(100,100,4);

x = get_vec(A->m);

......

/* compute y <- A.x */

y = sp_mv_mlt(A,x,VNULL);

/* compute y^T <- x^T.A */

sp_vm_mlt(A,x,y);

SOURCE FILE: sparse.c

99

NAME

sp col access, sp diag access – set up access paths

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

sp_mat *sp_col_access(A)

sp_mat *A;

sp_mat *sp_diag_access(A)

sp_mat *A;

DESCRIPTION

In order to achieve fast access down columns, extra access paths were added. However, operations
such as setting values of (unallocated) entries upset these access paths. Rather than keep them up-to-date
continuously, which is rather expensive in computational time, these access paths are only updated when
requested.

There are flags in the sparse matrix data structure which indicate if these access paths are still valid:
they are A->flag_col and A->flag_diag respectively. (Nonzero indicates they are valid.)

The fields of A that are set up by sp_col_access() are the A->start_row[] and A->start_idx[] fields.
The values A->start_row[col] and A->start_idx[col] give the first row, and index into that row where
the first allocated entry of column col. The other fields set up by sp_col_access() are the nxt_row and
nxt_idx fields of each row_elt data structure in the sparse matrix A. For a more thorough description of
how these may be used, see §3.2.

The sp_diag_access() function only sets the diag field of the sp_row data structure for each row in
the sparse matrix A.

EXAMPLE

Using the column access fields to chase the entries in

sp_mat *A;

int i, j, idx;

sp_row *r;

row_elt *e;

......

/* set up A matrix */

sp_set_val(A,i,j,3.1415926);

......

sp_col_access(A);

/* chase column j of A */

i = A->start_row[j];

idx = A->start_idx[j];

while (i >= 0)

{

r = &(A->row[i]);

e = &(r->elt[idx]);

printf("Value A[%d][%d] = %g\n", i, j, e->val);

i = e->nxt_row;

idx = e->nxt_idx;

}

100 CHAPTER 6. SPARSE MATRIX OPERATIONS

Getting diagonal values:

sp_mat *A;

int i, idx;

double val;

......

sp_diag_access(A);

......

/* to get A[i][i] */

idx = A->row[i].diag;

if (idx < 0.0)

val = 0.0;

else

val = A->row[i].elt[idx].val;

BUGS

The flags are not guaranteed to remain correct if you modify the sparse matrix data structures directly,
only if you use sp_set_val() etc.

SOURCE FILE: sparse.c

101

NAME

sp zero mat – Zeros sparse matrix

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

sp_mat *sp_zero_mat(A)

sp_mat *A;

DESCRIPTION

Zeros the allocated entries of A. Does not change the “allocation” status of entries of A.

EXAMPLE

One way to clear the sparsity structure of a matrix follows:

sp_mat *A;

......

sp_zero_mat(A); /* zeros entries */

sp_compact(A,0.0); /* removes zero entries */

SOURCE FILE: sparse.c

102 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp fout mat, sp out mat – Sparse matrix output

SYNOPSIS

#include <stdio.h>

#include "matrix.h"

#include "sparse.h"

sp_fout_mat(fp,A)

FILE *fp;

sp_mat *A;

sp_out_mat(A)

sp_mat *A;

DESCRIPTION

The routine sp_fout_mat() produces a printed representation of the sparse matrix A on the file or stream
fp. This representation can also be read in by sp_fin_mat().

The routine sp_out_mat() is just a macro

#define sp_out_mat(A) sp_fout_mat(stdout,(A))

which sends the output to stdout.

The form of the output consists of a header, a list of rows, each of which contains a sequence of entries.
Each entry is made up of a column number, a colon, and the value for that entry. For example, the dense
matrix

Matrix: 3 by 4

row 0: 0 1 0 -1

row 1: 1 2 0 0

row 2: 0 0 1 1

can be represented as the sparse matrix with printed representation

SparseMatrix: 3 by 4

row 0: 1:1 3:-1

row 1: 0:1 1:2

row 2: 2:1 3:1

EXAMPLE

sp_mat *A;

int i, j;

FILE *fp;

......

sp_set_val(A,i,j,3.1415926);

......

sp_out_mat(A); /* prints to stdout */

if ((fp=fopen("output.dat","w")) == NULL)

error(E_EOF,"func_name");

sp_fout_mat(fp,A); /* prints to output.dat */

103

SEE ALSO

sp_fin_mat(), sp_in_mat()

