
The PrintOMatic Xtra
Version 1.5.3

The PrintOMatic Xtra is the premier printing tool for Director. PrintOMatic adds a full set of page-
layout, text and graphics printing features to Director 5.0 projects on Macintosh and Windows.

PrintOMatic includes commands for accurately specifying the position of any text or graphic
element on the page. PrintOMatic documents can contain graphic files from disk, styled text,
graphic primitives, cast member bitmaps, and snapshots of the Director stage.

Product Features

- Generates multi-page layouts with full control over the placement of text and graphic
elements on the page.

- Print styled text: any combination of available fonts, sizes, or styles
- Print text, PICT, BMP or EPS files from disk, any portion of the Director stage, or Director

cast members.
- Print object-oriented graphic primitives: lines, boxes, ovals and rounded rectangles.
- "Master Page" can contain any combination of text or graphic elements
- Automatic page numbering
- Customizable and hideable Print Progress dialog
- Paper-saving Print Preview feature
- Supports color and landscape-mode printing
- Supports all Macintosh and Windows compatible printers
- Fully compatible with MacOS™, Windows™ 3.1 and Windows™ 95

Topics in this document:

PrintOMatic Software Updates
Purchasing PrintOMatic
Non-profit Licensing

Using PrintOMatic
 Creating an Instance of the PrintOMatic Xtra
 Adding Pages
 PrintOMatic Coordinate System
 Creating Frames
 Appending to Frames
 Drawing Graphic Elements
 Drawing the Contents of the Stage
 Printing and Print Preview
 Other Routines

PrintOMatic Message List

Creating, Destroying and Resetting Documents
Page Setup and Job Setup Dialogs
Getting and Setting Document Attributes
Adding Pages and Setting the Current Page
Setting Text and Graphic Attributes
Drawing Graphic Elements
Creating Frames and Appending Their Contents
Customizing the Print Progress Window
Printing and Print Preview

Miscellaneous Routines
Macintosh-Only Routines

Release Notes

PrintOMatic Software Updates
PrintOMatic is updated and enhanced frequently. The latest version of PrintOMatic is always
available, along with a selection of XObjects, XCMDs and other software on Electronic Ink's Web
Site:

http://www.rahul.net/peterv/products.html

Before reporting a bug in the software, please make sure the version you are using is up to date.
Users with dedicated FTP clients can access our FTP site directly:

ftp://ftp.rahul.net/pub/peterv/

Registered users of PrintOMatic will get announcements via e-mail when new major versions
are released.

Purchasing PrintOMatic
The PrintOMatic Xtra is published and distributed worldwide by g/matter, inc. The registered
edition of PrintOMatic is shipped on a cross-platform CD-ROM disc, along with demonstrations,
sample code, and other tidbits. A cross-platform copy of PrintOMatic, with a royalty-free, unlimited
use license to use PrintOMatic in your multimedia productions costs $299.00 US.

The PrintOMatic demonstration movie prints out an order form for the PrintOMatic Xtra, as well as
other g/matter products. To order your copy of PrintOMatic, simply fill out this form and FAX, mail,
or e-mail it with payment information to:

g/matter, inc.
300 Brannan Street, Suite 210
San Francisco, CA 94107

Tel: (800) 933-6223 or (415) 243-0394
FAX: (415) 243-0396
Email: sales@gmatter.com
http://www.gmatter.com/

Non-Profit Licensing

Products created by or for bona fide philanthropic non-profit organizations can get a copy of
PrintOMatic free of charge. In lieu of a licensing agreement, non-profit organizations must send a
"receipt of donation" for the commercial value of the product. Please contact g/matter for more
information about non-profit licensing.

Using PrintOMatic
The PrintOMatic Xtra can be used in two ways. The first and simplest way to use PrintOMatic is
by calling the global print command, passing the Director object(s) you would like to print as
parameters:

print member "illustration" of castLib 1
print "Some example text for printing"
print sprite 1, sprite 5
print castLib "documentation"

If all you have to do is print something out quickly and easily, you can stop reading now. That's all
there is to it.

Creating an Instance of the PrintOMatic Xtra

The second way of using PrintOMatic, which is much more powerful and customizable than
simply using the global print command, is to create an instance of the Xtra using the new
command:

set doc = new(xtra "PrintOMatic")
if not objectP(doc) then exit

An instance of the PrintOMatic Xtra is called a "document object ", also simply referred to as a
"document". Be sure to check the validity of the document object using the objectP() function
after creating it. Once you have created a document, you can change its attributes, such as the
document's name, margins and landscape orientation:

setDocumentName doc, "My Document"
setMargins doc, Rect(36,36,36,36)
setLandscapeMode doc, TRUE

Master Page

Page 0 (zero) of a document is the document's "master page". The contents of the master page
are drawn on every body page of the document, beneath the body page's contents. When you
create a new document, the master page is the default page until you create a new page (see
Adding Pages, below.) All items added before the first newPage command will appear on the
document's master page.

A common item to place on the master page is a page number. Use the setPageNumSymbol
command in combination with a text item on the master page to place a page number on every
page of your document:

-- place a page number at the bottom right of the page
set pgNumSym = numToChar(166) -- paragraph symbol on mac
setPageNumSymbol doc, pgNumSym
setTextJust doc, "right"
drawText doc, Point(getPageWidth(doc),getPageHeight(doc)),

"page"&&pgNumSym

Adding Pages

For a PrintOMatic document to be printable, it must contain at least one page. Add new pages to

a document using the newPage command. A page added using newPage becomes the "current
page", where all new graphic elements, "frames", and other items are placed. To make a
previously added page (including the master page) the "current page", use the setPage
command.

newPage doc -- add a new page
setPage doc, 0 -- return to the master page

PrintOMatic Coordinate System

PrintOMatic uses the same basic coordinate system as the Director stage, which places (0,0) at
the top-left corner. Coordinate values increase towards the bottom and right sides of the page. All
drawing coordinates are specified in points, with 72 points to the inch. All drawing coordinates for
objects in PrintOMatic are relative to the page margins, which are set using the setMargins
command. The drawing area defined by the margins applies to the entire document.

