
@ALT
Syntax:

@ALT(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send keystrokes to
another window.    It generates keystrokes that are the equivalent of holding down the Alt key while the keys in <string>
are being sent.

OK:

Unchanged.

Example:

rem close down an application
window send,Test - WordPad,@alt(F)X

See also:

@CR @CTRL @KEY @SHIFT @TAB Sendng Keystrokes

@ASC
Syntax:

@ASC(<string>)

Description:

This function returns the ASCII code of the first (or only) character of <string>..

OK:

Unchanged.

Example:

%A = @asc(A)
See also:

@CHR

@ASK
Syntax:

@ASK(<string>)

Description:

This function displays a dialog box containing a question mark icon, the message <string>, and buttons for Yes and No.   
The value 1 (true) is returned (and OK is set to true) if the user responds Yes; otherwise the function returns null (false)
and OK is set to false.

OK:

Set to true if Yes is pressed; otherwise set to false.

Example:

IF @ASK(Do you want to continue?)
 REM Do something useful
END

See also:

@INPUT @QUERY

@CHR
Syntax:

@CHR(<value>)

Description:

This function returns the character whose ASCII code is <value>.    It can be used to generate characters that cannot
easily be entered from the keyboard.

OK:

Unchanged.

Example:

%A = Visual DialogScript @CHR(169) 1995, 1996 J M Technical Services
See also:

@ASC

@CLICK
Syntax:

@CLICK(BUTTON)
@CLICK(NAME)
@CLICK(X)
@CLICK(Y)
@CLICK(REGION, <top>, <left>, <bottom>, <right>)

Description:

This function returns information about the last mouse click event to have occurred.

If the parameter is BUTTON, the function returns LEFT, RIGHT or CENTER depending on which button was pressed.

If the parameter is NAME the function returns the name of the bitmap control over which the mouse was clicked.

If the parameter is X or Y the function returns the X or Y co-ordinate of the pointer when the mouse was clicked.

If the parameter is REGION then the function returns the value 1 (true) if the mouse was clicked within the region
bounded by the co-ordinates <top>, <left>, <bottom> and <right>, otherwise it returns null (false).

OK:

Set to false if one of the REGION parameters is invalid.

Example:

:evloop
wait event
if @equal(@event(),click)
 info You clicked the @click(button) Button@CR()Co-ords X: @click(X) Y: @click(Y)
 goto evloop
end

See also:

Dialog Programming Events

@COUNT
Syntax:

@COUNT(<list>)

Description:

This function returns the number of items in the string list <list>.    The parameter <list> must be either a list number or the
name of the dialog list control to which the function will apply.

OK:

Unchanged.

Example:

LIST 1,CREATE,SORTED
LIST 1,LOADFILE,NAMES.TXT
INFO There are @COUNT(1) names in the list
LIST 1,CLOSE

See also:

@INDEX @ITEM @MATCH @NEXT LIST

@CR
Syntax:

@CR()

Description:

This function returns a carriage return character.    You use it to create output on multiple lines, or to send an Enter
keystroke in a WINDOW SEND command.

OK:

Unchanged.

Example:

%A = This is the first line of output
%B = This is the second line
INFO %A@CR()%B

See also:

@TAB    WINDOW

@CTRL
Syntax:

@CTRL(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send keystrokes to
another window.    It generates keystrokes that are the equivalent of holding down the Ctrl key while the keys in <string>
are being sent.

OK:

Unchanged.

Example:

rem make text bold
window send,Microsoft Word,@ctrl(B)

See also:

@ALT @CR @KEY @SHIFT @TAB Sendng Keystrokes

@CURDIR
Syntax:

@CURDIR(<drive letter>)

Description:

This function returns the current directory of the specified drive.    If no drive letter is specified, the function returns the
current directory of the current default drive.

OK:

Unchanged.

Example:

%C = @CURDIR()
REM %C now holds the current directory
%D = @CURDIR(D)
REM %D now holds the current directory of drive D:

See also:

@WINDIR

@DATETIME
Syntax:

@DATETIME(<format-string> {, <time-value>)

Description:

This function returns the current date and/or time (or if <time-value> is given, the date and/or time corresponding to <time-
value>) formatted in accordance with <format-string>.    If no <format-string> is given, a time value is returned.    This is an
integer value which corresponds to the DOS file date/time value.

Format strings may be comprised of:

d returns day number without leading zero
dd returns day number with leading zero
ddd returns day as an abbreviation e.g. Mon
dddd returns full name of day e.g. Monday
ddddd returns date using Windows' Short Date style (set in Control Panel)
dddddd returns date using Windows' Long Date style (set in Control Panel)
m returns month number without leading zero
mm returns month number with leading zero
mmm retuns month as an abbreviation e.g. Jan
mmmm returns full name of month e.g. January
yy returns year as two digit number
yyyy returns year as four digit numner
h returns hour without leading zero
hh returns hour with leading zero
nn returns minute (note: not mm)
ss returns seconds
t returns time using Windows' Short Time style (set in Control Panel)
tt returns time using Windows' Long Time style (set in Control Panel)
am/pm uses 12 hour clock and displays am or pm as appropriate
a/p uses 12 hour clock and displays a or p as approprate
/ returns date separator as set in Control Panel
: returns time separator as set in Control Panel
ampm returns AM symbol or PM symbol as set in Control Panel

Spaces and other separator characters (e.g. the current field separator) can be included in the format string.

The <time-value> may be either an integer DOS file date/time value or a date in the Short Date format.

OK:

Unchanged.