SOURCE FILE: sparseio.c

104 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp fin mat, sp in mat – Input sparse matrix

SYNOPSIS

#include <stdio.h>

#include "matrix.h"

#include "sparse.h"

sp_mat *sp_fin_mat(fp)

FILE *fp;

sp_mat *sp_in_mat()

DESCRIPTION

The routine sp_fin_mat() allocates, initialises and inputs a sparse matrix of the size input from
file/stream fp. The routine sp_in_mat() is just a macro

#define sp_in_mat() sp_fin_mat(stdin)

If the input is not from a terminal, then the format must be the same as that produced by sp_fout_mat()

or sp_out_mat(). If the input is from a terminal (isatty(fileno(fp)) != 0) then the user is prompted
for the necessary values and information.

EXAMPLE

sp_mat *A;

FILE *fp;

......

A = sp_in_mat(); /* read matrix from stdin */

if ((fp=fopen("input.dat","r")) == NULL)

error(E_INPUT,"func_name");

A = sp_fin_mat(fp); /* read matrix from input.dat */

Example of interactive input session:

SparseMatrix: input rows cols: 10 15

Row 0:

Enter <col> <val> or ’e’ to end row

Entry 0: 2 -7.32

Entry 1: 3 1.5

Entry 2: 0 2.75 # Note: entry ignored

Entry 2: 4 1.3

Entry 3: e

Row 1:

Enter <col> <val> or ’e’ to end row

Entry 0: e # Note: empty row

Row 2:

Enter <col> <val> or ’e’ to end row

Entry 0:

......

105

BUGS

Does not allow more than a hundred entries pre row.

The simple “editing” facilities of fin_mat() are not provided.

SOURCE FILE: sparseio.c

106 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

sp get idx, sp get row, row xpd, sp row merge, row mltadd, row set val, fout row

– Sparse row support routines

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

int sp_get_idx(r,col)

sp_row *r;

int col;

sp_row *sp_get_row(maxlen)

int maxlen;

sp_row *row_xpd(r,newlen)

sp_row *r;

int newlen;

sp_row *sp_row_merge(r1,r2,r_out)

sp_row *r1, *r2, *r_out;

sp_row *_row_mltadd(r1,r2,alpha,j0,r_out)

sp_row *r1, *r2, *r_out;

double alpha;

int j0;

double row_set_val(r,j,val)

sp_row *r;

int j;

double val;

void fout_row(fp,r)

FILE *fp;

sp_row *r;

DESCRIPTION

The routine sp_get_idx() uses binary search to find the location of the element in row r whose column
number is col, which is returned. If the row r contains an entry with column number col, then the index
idx into r->elt[idx] (being the entry in that row) is given by idx = sp_get_idx(r,col). If there is no
element in row r whose column is col, then idx = sp_get_idx(r,col) is negative, but -(idx+2) is the
index where an entry with column number col would be inserted. An internal error is flagged by returning
−1.

The routine sp_get_row() allocates and initialises a sparse row data structure (type sp_row) with
memory for maxlen entries.

The routine row_xpd() reallocates the row r to allocate room for at least newlen entries. If the current
length (r->len) is already at least size newlen, then the row’s allocated memory is approximately double in
size.

The routine sp_row_merge()merges two sparse rows, with values in r1 taking precedence over values in
r2 if they have the same column number.

107

The routine _row_mltadd() sets r_out to be r1+alpha.r2, by a “merging” process. The applies only
to columns with column numbers greater than or equal to j0.

The routine row_set_val() sets the j’th element of row r to be val. Memory allocation and shifting of
entries is done as needed.

The routine fout_row() prints a representation of the sparse row r onto file/stream fp. This represen-
tation is not intended to be read back in.

EXAMPLE

Extracting a sparse matrix entry:

sp_mat *A;

sp_row *r, r1, r2;

row_elt *e;

int i, j, idx, idx1;

......