Calling pageSetup or setLandscapeMode may change the size of the page, thereby changing
the coordinate system, as well as the values returned by getPageWidth and getPageHeight.
If you store these values in Lingo variables, be sure to reset them after calling pageSetup or
setLandscapeMode.

Creating Frames

The most common method of placing text or graphics on a PrintOMatic page is to create one or
more rectangular "frames" on the page, then append contents to these frames. The contents of
multiple "linked" frames will flow from one frame to the next.

For example, to create a two-column layout, create two frames side by side on the page, and link
them together so the text and graphics flow from one frame to the next:

-- create a new document
set doc = new(xtra "PrintOMatic")
-- get width and height
set w = getPageWidth(doc)
set h = getPageHeight(doc)
-- create a new page
newPage doc
-- create the first column
newFrame doc, Rect(0,0,(w/2)-18,h), FALSE
-- create the second column, linked to the first
newFrame doc, Rect((w/2)+18,0,w,h), TRUE

The last parameter in the newFrame command specifies whether or not the new frame is linked
to the previous frame.

Appending to Frames

Once you have created one or more "frames" to append to, you can add items such as sprites
and cast members to the document using the append and appendFile commands:

append doc, member "title" of castLib 1, TRUE
append doc, sprite 1, TRUE
appendFile doc, the pathName&"myFile.eps", FALSE

The last parameter of append and appendFile calls specifies whether pages are automatically

added to the document as content is inserted. Please see the append command for a detailed
description of this "autoAppend" feature of PrintOMatic.

Text field cast members will be printed with all their fonts and styles intact. Rich text cast
members' bitmap images will be printed. However, text strings have no inherent style data
associated with them. You can use setTextFont, setTextSize and setTextStyle to set the
attributes of text strings that you append.

setTextFont doc, "Helvetica"
setTextSize doc, 10
setTextStyle doc, "normal"
append doc, copyrightInfo

Drawing Graphic Elements

A second way of placing items on a PrintOMatic page is to explicitly position them as graphic
elements in the exact location you want them to appear. You can place pictures, single lines of
text, rectangles, rounded rectangles, lines and ovals on the page in this manner. Many of the
graphic element drawing routines take a Lingo Rect as the second parameter, to specify their
position and size:

drawRect doc, Rect(0,0,50,50), TRUE
drawRoundRect doc, Rect(0,0,50,50), 25, FALSE
drawOval doc, Rect(100,100,500,500), TRUE

The drawLine routine takes a starting Point and ending Point as its parameters:

drawLine doc, Point(0,0), Point(500,0)

The drawPicture routine can position a bitmapped image on the page using a Point or a
Rect to specify size and location. If you use a Point, the image will be positioned at its normal
size (72 dpi for cast members) with its top left corner at the specified point:

drawPicture doc, member "illustration", Point(0,100)

If you specify the image location using a Rect, the image will be scaled to fit at the largest
possible size within the Rect without distorting the image. Unless the provided Rect has the
exact same proportions as the image, the entire Rect will not be filled with the image data:

drawPicture doc, member "illustration", Rect(0,0,500,300)

Drawing the Contents of the Stage

The contents of the Director stage can be placed on a PrintOMatic page using the
drawStagePicture routine. The size and positioning rules for drawStagePicture are the
same as for drawPicture: if a Point is specified, the top left corner of the Stage picture will be
placed there; if a Rect is specified, the image will be scaled to fit within the Rect without
distortion.

drawStagePicture doc, Point(0,0)
drawStagePicture doc, Rect(0,0,the width of the stage, the height of

the stage)

The drawStagePicture routine can print a cropped portion of the stage by specifying the area
you want to capture after specifying the image's position on the page:

drawStagePicture doc, Rect(0,0,100,100), Rect(50,50,150,150)

Finally, you can capture the stage picture from Director's off-screen buffer by adding a TRUE to
the end of any of the above specified forms of drawStagePicture. Capturing from the
offscreen buffer will prevent the contents of any windows in front of the Stage from being captured
along with the stage image.

drawStagePicture doc, Point(0,0), Rect(50,50,100,100), TRUE

Printing and Print Preview

When you have appended all the elements you want to print to the document, show the user the
job setup dialog, and print the document if doJobSetup returns TRUE. If you don't want the user
to see the job setup dialog, omit the call to doJobSetup.

if doJobSetup(doc) then print doc

Finally, dispose of the document by setting its value equal to zero. This will release all the
memory taken up by the PrintOMatic document.

set doc = 0

Other Routines

PrintOMatic supports a number of other routines that are not summarized in the sections above.
Please consult the full message list for a complete listing of all the commands supported by the
PrintOMatic Xtra.

