Meschach

Matrix Computations in C

(© 1986-1992 David E. Stewart

Unix is a trademark of AT&T
MATLAB is a trademark of The MathWorks Inc.
MATCALC is a trademark of the University of New South Wales
MS-DOS and Quick C are trademarks of MicroSoft Corp.
SUN and SPARC are trademarks of Sun Microsystems Inc.
Pyramid is a trademark of Pyramid Computers
IBM RT, IBM RS/6000 and IBM PC are trademarks of IBM
8086 and i860 are trademarks of Intel
68000 is a trademark of Motorola
Weitek is a trademark of Weitek Inc.

Meschach matrix library source code (©) David E. Stewart, 1986-1992

This documentation is currently under consideration for publication, and therefore IT IS
NOT FOR REDISTRIBUTION.

Meschach IS PROVIDED “AS IS”, WITHOUT ANY EXPRESS OR IM-
PLIED WARRANTY. IN PARTICULAR, THE AUTHOR DOES NOT MAKE
ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING

THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR
ANY PARTICULAR PURPOSE.

ii

Introduction

Most of numerical analysis relies on algorithms for performing caclulations on matrices and vectors. The
operations most needed are ones which solve systems of linear equations, solve least squares problems, and
eigenvalue and eigenvector calculations. These operations form the basis of most algorithms for solving
systems of nonlinear equations, numerically computing the maximum or minimum of a function, or solving
differential equations.

The Meschach library contains routines to address all of the basic operations for dealing with matrices
and vectors, and a number of other issues as well. I do not claim that it contains every useful algorithm in
numerical linear algebra, but it does provide a basis on which to build more advanced algorithms. The library
is intended for people who know something of the ‘C’ programming language, something of how to solve the
numerical problem they are faced with (which involves matrices and/or vectors) but don’t want to have the
hassle of building all the necessary operations from the ground up. I hope that researchers, mathematicians,
engineers and programmers will find this library makes the task of developing and producing code for their
numerical problems easier, and easier to maintain than would otherwise be possible.

To this end the source code is available to be perused, used and passed on without cost, while ensuring
that the quality of the software is not compromised. The software is copyrighted; however, the copyright
agreement follows in the footsteps of the Free Software Foundation in preventing abuse that occurs with
totally “public domain” software.

This is not the first or only library of numerical routines in C. However, there are still a number of
niches which have not been filled. Some of the currently available libraries are essentially translations of
Fortran routines into C. Those that attempt to make use of C’s features usually address a relatively small
class of problems. There is a commercial package of C++ routines (and classes) for performing matrix
computations, and NAG and IMSL are producing C versions of their libraries, but none of these is “public
domain” in any sense. The Meschach library makes extensive use of C’s special features (pointers, memory
allocation/deallocation, structures/records, low level operations) to ease use and ensure good performance.
In addition, Meschach addresses the need for both dense and sparse matrix operations within a single
framework.

There is another issue which needs to be addressed by a matrix library like this. At one end, libraries
that are essentially translations from Fortran will make little use of memory allocation. At the other end,
interactive matrix “calculators” such as MATLAB and MATCALC use memory allocation and garbage
collection as a matter of course and have to interpret your “program”. This latter approach is very flexible,
but resource hungry. These matrix calculator programs were not designed to deal with large problems.

This matrix library is intended to provide a “middle ground” between efficient but inflexible Fortran-
style programs, and flexible but resource hungry calculator/interpreter programs. When and how memory
is allocated in Meschach can be controlled by using the allocation/deallocation and resizing routines; result
matrices and vectors can be created dynamically when needed, or allocated once, and then used as a static
array. Unnecessary memory allocation is avoided where necessary. This means that prototyping can often
be done on MATLAB or MATCALC, and final code can be written that is efficient and can be incorporated
into other C programs and routines without having to re-write all the basic routines from scratch.

Finally, I would like to thank all those at the University of Queensland Mathematics Department, at
Opcom, and at the Australian National University for their interest in and comments on this matrix library.
In particular, I would like to thank Martin Sharry, Michael Forbes, Phil Kilby, John Holt, Phil Pollett and
Tony Watts at the University of Queensland, and Mike Osborne at the Australian National University and
Karen George from the University of Canberra.

David E. Stewart, Canberra, Australia, 1992

iii

Meschach

Matrix Computations in C

Tutorial
1.1 The data structures and some basic operations
1.2 How to manage Memory« . v v v v vt vt e e e e e e e e e e e
1.2.1 Nodeallocation e
1.2.2 Allocate and deallocate
1.2.3 Resizeondemand
1.3 A routine for a 4th order Runge-Kutta method
1.4 A least squares problemo
1.5 A sparse matrix example
1.6 Howdo I7 . . .
1.6.1solve a system of linear equations oL
1.6.2solve aleast-squares problem Lo oo
1.6.3 find all the eigenvalues (and eigenvectors) of a general matrix
1.6.4solve a large, sparse, positive definite system of equations

Data structures

2.1 Vectorso e

2.1.1 Integer vectors e
2.2 Matrices e e e
2.3 Permutations L
2.4 Basic sparse operations and structures o
2.5 The sparse data structures L L
2.6 Sparse matrix factorisation Lo
2.7 Tterative techmniques L
2.8 Other data structures

Numerical Linear Algebra

3.1 What numerical linear algebra is about o oL
3.2 Vector and matrix norms L Lo e e e e e
3.3 “Ill conditioning” or intrinsically bad problems
3.4 Least squares and pseudo-inverses Lo o e
3.4.1 Singular Value Decompositions oL
3.4.2 Pseudo-inverseso e
3.4.3 QR factorisations and least squareso oL
3.5 Eigenvalues and eigenvectors oL
3.6 Sparse matrix operationso e e

Basic Dense Matrix Operations
Dense Matrix Factorisation Operations

Sparse Matrix Operations

iv

GO B A e

10
12
14
14
14
14
15

16
16
17
17
18
18
19
21
22
23

24
24
25
26
26
27
27
28
29
31

32

70

93

7 Installation and copyright 120

7.1 Imstallation L 120
7.1.1 makefile e 121
7.1.2 machine.h 121
7.1.3 machine.c L 122

7.2 Copyright e 123

8 Designing numerical libraries in C 125

8.1 Numerical programming in C L 125
8.1.1 On efficient compilers 125
8.1.2 Strategies for using C 126
8.1.3 Non-C programmers start here! Lo o0 o 127

8.2 The data structures L e 129
8.2.1 Pointers to struct’so 130
8.2.2 Really basic operations L 130
8.2.3 Output e 132
8.2.4 Copying« o e 133
8.25 Imput 133
8.2.6 Resizing 135

8.3 How to implement routines L L 135
8.3.1 Design for debugging L 135
8.3.2 Workspace 136
8.3.3 Where to put the output 138

8.4 User-defined functions L L 139

8.5 Building the library e 141
8.5.1 Numerical aspects 141

8.6 Debugging L 142
8.6.1 Memory allocation bugs L L 142
8.6.2 Ifallelsefails e 143

8.7 Suggestions for enthusiasts oL oo 143

8.8 Pride and Prejudice 143
8.8.1 Why don’t I use float instead of double?, 143
8.8.2 What about Fortran 907 144
8.8.3 Why should people writing numerical code care about good software? 144