/* compute A[i][j] */

r = &(A->row[i]);

idx = sp_get_idx(r,j);

if (idx < 0)

/* -(idx+2) is where an entry in

column j would go if there were one */

val = 0.0;

else

val = r->elt[idx].val;

Shuffling a row:

/* build temporary sparse row r1

containing shuffled entries of r */

r1 = sp_get_row(10);

for (idx = 0; idx < r->len; idx++)

{

e = &(r->elt[idx]);

old_col = e->col;

new_col =;

row_set_val(r1,new_col,e->val);

/* r1 will be expanded if necessary */

}

Expanding a temporary row:

r1 = row_xpd(r1,2*r1->len + 1);

Printing out a row as a separate structure for debugging:

printf("Temporary row r1:\n");

fout_row(stdout,r1);

SOURCE FILE: sparse.c

108 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

spCHfactor, spCHsolve, spICHfactor, spCHsymb – Sparse Cholesky factorisation and solve

SYNOPSIS

#include "matrix.h"

#include "sparse2.h"

sp_mat *spCHfactor(A)

sp_mat *A;

VEC *spCHsolve(LLT,b,out)

sp_mat *LLT;

VEC *b, *out;

sp_mat *spICHfactor(A)

sp_mat *A;

sp_mat *spCHsymb(A)

sp_mat *A;

DESCRIPTION

The main routine of these is spCHfactor() which performs a sparse Cholesky factorisation of the matrix
A, which is performed in situ. The resulting system can be solved by spCHsolve() which returns out which
is set to be the solution of A.out = b where LLT is the result of applying spCHfactor() to A. To illustrate,
the following code solves the system A.x = b for x:

/* Initialise A and b */

......

spCHfactor(A);

/* A is now the Cholesky factorisation of original A,

stored in compact form */

spCHsolve(A,b,x);

The other routines provide alternatives to spCHfactor(). The routine spCHfactor() allocates memory
for fill-in as needed. As noted above regarding sp_col_access() etc, this destroys the column access data
structure’s validity, and so results in more time spent searching for elements within rows. This can be avoided
if there is no fill-in.

The routine spICHfactor() performs Cholesky factorisation assuming no fill-in. It does not even
check that fill-in would occur in a correct Cholesky factorisation. This routine is considerably faster than
using spCHfactor(), but if the actual factorisation results in fill-in, the computed “Cholesky” factor used
in spCHsolve() will not give correct solutions.

The routine spCHsymb() performs a “symbolic” factorisation of A. That is, no numerical calculations
are performed. Instead, the A matrix after spCHsymb() has executed, contains allocated all entries where
fill-in would occur. This means that spCHfactor() is effectively equivalent to spCHsymb() followed by
spICHfactor(). The advantage with having two separate routines is that the fill-in can be computed once
for a given pattern of nonzeros, and used for a number of sparse matrices with just that pattern of nonzeros
with spICHfactor(). The code to do this would look something like this:

/* Initialise pattern matrix */

......

109

spCHsymb(pattern);

for (i = 0; i < num_matrices; i++)

{ /* set up A matrix -- same nonzero pattern */

......

sp_zero_mat(pattern);

sp_cp_mat2(A,pattern);

spICHfactor(pattern);

/* set up b vector */

......

spCHsolve(pattern,b,x);

......

}

The spICHfactor() routine can also be used to provide a good pre-conditioner for the pre-conditioned
conjugate gradient routines pccg() and sp_pccg().

BUGS

An E_POSDEF error may be raised by spICHfactor() even if the A matrix is positive definite.

An E_POSDEF error will be raised by spCHsymb() if a diagonal entry is missing.

SEE ALSO

sp_cp_mat2, sp_zero_mat, pccg, sp_pccg

SOURCE FILE: spCHfactor.c

110 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

spLUfactor, spLUsolve, spLUTsolve – sparse LU factorisation (Gaussian elimination)

SYNOPSIS

#include "matrix.h"

#include "sparse2.h"

sp_mat *spLUfactor(A,pivot,alpha)

sp_mat *A;

PERM *pivot;

double alpha;

sp_mat *spILUfactor(A,alpha)

sp_mat *A;

double alpha;

VEC *spLUsolve(LU,pivot,b,x)

sp_mat *LU;

PERM *pivot;

VEC *b, *x;

VEC *spLUTsolve(LU,pivot,b,x)

sp_mat *LU;

PERM *pivot;

VEC *b, *x;

DESCRIPTION

The routine spLUfactor() performs Gaussian elimination with partial pivoting on A with a Markowitz
type modification to avoid excessive fill-in. The alpha parameter determines the trade-off between fill-in
and numerical stability; the row that is swapped with the pivot row is the one with the smallest number
of nonzero entries after the pivot column which has magnitude at least alpha times the largest magnitude
entry in the pivot column. This parameter must therefore be between zero and one inclusive. If it is set to
zero then alpha is effectively set to machine epsilon, MACHEPS.