PrintOMatic Message List
This is the full list of commands supported by the PrintOMatic Xtra:

-- CREATE/DESTROY/RESET A DOCUMENT
new object
forget object
reset object
--
-- DOCUMENT/JOB SETUP
doPageSetup object
doJobSetup object
--
-- DOCUMENT ATTRIBUTES
setDocumentName object, string name
setLandscapeMode object, boolean landscape
setMargins object, rect margins
setPrintableMargins object
getPageWidth object
getPageHeight object
getPaperWidth object
getPaperHeight object
--
-- CREATE/SET PAGES
newPage object -- returns page number
setPage object, int pageNumber
--
-- TEXT/GRAPHIC ATTRIBUTES
setTextFont object, string fontName
setTextSize object, int pointSize
setTextStyle object, string styleCodes
setTextJust object, string justification
setTextLineSpacing object, int spacing
setColor object, int red, int green, int blue
setGray object, int graylevel
setLineWeight object, int pointSize
--
-- GRAPHIC ELEMENTS
drawRect object, rect bounds, boolean filled
drawLine object, point start, point end
drawRoundRect object, rect bounds, int cornerRadius, boolean filled
drawOval object, rect bounds, boolean filled
drawText object, string text, point location
drawPicture object, *
drawStagePicture object, *
--
-- CREATE FRAMES AND APPEND CONTENTS
newFrame object, rect bounds, boolean linkedToPrevious
append object, * any
appendFile object, * fileName
getInsertionPoint object
--
-- CUSTOMIZE THE PROGRESS BOX
setProgressMsg object, string message
setProgressPict object, * pictCastMember

setProgressLoc object, point location
--
-- PRINT OR PREVIEW
* printPreview *
* print *
--
-- MISCELLANEOUS
hideMessages object, boolean hide
setPageNumSymbol object, string symbol
+ register object, string serialNumber
+ setLowMemLimits object, globalHeap, localHeap
--
-- MACINTOSH-ONLY ROUTINES
* printToPictFiles *
draw1bitStagePicture object, *
loadPageSetup object, string fileName, int resourceID
savePageSetup object, string fileName, string fileType, string

fileCreator, int resourceID

Creating, Destroying and Resetting Documents
The following commands are used to create and reset PrintOMatic documents:

new creates a new document
forget never call this directly
reset resets a document to defaults

To destroy a document, never call the forget method of an Xtra explicitly. Instead, use the
following syntax to explicitly get rid of a PrintOMatic document when you are done using it:

set doc = 0

new

Syntax: set doc = new(xtra "PrintOMatic")

The new command is used to create a new instance of the PrintOMatic Xtra. The newly created
instance is called a document object, since it represents a printable "document": a collection of
items that are printed together in a single print job by PrintOMatic.

Once the document has been created, its settings can be modified, items can be appended to the
document, and it can be printed or displayed in a print preview window.

Important Note:

new will return an error code instead of a document object if there is no currently selected printer,
or a printing error occurs. Always check the result of new with the objectP() function to make
sure you have a valid Xtra instance before continuing!

Example:

The following code example creates a new document, sets the page orientation to landscape
mode, creates a new page and "frame" on the page, appends an image with a caption to the
document, and prints the document:

set doc = new(xtra "PrintOMatic")
if not objectP(doc) then exit
setLandscapeMode doc, TRUE
newPage doc
newFrame doc, Rect(0,0,getPageWidth(doc),getPageHeight(doc))
append doc, member "picture", TRUE
append doc, RETURN & "Image printed by the PrintOMatic Xtra.", TRUE
if doJobSetup (doc) = TRUE then print doc
set doc = 0

forget

You should never call the forget command directly for an instance of a Lingo Xtra. Director
automatically calls forget when an instance of an Xtra needs to be disposed; calling forget
yourself can lead to memory leaks or crashing.

 Use the following syntax to explicitly get rid of a PrintOMatic document when you are done using
it:

set doc = 0

Where doc is the PrintOMatic document you want to dispose of. Explicitly disposing of
documents is optional, since Director will automatically get rid of the object when it's no longer
referenced anyway.

reset

Syntax: reset document

The reset command is used to reset an instance of a PrintOMatic document. All the contents of
the document and any existing pages are deleted. The page settings, such as margins and page
orientation, are reset to their default values.

Page Setup and Job Setup Dialogs
The following commands are used to display the Page Setup and the print Job Setup dialog
boxes for the user:

doPageSetup Presents the Page Setup dialog
doJobSetup Presents the Print Job Setup dialog

Calling these routines is optional; if they are not called, the document or print job will be set up
with default values.

doPageSetup

Syntax: doPageSetup(document)

Returns: TRUE if the user clicks "OK" in the page setup dialog
FALSE if the user clicks "Cancel" in the page setup dialog

The doPageSetup function displays the Page Setup dialog for a document. This function must
be called on an empty document, before any elements are added to it. doPageSetup returns
TRUE if the user clicks the "OK" button in the dialog box, or FALSE if the user clicks "Cancel".

doJobSetup

Syntax: doJobSetup(document)

Returns: TRUE if the user clicks "Print" in the job setup dialog
FALSE if the user clicks "Cancel" in the job setup dialog

The doJobSetup function displays the job setup dialog for a PrintOMatic document. This
function should be called right before printing. If doJobSetup returns TRUE, the user clicked the
"Print" button, and printing should proceed. If doJobSetup returns FALSE, the user clicked
"Cancel", and you should not print the document. This function cannot be called on an empty
document.

Example:

This is the recommended way of calling doJobSetup right before printing a PrintOMatic
document:

if doJobSetup (doc) = TRUE then print doc

Getting and Setting Document Attributes
The following commands are used get and set the attributes of a PrintOMatic document:

setDocumentName Sets the name of the document
setLandscapeMode Sets landscape or portrait orientation
setMargins Sets the margins of the document
setPrintableMargins Sets the document margins to the maximum area the printer can

print
getPageWidth Returns the width between left and right margins
getPageHeight Returns the height between the top and bottom margins
getPaperWidth Returns the width of the physical paper
getPaperHeight Returns the height of the physical paper

Routines that alter the size or orientation of a document, such as setLandscapeMode,
setMargins, and setPrintableMargins, can only be called when your document is empty.

setDocumentName

Syntax: setDocumentName document, name

This command sets the name of a PrintOMatic document, which is displayed in the print progress
dialog as the document prints. If background printing is enabled, this document name is also
displayed by PrintMonitor (Mac) or Print Manager (Windows) as your document prints in the
background.

setLandscapeMode

Syntax: setLandscapeMode document, trueOrFalse

This command switches the page orientation of a PrintOMatic document between landscape and
portrait orientation. Since this method changes the whole coordinate system of the document,
your document must be empty when you call setLandscapeMode. You can call reset on your
document beforehand just to make sure.

In Windows, this method works in a very straightforward manner: call it, and the landscape mode
changes.

Unfortunately, it's an entirely different story on the Macintosh. The only safe way to change the
page orientation on the Mac is by showing the Page Setup dialog and letting the user manually
select landscape mode. While showing a Page Setup dialog may be fine for normal software
applications such as Word, it's often unacceptable in the context of a multimedia production.

To get around this, PrintOMatic for the Macintosh relies on a "printer database" to store default
landscape and portrait page setups for the most common Macintosh printers. This printer
database consists of a set of 'PHDL' resources located in the same file as the PrintOMatic Xtra.
This database is used by the setLandscapeMode method in the Macintosh version of
PrintOMatic.

 If the currently selected printer is not found in the printer database, the user is asked to
MANUALLY create default Page Setups for landscape and portrait modes, and those settings are
saved and added to the database. This is done through a series of prompt dialogs presented
automatically by PrintOMatic when you call setLandscapeMode for an unknown printer.

These user-configured "custom entries" to the printer database are stored in a file called
"PrintOMatic Preferences" in the Preferences folder on the user's hard disk. Subsequent calls to
setLandscapeMode on the same computer, with the same printer selected, won't present any
annoying dialogs.

What the presence of this "printer database" means is that when you change the landscape mode
on the Macintosh, all the other Page Setup settings such as scaling, font substitution, etc., will
also revert to those found in the printer database. This is important if the user has changed any of
these settings (during a call to doPageSetup) before setLandscapeMode is called.

setMargins

Syntax: setMargins document, marginRect

This command sets the margins of a PrintOMatic document. The marginRect parameter is in the
form of a Lingo Rect. Values are specified in the format Rect(left, top, right, bottom). The
measurements are in points (72 points to the inch). Since this method changes the whole
coordinate system of the document, your document must be empty when you call setMargins.
Call reset on your document beforehand just to make sure.

Example:

The following example creates a new document and sets the margins to two inches (144 points)
on the left, and one inch (72 points) on all other sides.

set doc = new(xtra "PrintOMatic")
if not objectP(doc) then exit
setMargins doc, Rect(144,72,72,72)

setPrintableMargins

Syntax: setPrintableMargins document

This command sets the margins of a PrintOMatic document equal to the maximum printable area
supported by the current print settings. Since this command changes the whole coordinate
system of the document, your document must be empty when you call setMargins. Call reset
on your document beforehand just to make sure.

getPageWidth

Syntax: getPageWidth(document)

Returns: the distance between the left and right margins, in points

This function returns the width of a document's "live area", the distance between the left and right
margins of the document.

Example:

It is often convenient to retrieve the dimensions of the live area of a document and store them in
Lingo variables for use in subsequent calculations. The following example creates two linked
frames on the page, for formatting printed output into two columns.

-- create two new frames on the page
-- with 1/2 inch (36 points) in between
set w = getPageWidth(doc)
set h = getPageHeight(doc)
newFrame doc, Rect(0,0,(w/2)-18,h), TRUE
newFrame doc, Rect(0,0,(w/2)+18,h), TRUE

getPageHeight

Syntax: getPageHeight(document)

Returns: the distance between the top and bottom margins, in points

This function returns the height of a document's "live area", the distance between the top and
bottom margins of the document.

Example:

It is often convenient to retrieve the dimensions of the live area of a document and store them in
Lingo variables for use in subsequent calculations. The following example creates two linked
frames on the page, for formatting printed output into two columns.

-- create two new frames on the page
-- with 1/2 inch (36 points) in between
set w = getPageWidth(doc)
set h = getPageHeight(doc)
newFrame doc, Rect(0,0,(w/2)-18,h), TRUE
newFrame doc, Rect(0,0,(w/2)+18,h), TRUE

getPaperWidth

Syntax: getPaperWidth(document)

Returns: the width of the physical paper, in points

This function returns the width of the physical piece of paper that the current document is
configured to print on.

getPaperHeight

Syntax: getPaperHeight(document)

Returns: the height of the physical paper, in points

This function returns the height of the physical piece of paper that the current document is
configured to print on.

Adding Pages and Setting the Current Page
The following routines are used to add new pages to your document, or set the "current" page,
where subsequent text and graphic elements will be placed:

newPage object Create a new page
setPage object Set the "current" page

About the Master Page

Page 0 of each document is the document's master page. The master page is the default
"current" page of a newly created document, or one that has been cleared by a call to reset. Any
text or graphic element added to the master page will be drawn on every page of the document,
beneath the contents of each individual page. Calling setPage with a value of 0 will set the
master page as the current page of the document.

newPage

Syntax: newPage(document)

Returns: the page number of the newly created page

The newPage function adds a page to the PrintOMatic document and makes it the current page.
It returns the page number of the newly created page.

NOTE: If you want your document to print, it must have at least one page. A common mistake is
inadvertently add a number of elements to the master page — instead of page 1 — of a
document by forgetting to call newPage beforehand. The resulting document will not print
because it contains no body pages.

setPage

Syntax: setPage document, pageNumber

The setPage command sets the "current" page of the document, where subsequent text and
graphic elements added to the document will be placed. If the pageNumber value is greater than
the number of pages currently in the document, new pages will be added, and the requested
page will still become the "current" page.