Note that A is over-written during the factorisation, and that pivot must be set before being passed to
spLUfactor().

The routine spILUfactor() computes a modified incomplete LU factorisation without pivoting. Thus
no fill-in is generated and all pivot (i.e. diagonal entries) are guaranteed to have magnitude ≥ α by adding
to the diagonal entries. Thus in exact arithmetic it computes LU = A + D for some diagonal matrix D.
Since it is not a factorisation of A, it cannot be used directly to solve systems of equations.

The routine LUsolve() solves the system Ax = b. The routine LUTsolve() solves the system ATx = b.
Both of these use the the matrix as factored by spLUfactor(). Neither of these can be used in situ with
x == b.

EXAMPLE

Code for solving the sparse systems of equations Ax = b and AT y = b is given below:

/* Set up A and b */

......

pivot = get_perm(A->m);

x = get_vec(A->n);

111

y = get_vec(A->m);

spLUfactor(A,pivot,0.1);

x = spLUsolve(A,pivot,b,x);

y = spLUTsolve(A,pivot,b,y);

An example of the use of spILUfactor() will be given under the entry for pccg(), cgs() and lsqr().

BUGS

There may be problems with spLUsolve() and spLUTsolve() if A is not square.

The routine spLUfactor() does not implement a full Markowitz strategy.

SEE ALSO

spCHfactor(), MACHEPS, LUfactor()

SOURCE FILE: spLUfctr.c

112 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

spLUfactor, spLUsolve, spLUTsolve – sparse Bunch–Kaufmann–Parlett factorisation

SYNOPSIS

#include "matrix.h"

#include "sparse2.h"

sp_mat *spBKPfactor(A,pivot,blocks,alpha)

sp_mat *A;

PERM *pivot, *blocks;

double alpha

VEC *spBKPsolve(A,pivot,blocks,b,x)

sp_mat *A;

PERM *pivot, *blocks;

VEC *b, *x;

DESCRIPTION

The routine spBKPfactor() performs the symmetric indefinite factorisation methods of Bunch, Kauf-
mann and Parlett as described for BKPfactor(). However, this routine uses a Markowitz type strategy to
determine what pivoting to do; the alpha argument is a lower limit on the relative size of the pivot block.
The pivot which satisfies this lower limit and which has the smallest number of entires in the pivot row(s)
is used. The value of alpha must be greater than zero but less or equal to one. The value of one gives
essentially the pivoting as occurs in BKPfactor() for the same matrix. This approach follows that of . . . in
. . . .

The actual factored matrix is stored in the upper triangular part of A; the strictly lower triangular part
of A is left unchanged.

The routine spBKPsolve() is really just a translation of BKPsolve() to the sparse case, using just the
upper triangular part of A.

EXAMPLE

A simple example of the use of these routines is

sp_mat *A, *BKP;

PERM *pvt, *blks;

VEC *b, *x;

......

/* set up A matrix */

......

pvt = get_perm(A->m);

blks = get_perm(A->m);

BKP = sp_cp_mat(A);

spBKPfactor(BKP,pvt,blks,0.1);

/* set up b vector */

......

x = spBKPsolve(BKP,pvt,blks,b,VNULL);

SEE ALSO

BKPfactor(), BKPsolve(), spLUfactor(), spLUsolve().

SOURCE FILE: spbkp.c

113

NAME

pccg, cgs, lsqr – Conjugate gradient like methods

SYNOPSIS

#include "matrix.h"

#include "sparse2.h"

int cg_numiters;

VEC *pccg(A,A_params,M_inv,M_params,b,tol,x)

MTX_FN A, M_inv;

VEC *b, *x;

double tol;

void *A_params, *M_params;

VEC *sp_pccg(A,LLT,b,eps,x)

sp_mat *A, *LLT;

VEC *b, *x;

double eps;

{ return pccg(sp_mv_mlt,A,spCHsolve,LLT,b,eps,x); }

VEC *cgs(A,A_params,b,r0,tol,x)

MTX_FN A;

VEC *x, *b;