Calling setPage with a value of 0 will set the master page to be the current page. Any text or
graphic element added to the master page will be drawn on every page of the document, beneath
the contents of each individual page.

Setting Text and Graphic Attributes
The following routines are used to set the default text and graphic attributes of a document.
These attributes determine the color, font, etc. of subsequently added document elements:

setTextFont Sets the default text font for non-styled text data
setTextSize Sets the default text size for non-styled text data
setTextStyle Sets the default text style for non-styled text data
setTextJust Sets the line justification of text elements
setTextLineSpacing Sets the line spacing of text elements
setColor Sets the default color of text and graphic elements
setGray Sets the default gray value of text and graphic elements
setLineWeight Sets the line weight of stroked graphic elements

setTextFont

Syntax: setTextFont document, fontName

Returns: TRUE if the requested font was available
FALSE if the requested font could not be found

This command sets the text font that will be applied to non-styled text data (such as strings) that
are subsequently appended to the PrintOMatic document. If the requested font is not available,
the default font (Geneva on the Macintosh, Arial on Windows) is used.

Note that the current font set using setTextFont will be overridden by the fonts, sizes and
styles within styled text field cast members that you subsequently append to your document. The
default font used for non-styled text data after appending a styled text field will be the last font
contained within the text field.

setTextSize

Syntax: setTextSize document, fontSize

This command sets the text size that will be applied to non-styled text data (such as strings) that
are subsequently appended to the PrintOMatic document.

setTextStyle

Syntax: setTextStyle document, styleString

This command sets the text style that will be applied to non-styled text data (such as strings) that
are subsequently appended to the PrintOMatic document. The names of the style values
correspond exactly to the Director "textStyle" property. Possible values for text styles are:

normal
plain
bold
italic
underline

On the Macintosh, the following additional styles are available:

outline
condense
extend
shadow

All values except normal or plain are added together in a call to setTextStyle, so you can
combine a number of styles together in a single call.

Example:

The following example creates a PrintOMatic document, sets the default font to bold italicized 10
point Helvetica, and prints a short text string:

set doc = new(xtra "PrintOMatic")
if not objectP(doc) then exit
setTextStyle doc, "bold, italic"
setTextFont doc, "Helvetica"
setTextSize doc, 10
append doc, "Some sample text to print out."
if doJobSetup(doc) then print doc
set doc = 0

setTextJust

Syntax: setTextJust document, justCode(s)

The setTextJust command sets the line justification applied to all subsequently added text
elements. Possible values are:

left
right
centered

Justification applies to an entire text block (or the set of linked text blocks), so if you set
justification to "right" and call append for a block that was previously centered, the justification of
the entire block will be changed to right-justified as the new text is added.

setTextLineSpacing

Syntax: setTextLineSpacing document, spacing

Sets the line spacing of text elements

setColor

Syntax: setColor document, red, green, blue

Sets the default color of text and graphic elements

setGray

Syntax: setGray document, grayLevel

Sets the default gray value of text and graphic elements

setLineWeight

Syntax: setLineWeight document, lineWeight

Sets the line weight of stroked graphic elements

Drawing Graphic Elements

The following routines are used to draw graphic elements on the pages of documents:

drawRect draws a filled or stroked rectangle
drawLine draws a line
drawRoundRect draws a filled or storked round rect
drawOval draws a filled or stroked oval
drawText draws a line of text
drawPicture draws a picture from the cast or from disk
drawStagePicture draws a picture of the Stage contents

drawRect

 Syntax: drawRect document, rect, filled

Draws a rectangle on the current page. If the filled parameter is TRUE, the rectangle is filled using
the current color. Otherwise, the rectangle is stroked using the current line weight and color.

Example:

drawRect doc, Rect(0,0,500,100), TRUE

drawLine

 Syntax: drawLine document, startPoint, endPoint

Draws a line on the current page from startPoint to endPoint. The line is stroked using the current
line weight and color.

Example:

drawLine doc, Point(0,100), Point(getPageWidth(doc),100), TRUE

drawRoundRect

 Syntax: drawRoundRect document, rect, cornerRadius, filled

Draws a rounded-corner rectangle on the current page, using the corner radius specified in
cornerRadius. If the filled parameter is TRUE, the rounded rectangle is filled using the current
color. Otherwise, the rounded rectangle is stroked using the current line weight and color.

Example:

drawRoundRect doc, Rect(0,0,500,100), 25, FALSE

drawOval

 Syntax: drawOval document, bounds, filled

Draws an oval on the current page, bounded by the rectangle specified in bounds. If the filled
parameter is TRUE, the oval is filled using the current color. Otherwise, the oval is stroked using
the current line weight and color.

Example:

drawOval doc, Rect(0,0,100,100), FALSE

drawText

 Syntax: drawText document, text, location

Draws a line of text on the current page, using the current text font, size, style, and justification.
The justification specified using setTextJust determines how the text is aligned relative to the
point specified in location.

Example:

drawText doc, "A little bit of text.", Point(100,50)

drawPicture

 Syntax: drawPicture document, [fileName | member castMem], [rect |
topLeftPoint]

Draws a bitmapped or PICT cast member, EPS, PICT or BMP file from disk on the current page. If
a destination rect is specified, the picture will be sized to fit within the rectangle without distortion.
If a topLeftPoint is specified, the image will be drawn at 100% size from the specified point.

Examples:

drawPicture doc, member "image", Point(100,50)
drawPicture doc, the pathName&"image.eps", Rect(0,0,100,100)

drawStagePicture

 Syntax: drawStagePicture document, [rect | topLeftPoint], [clipRect],
grabOffscreen

Places a screen shot of the stage contents on the current page (or MIAW contents if
drawStagePicture is called from a movie-in-a-window). If a clipRect is specified, only that
portion of the stage or MIAW will be grabbed. Note that drawStagePicture takes a "faithful"
screen grab of the stage contents, including the cursor, sprite "trails", and any other windows that
might overlap the stage. However, if grabOffscreen is TRUE, the stage picture will be grabbed
from Director's off-screen buffer instead, and these extraneous elements will not be included in
the resulting picture.

Examples:

drawStagePicture doc, Point(0,0)
drawStagePicture doc, Point(0,0), Rect(0,0,100,300), TRUE

Creating Frames and Appending their Contents
The PrintOMatic Xtra uses a "frames" metaphor for creating areas on the page where text or
graphics can be flowed. The basic procedure is to create one or more "linked" frames on a page
of a document, then append items to the newly created frames. The following commands are
used to create frames and append their contents.

newFrame creates a new frame on the current page
append appends contents to the current frame
appendFile appends the contents of a text or graphic file to the current frame
getInsertionPoint gets the location of the insertion point within the current frame

newFrame

Syntax: newFrame document, rect, linkedToPrevious

The newFrame command adds a new "frame" to the current page of the document, and makes
it the "current" frame. Text and graphic items can be flowed into the current frame using the
append and appendFile commands.

The linkedToPrevious parameter determines whether the contents of the previous frame will flow
into the new frame once the previous frame is filled. When you create a new frame that is not
linkedToPrevious, you can no longer append items to the previously "current" frame. Also note
that you cannot link frames between the master page and a body page.

append

Syntax: append document, member whichCastmember [, ... , autoAppend]
append document, member whichCastmember of castLib whichLib [, ... ,
autoAppend]
append document, castLib whichCast [, ... , autoAppend]
append document, sprite whichSprite [, ... , autoAppend]
append document, string [, ... , autoAppend]
append document, list [, ... , autoAppend]

The append command appends one or more items to the current "frame" of a PrintOMatic
document. If no current frame exists in your document, the PrintOMatic Xtra will attempt to create
a "default" frame for you, which is the width and height of the page, minus the current margins.

The autoAppend parameter, which is always the last parameter in a call to append, controls
whether or not new pages will be created "on the fly" if the PrintOMatic Xtra runs out of space on
the last "frame" in your document. If this parameter is set to TRUE, new pages will be created with
the same "frame" layout as the last page of your document. PrintOMatic will create as many new
pages as are necessary to flow all the specified elements into your document . If this parameter is
not specified when you call append, its value defaults to TRUE.

AutoAppending is not allowed when flowing items into a frame on the master page of a document.

type of object what gets appended
text field cast member the text of the field, using the specified fonts and styles
rich text cast member the bitmap image of the cast member, including anti-aliasing
bitmap cast member the cast member graphic
PICT cast member the cast member graphic
cast library all printable cast members in the library, in cast sequence
sprite the cast member of the sprite
text string the text string, in the default font (Geneva10pt on Macintosh, Arial

10pt on Windows)
list (linear or property) the elements in the list

Example:

The following example creates a PrintOMatic document, sets the document name, creates the
first page, adds a frame to it, and appends a number of items to the document, and prints it:

set doc = new(xtra "PrintOMatic")
if not objectP(doc) then exit
setDocumentName doc, "My Example Document"
newPage doc
newFrame doc, Rect(0,0,getPageWidth(doc),getPageHeight(doc)
append doc, sprite 1, TRUE
append doc, [member "image", member "caption", sprite 5], TRUE
append doc, castLib "printout", TRUE
if doJobSetup(doc) then print doc
set doc = 0

appendFile

Syntax: appendFile document, fileName [, ... , autoAppend]

The appendFile command appends one or more text or graphics files to the current "frame" of
a PrintOMatic document. If no current frame exists in your document, the PrintOMatic Xtra will
attempt to create a "default" frame for you, which is the width and height of the page, minus the
current margins.

For details on how to use the autoAppend parameter, please see the for the append command.

The following file formats are supported by appendFile. The actual format of the file will be
auto-detected by the appendFile command.

file type notes
plain text Normal ASCII format text, with or without DOS line-feed characters
styled text (Macintosh only) Macintosh ASCII text file with a 'styl' resource, such as files

created by SimpleText
EPS Encapsulated PostScript file, with or without a preview image
PICT Macintosh PICT format file (only raster PICT files 8-bits or less supported on

Windows)
BMP (Windows only) BMP files of any bit depth

Notes on Printing EPS Files

You should avoid using EPS files if you want your printing code to work reliably with all types of
printers. Many, many popular printers attached to Macintosh and Windows PC's DO NOT support
PostScript printing. The output that PrintOMatic generates on these types of printers can vary
from low-resolution bitmaps to placeholder boxes to nothing at all.

Assuming you decide not to heed this warning, here are some tips that may improve your
success.

Many applications that generate EPS files allow you to create files in "ASCII" or "binary" format.
PrintOMatic prints ASCII format PostScript files MUCH more reliably than binary files. Under
some conditions, PrintOMatic will print binary PostScript files just fine. However, certain types of
printer connections work very poorly with binary PostScript. Specifically, serial printers that use
XON/XOFF flow control often mistake binary data for flow control codes, and will seriously garble
or crash your print job.

Some types of PostScript files, notably those generated by using the "print to disk" feature of the
LaserWriter driver, don't contain "bounding box" information. PrintOMatic needs bounding box
information to determine the size of a PostScript image for placement on the page, and will
generate an error if this information can't be found.