VEC *r0;

double tol;

void *A_params;

VEC *sp_cgs(A,b,r0,tol,x)

sp_mat *A;

VEC *b, *r0, *x;

double tol;

{ return cgs(sp_mv_mlt,A,b,r0,tol,x); }

VEC *lsqr(A,AT,A_params,b,tol,x)

MTX_FN A, AT;

VEC *x, *b;

double tol;

void *A_params;

VEC *sp_lsqr(A,b,tol,x)

sp_mat *A;

VEC *b, *x;

double tol;

{ return lsqr(sp_mv_mlt,sp_vm_mlt,A,b,tol,x); }

int cg_set_maxiter(maxiters)

int maxiters;

DESCRIPTION

In the routines pccg(), cgs() and lsqr(), the type MTX_FN is just given by (in ANSI C)

114 CHAPTER 6. SPARSE MATRIX OPERATIONS

typedef VEC *(*MTX_FN)(void *params, VEC *x, VEC *out);

That is, the matrices are defined implicitly by functions; functions that take a vector x and computes (and
returns) out = A.x. This is the standard form of functional representation used here. The params parameter
is for user-defined data structures, for additional flexibility.

Each of pccg(), cgs() and lsqr() has an associated sp_... counterpart that has a slightly simpler
interface and uses sp_mat data structures.

Also common to the different iterative routines is the routine cg_set_maxiter()which sets the maximum
number of iterations to maxiters (and returns the old value of maxiters). The default limit to the number
of iterations is 10 000. The actual number of iterations used in the last call of pccg(), cgs(), etc is stored
in cg_num_iters.

The routine pccg() is a general pre-conditioned conjugate gradient routine. It returns its estimate for
the solution x of A.x = b to within the tolerance tol. (That is, the 2-norm of the residual is no more
than tol times the 2-norm of b.) The function M_inv represents the inverse of the preconditioner; that
is the computed out vector is the solution of M.out = in. The pointers A_params and M_params are for
user-defined data structures for describing A and M_inv respectively.

The matrices represented must be symmetric and positive definite for this routine to work correctly.
Symmetry cannot be tested for, although pccg will raise a E_POSDEF error if it detects a violation of positive
definiteness.

The routine sp_pccg() provides a simpler interface to pccg() that uses sparse matrices directly. The
matrix A is the sparse matrix for which the solution x of A.x = b is wanted. The sparse matrix LLT contains
the Cholesky factor(s) of M, the pre-conditioner, as produced by spCHfactor() or spICHfactor().

For example, the “Incomplete Cholesky/Conjugate Gradients” method can be implemented simply as

/* Set up A matrix */

......

M = sp_cp_mat(A);

spICHfactor(M);

sp_pccg(A,M,b,1e-6,x);

......

for obtaining answers with a residual of ≤ 10−6‖b‖2.

The routine cgs is an implementation of the “Conjugate Gradient Squared” algorithm of P. Sonneveld,
CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. & Stat. Comp., 10, pp.
36–52, (1989). This can be used for solving square nonsymmetric systems of equations A.x = b. On a
successful return, the residual has 2-norm no more than tol. The vector r0 should be the same size as x
and it is suggested that it should be initialised to be random.

The routine lsqr is an implementation of the LSQR algorithm of Paige and Saunders LSQR: an algorithm

for sparse linear equations and sparse least squares, ACM Trans. Math. Soft., 8, pp. 43–71, (1982). The
matrix A may be nonsquare. The routine must also be passed a functional representation AT of the transpose
of A. The computed x is (close to) a minimiser of ‖Ax− b‖2.

Each of pccg, cgs and lsqr may raise an E_ITER error if there are too many iterations are required to
achieve the desired accuracy.

EXAMPLE

An example of using pre-conditioned conjugate gradients (pccg()) is given above.