You can manually add bounding box information to PostScript files using a text editing program.
Insert the following line of text into the file somewhere between the !%PS-Adobe-3.0 and %
%EndComments lines at the beginning of the file, substituting the width and height of the page (in
points) for the 'x' and 'y' values:

 %%BoundingBox: 0 0 x y

Finally, keep in mind that PostScript is a programming language with a broad set of features,
some of which are supported differently by different printers. This makes EPS files MUCH more
prone to printing errors and incompatibilities than other file formats, such as PICT or BMP. This is
another good reason to avoid using EPS files if at all possible.

getInsertionPoint

Syntax: getInsertionPoint(document)

Returns: A string in the format "page, x, y", or VOID if there is no insertion point.

The getInsertionPoint function returns the page number and coordinates at which the next
append or appendFile command will insert new content into the document. This can be useful
for deciding when to manually break pages, or allow you to place graphics in the margins of a
document next to accompanying text.

Example:

The following code checks for an insertion point, and if there is one, places a graphic in the
margin next to the insertion point:

set the itemDelimiter = ","
set insPt = getInsertionPoint(doc)
if stringP(insPt) then
 drawPicture member "dingbat", Point(-10, integer(item 3 of insPt))
end if

Customizing the Print Progress Window
The following routines are used to customize the contents of PrintOMatic's Print Progress
window. The setProgressMsg and setProgressPict routines are available to registered
users of PrintOMatic only. Attempting to use these routines on an unregistered copy will result in
an error.

setProgressMsg puts a customized text message in the progress window
setProgressPict puts a customized bitmap image in the progress window
setProgressLoc sets the location of the progress window

setProgressMsg

Syntax: setProgressMsg document, message

The setProgressMsg command puts a customized text message into the Print Progress
window. This command is available to registered users of PrintOMatic only. Attempting to use this
command on an unregistered copy will result in an error.

The default message in the print progress window is:

Printing document "<document name>"

You can change the document's name using the setDocumentName command.

setProgressPict

Syntax: setProgressPict document, member pictCastMember

The setProgressPict command puts a customized image into the Print Progress window.
This command is available to registered users of PrintOMatic only. Attempting to use this
command on an unregistered copy will result in an error.

setProgressLoc

Syntax: setProgressLoc document, topLeftPoint

The setProgressLoc command sets the location of the top left corner of the print progress
dialog displayed during printing. If you want to hide the print progress dialog, position it off the
screen using this method. Note that setProgressLoc uses global (screen) coordinates for
positioning, not stage coordinates.

Printing and Print Preview
The following commands are used to print or display a print preview of a PrintOMatic document,
or just about anything else you want to print out:

printPreview displays an on-screen print preview of the requested item(s)
print prints the requested item(s) to the currently selected printer

printPreview

Syntax: printPreview(document)
printPreview(any [, ...])

Returns: TRUE if the user previews all the pages in the document
FALSE if the user cancels the print preview

This function displays an on-screen facsimile of the output that the print command will generate
when it is passed the same set of parameters. printPreview will display a preview of a
document as well as sets of strings, sprites, cast members, lists, etc. See the print command
for a complete list of the elements that can be previewed.

Typing any key or clicking in the preview window advances to the next page; typing command-
period (Escape on Windows) cancels the preview without displaying all the pages. When the
document can't be displayed on the main screen at 100% size (which is most of the time, unless
you have a big monitor), the page is scaled to fit.

print

Syntax: print member whichCastmember [,...]
print member whichCastmember of castLib whichLib [, ...]
print castLib whichCast [, ...]
print sprite whichSprite [, ...]
print string [, ...]
print list [, ...]
print document

The print command is an extension to Lingo provided by the PrintOMatic Xtra. This command
is used to print one or more items to the currently selected printer. The following Director objects
are printable:

type of object what gets printed
text field cast member the text of the field, using the specified fonts and styles
rich text cast member the bitmap image of the cast member, including anti-aliasing
bitmap cast member the cast member graphic
PICT cast member the cast member graphic
cast library all printable cast members in the library, in cast sequence
sprite the cast member of the sprite
text string the text string, in the default font (Geneva10pt on Macintosh, Arial

10pt on Windows)
list (linear or property) the elements in the list
document the contents of the PrintOMatic document

Examples:

You can print a number of objects together with a single call to the print command:

print "Printed Output" & RETURN , member "image" , member "someText"

One of the most powerful uses of the print command is to assemble all the elements of a
document into a single cast library, and print the entire cast library with one line of Lingo:

print castLib "document"

Miscellaneous Routines
The following commands are odds and ends that didn't fit any other category:

hideMessages hides the PrintOMatic Xtra's error alerts
setPageNumSymbol sets the page numbering substitution symbol
register registers your copy of the PrintOMatic Xtra
setLowMemLimits sets the Xtra's low-memory limits

hideMessages

Syntax: hideMessages document, trueOrFalse

The hideMessages command will prevent PrintOMatic from displaying alert dialogs when
something goes wrong. You should strive to make your code solid enough so PrintOMatic will
never have to display an error alert (without invoking this command). But if you need to suppress
the messages, you can do it here.

setPageNumSymbol

Syntax: setPageNumSymbol document, symbol

The setPageNumSymbol command selects a text symbol whose every occurrence in the
document will be replaced with the current page number at printing time. This lets you number
your pages by including a text element on the master page containing the symbol you define for
page numbering. Call setPageNumSymbol with a value of "" (an empty string) to turn off this
feature.

register

Syntax: register(xtra "PrintOMatic", serialNumber)

Returns: TRUE if the serial number is valid

The register command will register the PrintOMatic Xtra, once you license PrintOMatic and
obtain a valid serial number. This will enable the methods for fully customizing your print job, such
as setProgressMsg and setProgressPict. It will also remove those annoying "unregistered
copy" messages from your print progress dialog and printed output.