Using CGS with ILU (incomplete LU factorisation) preconditioning:

struct LUobj {

115

sp_mat *A, *LU;

PERM *pivot;

};

/* ilu_pc -- returns out <- (LU)^{-1}A.x */

static VEC *ilu_pc(luo, x, out)

LUobj *luo;

VEC *x, *out;

{

static VEC *tmp = VNULL;

tmp = v_resize(tmp,luo->A->m);

sp_mv_mlt(luo->A,x,tmp);

return spLUsolve(luo->LU,luo->pivot,tmp,out);

}

/* cgs_ilu -- uses CGS with ILU preconditioning */

VEC *cgs_ilu(A,b,tol,out)

sp_mat *A;

double tol;

VEC *b, *out;

{

LUobj luo;

sp_mat *LU;

PERM *pivot;

VEC *r0;

tracecatch(

LU = sp_cp_mat(A);

spILUfactor(LU,1e-2);

r0 = get_vec(A->m);

rand_vec(r0);

pivot = get_perm(A->m);

luo.A = A;

luo.LU = LU;

luo.pivot = pivot;

out = cgs(ilu_pc,&luo,b,r0,tol,out);

, "cgs_ilu");

freeperm(pivot);

freevec(r0);

sp_free_mat(LU);

return out;

}

SEE ALSO

spCHfactor(), spICHfactor()

SOURCE FILE: conjgrad.c

116 CHAPTER 6. SPARSE MATRIX OPERATIONS

NAME

lanczos, lanczos2 – Lanczos eigenvalue routines

SYNOPSIS

#include "matrix.h"

#include "sparse2.h"

void lanczos(A_fn,A_params,m,x0,a,b,beta2,Q)

MTX_FN A_fn;

void *A_params;

int m;

VEC *x0, *a, *b;

double *beta2;

MAT *Q;

void sp_lanczos(A,m,x0,a,b,beta2,Q)

sp_mat *A;

int m;

VEC *x0, *a, *b;

double *beta2;

MAT *Q;

{ lanczos(sp_mv_mlt,A,m,x0,a,b,beta2,Q); }

VEC *lanczos2(A_fn,A_params,m,x0,evals,err_est)

VEC *(*A_fn)();

void *A_params;

int m;

VEC *x0;

VEC *evals;

VEC *err_est;

VEC *sp_lanczos2(A,m,x0,evals,err_est)

sp_mat *A;

int m;

VEC *x0;

VEC *evals;

VEC *err_est;

{ return lanczos2(sp_mv_mlt,A,m,x0,evals,err_est); }

DESCRIPTION

The Lanczos algorithm is a method for finding eigenvalues of large symmetric matrices.

The routine lanczos() is a basic “raw” Lanczos routine that sets vectors a and b to be the entries of a
tridiagonal matrix

T =

a0 b0

b0 a1 b1

b1 a2
. . .

. . .
. . .

which is QTAQ, Q a matrix of (near-)orthonormal vectors generated by the Lanczos algorithm. This Q

matrix will be accumulated if Q is not NULL; otherwise Q is ignored. The m parameter is the limit on the

117

number of iterations of the basic Lanczos algorithm, although it may terminate sooner if it detects an exact
zero in one of the b’s. This early termination is considered very unlikely. Also set by lanczos() is the beta2
parameter; this is the value of bm, were the algorithm to continue. This parameter is important for the error
estimates developed by lanczos2().

Note that A is represented by a function as for the conjugate gradient routines. The routine sp_lanczos()
provides an alternative that directly uses a sparse matrix data structure.

A more complete code for finding the eigenvalues is:

sp_mat *A;

VEC *a, *b, *x0;

double dummy;

/* Set up A matrix */

......

x0 = get_vec(A->m);

rand_vec(x0);

a = get_vec(A->m);

b = get_vec(A->m-1);

sp_lanczos(A,num_iter,x0,a,b,&dummy,MNULL)

trieig(a,b,MNULL);

/* Eigenvalues now stored in a */

......

Some possible problems with a standard Lanczos method should be noted. The basic idea of the Lanczos
method is once the vectors q1, q2, . . . , qj have been computed, qj+1 is computed by first computing Aqj
and then orthogonalising this vector against q1, q2, . . . , qj−1 and qj . Since A is symmetric, it can be shown
that Aqj is orthogonal (in exact arithmetic) to all but qj−1 and qj . Orthogonalising Aqj against these two
vectors and then normalising gives qj+1.

However, because of inexact arithmetic the q’s are not in general orthogonal. Things are worse than this.
Because of the three term recurrence, there is no guarantee that qi and qj are even nearly orthogonal if if
i and j are far apart. This shows up in the results of the Lanczos algorithm most obviously as eigenvalues
appearing with spurious multiplicities. There are also occasional spurious interior eigenvalues computed by
the Lanczos algorithm due to this loss of orthogonality.

Loss of orthogonality can be avoided — by storing all the generated q’s and orthogonalising Aqj against
all previous q’s. This is done in the Arnoldi algorithm.

If you only want extreme eigenvalues, then there is no need for this reorthogonalisation. A more complete
discussion of reorthogonalisation and alternative strategies, see Golub and Van Loan’s Matrix Computations,
2nd Ed’n, pp. 484–489.

If you wish to compute just eigenvalues without reorthogonalisation there is the routine lanczos2(). It
uses the methods of Cullum and Willoughby, as given in Sparse Matrix Proc., pp. 220–255 (1978), Ed. I.S.
Duff and G.W. Stewart, SIAM Publications. It returns a sorted vector of the eigenvalues evals together
with the error estimates err_est. Denote the i’th eigenvalue by λi and the i’th error estimate by ei. Then
there is an eigenvalue of A in the range [λi−ei, λi+ei]. If one of these intervals completely contains another,
then the latter eigenvalue may be ignored.

For computing eigenvectors, the following code can be used:

/* Setup A matrix */

......

Q_lan = get_mat(x0->dim,num_steps);

lanczos(mlt_fn,num_steps,x0,a,b,&tmp,Q_lan);

Q_eig = get_mat(num_steps,num_steps);

118 CHAPTER 6. SPARSE MATRIX OPERATIONS

id_mat(Q_eig);

/* continued over... */

cp_vec(a,e_vals);

trieig(e_vals,b,Q_eig);

/* select which eigenvalue of T to use */

i = /* by looking at e_vals array */

q = get_col(Q_eig,i,VNULL);

e_vec = mv_mlt(Q_lan,q,VNULL);

BUGS

As noted above, lanczos() does not return eigenvalues, only the a and b vectors.

No re-orthogonalisation is done by either lanczos() or lanczos2().

SEE ALSO

trieig(), symmeig()

SOURCE FILE: lanczos.c

119

NAME

arnoldi, sp arnoldi – Arnoldi routines

SYNOPSIS

#include "matrix.h"

#include "sparse.h"

#include "sparse2.h"

MAT *arnoldi(A,A_param,x0,k,h_rem,Q,H)

VEC *(*A)(); /* functional representation of A */

void *A_param;

VEC *x0;

int k;

double *h_rem;

MAT *Q, *H;

MAT *sp_arnoldi(A,x0,k,h_rem,Q,H)

sp_mat *A;

VEC *x0;

int k;

double *h_rem;

MAT *Q, *H;

DESCRIPTION

Both of these routines compute an k×k matrix H = QTAQ whose eigenvalues should approximate those
of A; in exact arithmetic the columns of Q would be orthogonal. This matrix H is then returned. The matrix
H represents the action of A on the Krylov subspace spanned by {x0, Ax0, . . . , A

k−1x0}, and the columns
of the Q matrix form a basis for this subspace. Details can be found in, for example, Matrix Computations,
§9.3, pp. 501–502, 2nd edition, (1989).

The eigenvalues of A (represented by a sp_mat data structure can be approximately computed by

H = get_mat(k,k);

S = get_mat(k,k);

Q = get_mat(A->m,k);

Q2 = get_mat(k,k);

evals_re = get_vec(k);

evals_im = get_vec(k);

......

sp_arnoldi(A,x0,k,&h_val,Q,H);

S = cp_mat(H,S);

schur(S,Q2);

schur_evals(S,evals_re,evals_im);

To go on to compute approximate eigenvectors:

X2_re = get_mat(k,k)

X2_im = get_mat(k,k);

schur_vecs(S,Q2,X2_re,X2_im);

X_re = mv_mlt(Q,X2_re,MNULL);

X_im = mv_mlt(Q,X2_im,MNULL);

120 CHAPTER 6. SPARSE MATRIX OPERATIONS

Note that both the H and Q matrices must be created before calling arnoldi() or sp_arnoldi(). The
h_rem parameter is the value hk+1,k would have if the H matrix was (k+1)× (k+1). If a complete invariant
subspace had been found, then (in exact arithmetic) this quantity would be zero.

SEE ALSO

schur(), schur_evals() and schur_vecs()

BUGS

Neither routine uses re-orthogonalisation techniques.

SOURCE FILE: arnoldi.c

Contents

6 Sparse Matrix Operations 93

121