The registration process only registers your copy of PrintOMatic temporarily. Your serial number
is stored in Director's registry and might not be stored for any longer than the current Director
session. If you re-install Director, move your movie to another computer, or use PrintOMatic from
a Projector, the serial number will likely be unavailable the next time you use PrintOMatic.

Therefore, you should add the registration code below to the startMovie handler of every
movie that uses the PrintOMatic Xtra. This will ensure that PrintOMatic can always find its serial
number when it needs to.

Example:

The following code registers your copy of the PrintOMatic Xtra for the duration of the current
Director session:

register(xtra "PrintOMatic", "<your serial number>")

setLowMemLimits

Syntax: setLowMemLimits document, globalHeap, localHeap

This feature is not yet implemented in the current version of the PrintOMatic Xtra.

Macintosh-Only Routines
The following commands are only available in the Macintosh version of the PrintOMatic Xtra.
They are provided primarily for functional backwards-compatibility with the older, XObject version
of PrintOMatic:

printToPictFiles prints the document to a series of PICT images on disk
draw1bitStagePicture draws the stage contents as a 1-bit dithered image
loadPageSetup loads saved Page Setup settings from a file on disk
savePageSetup saves the current Page Setup settings to a file on disk

If you are creating a cross-platform Director production, you should avoid using these routines, or
make sure to only use them within blocks of Lingo that are executed when your production is
running on a Macintosh computer:

if the machineType <> 256 then
 -- running on a Mac
 printToPictFiles doc, the pathName&"picts"
end if

printToPictFiles

Syntax: printToPictFiles document, folderName

NOTE: This is a Macintosh-only command. Do not use this command with the Windows version
of the PrintOMatic Xtra.

Outputs your document to a series of PICT files on disk. If you do not provide a folderName, the
user will be prompted to select a folder. The PICT files are sequentially titled "Page-#". The PICTs
will over-write any files in the destination folder with the same name. If you only want to print
certain pages to disk, present the user with the print job setup dialog using doJobSetup first.
printToPictFiles will honor the start and end page set from the job setup dialog.

draw1bitStagePicture

Syntax: draw1bitStagePicture document, [rect | topLeftPoint], [clipRect],
grabOffscreen

NOTE: This is a Macintosh-only command. Do not use this command with the Windows version
of the PrintOMatic Xtra.

Places a screen shot of the stage contents, dithered to 1-bit color, on the current page (or MIAW
contents if draw1bitStagePicture is called from a movie-in-a-window). If a clipRect is
specified, only that portion of the stage or MIAW will be grabbed. Note that
draw1bitStagePicture takes a "faithful" screen grab of the stage contents, including the
cursor, sprite "trails", and any other windows that might overlap the stage. However, if
grabOffscreen is TRUE, the stage picture will be grabbed from Director's off-screen buffer
instead, and these extraneous elements will not be included in the resulting picture.

Examples:

draw1bitStagePicture doc, Point(0,0)
draw1bitStagePicture doc, Point(0,0), Rect(0,0,100,300), TRUE

loadPageSetup

Syntax: loadPageSetup(document, fileName, resourceID)

Returns: TRUE if page settings don't match the current printer, otherwise FALSE

NOTE: This is a Macintosh-only command. Do not use this command with the Windows version
of the PrintOMatic Xtra.

Retrieves Page Setup information stored in a file on disk. If one or more Page Setup values
needs to be changed to match the currently selected printer, this command returns TRUE. In this
case, you should probably warn the user, and display the Page Setup dialog using
doPageSetup. Otherwise, this command returns FALSE.

savePageSetup

Syntax: savePageSetup document, fileName, fileType, fileCreator, resourceID

NOTE: This is a Macintosh-only command. Do not use this command with the Windows version
of the PrintOMatic Xtra.

Saves the Page Setup information of the current document to a 'PHDL' resource in a file on disk.
If the specified file doesn't exist, PrintOMatic creates the file, using the 4-fileCreator and fileType
codes you specify. If a 'PHDL' resource with the requested resourceID already exists, it is
replaced by the current settings.

PrintOMatic Release Notes
1.5d1 First Macintosh beta release. Documentation and help file (specifically, the "Using" section)
are still incomplete.

1.5d2 First Windows beta release. Improved file format checking code on both platforms. Fixed
PICT file sizing problems on Windows. Updated "unregistered copy" messages with e-mail
contact information.

1.5d3 Fixed a Windows bug that caused drawStagePicture to draw a black rectangle in 16-
and 32-bit color. Updated the About Box with new artwork. Added draw1BitStagePicture,
printToPictFiles, loadPageSetup, and savePageSetup routines to Macintosh version
ONLY (for backwards-compatibility). Make the "new" handler fail silently when there's an error
(such as no printer selected), so you can present your own dialog to users.

1.5d4 Added version numbers to the About box. Improved the Mac printer database to save the
name of the print driver along with the settings.

1.5 Fixed a bug in the Macintosh version that would print the wrong pages if a specific page rage
was selected in the Job Setup dialog. Added protective code to defend against a Director bug that
returns a text size of 0 from text fields. Recompiled to remedy a bug that botched printing in
Windows 95.

1.5.1 Fixed a bug that caused append to lock up in cases when a series of different-styled
carriage returns spanned a page break. Fixed Macintosh bugs that caused print preview to mess
up the Stage palette, and drawText to occasionally print text in funny colors.

1.5.2 Fixed a bug that caused the Windows version to crash when calling setPage 0.

1.5.3 Fixed a Windows bug that caused problems printing files from disk in Windows 95.