Example:

%D = @DATETIME(t dddd dddddd,%F)
PARSE "%H;%M;%S",@datetime(hh|mm|ss)

See also:

@DDEITEM
Syntax:

@DDEITEM(<item>)

Description:

This function requests the data from a DDE server which is identified by <item>.    For information on what items are
supported see the DDE server documentation.

OK:

True if DDE request is successful, false if it fails.

Example:

DDE LINK,QPW,SYSTEM
%I = @DDEITEM(SYSITEMS)
DDE TERMINATE
INFO DDE Topics supported by QPW:@CR()%I

See also:

DDE   

@DIFF
Syntax:

@DIFF(<value1>,<value2>)

Description:

This function returns the difference of its two arguments: <value1> - <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @DIFF(%A,%B)
See also:

@DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@DIRDLG
Syntax:

@DIRDLG(<caption>)

Description:

This function displays a standard browser dialog which allows the user to choose a directory, returning the selected
directory name when the dialog is closed.    The optional caption specifies the text to appear above the browser window.

OK:

True if dialog was closed with the OK button, otherwise false.

Example:

%D = @dirdlg()
See also:

@FILEDLG

@DIV
Syntax:

@DIV(<value1>,<value2>)

Description:

This function returns the quotient of its two arguments: <value1> / <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @DIV(%A,%B)
See also:

@DIFF @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@DLGTEXT
Syntax:

@DLGTEXT(<control name>)

Description:

This function is used to read the text that appears in dialog window controls.    The string <control name> identifies the
control that is the target of the function.

In the case of a list box the contents of the selected item is returned, or null if no item is selected.

OK:

Unchanged.

Example:

%A = @dlgtext(Name)
%B = @dlgtext(Addr1)

See also:

DIALOG Dialog Programming

@ENV
Syntax:

@ENV(<string>)

Description:

This function returns the value of the DOS environment variable named <string>.

OK:

Unchanged.

Example:

%P = @ENV(PATH)
See also:

@EQUAL
Syntax:

@EQUAL(<string1>,<string2>)

Description:

This function compares two strings.    The value 1 (true) is returned if they are identical; otherwise the function returns null
(false).

NOTE: the comparison is not case sensitive, so "Visual DialogScript" and "VISUAL Dialogscript" are considered equal.

OK:

Unchanged.

Example:

IF @EQUAL(%F,WIN.INI)
 WARN You must not delete this file!
END

See also:

@NOT @NULL @ZERO

@EVENT
Syntax:

@EVENT()

Description:

This function returns the name of the last event to have occurred.    It returns a null string if no event has occurred.    After
the function has been called the event is cleared, so it should be stored in a variable if you need to test it more than once.

OK:

Unchanged.

Example:

:LOOP
 WAIT EVENT
 GOTO @EVENT()
:OKBUTTON
 INFO You pressed OK
 GOTO LOOP
:CANCELBUTTON
 INFO You pressed Cancel

See also:

Dialog Programming Events

@EXT
Syntax:

@EXT(<string>)

Description:

This function returns the extension portion of a file path specified in <string>.

OK:

Unchanged.

Example:

%X = @EXT(C:\WINDOWS\WIN.INI)
REM %X now contains INI

See also:

@NAME @PATH @SHORTNAME

@FADD
Syntax:

@FADD(<value1>,<value2>)

Description:

This function returns the sum of its two arguments: <value1> + <value2>, which may be floating-point numbers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%F = @FADD(%A,3.14159)
See also:

@DIFF @DIV @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@FDIV
Syntax:

@FDIV(<value1>,<value2>)

Description:

This function returns the result of: <value1> / <value2>, where the two values may be floating-point numbers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%F = @FDIV(%A,%B)
See also:

@DIFF @DIV @FADD @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@FILE
Syntax:

@FILE(<file description>, <attributes>)

Description:

This function returns the name of the first file that matches <file description> if it exists.    It returns a null string if the file
does not exist.

The attribute string can be used to filter the filenames that will be checked.    The attributes can be:

A - archive
D - directory
H - hidden
R - read only
S - system

The 'pseudo-attributes' F, T or Z may also be present.    If T is present, and not F, the creation date/time of the file is
returned as an integer, instead of the name.    If required this value can be converted to normal date/time representation
using the @DATETIME function and so on.    If Z is present, and not F, the file size in bytes is returned, instead of the
name.    If F is present as well as T and/or Z the string returned contains the filename, size and date/time information in
that order, separated by the current field separator character.

OK:

Set to false if the function fails.

Example:

parse "%F;%S;%D",@file(c:\autoexec.bat,FTZ)
if @file(%F,D)
 INFO Directory %F does not exist
end

See also:

@VERINFO @VOLINFO

@FILEDLG
Syntax:

@FILEDLG(<file description> {, <title>})

Description:

This function displays a Windows common file dialog, and returns the name of the file that was selected (or a null string if
no file was selected.)    The string <file description> contains a filter for the file type to be displayed, for example: *.txt.   
The string <title> contains an optional title which will be used for the dialog.

Multiple choice filters and descriptions of the file types can be specified if <file description> follows the format:

"<file description 1>|<*.ext1> {|<file description2>|<*.ext2>} ..."

This format must be followed exactly or the description will be ignored.    Quotes must surround the entire file description
string.

OK:

True if dialog was closed with the OK button, otherwise false.

Example:

%F = @filedlg(*.txt)
%F = @filedlg("Text file (*.txt)|*.txt|Document file (*.doc)|*.doc",Open file)

See also:

@DIRDLG

@FMUL
Syntax:

@FMUL(<value1>,<value2>)

Description:

This function returns the product of its two arguments: <value1> x <value2>, which may be floating-point numbers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%F = @FMUL(%A,%B)
See also:

@DIFF @DIV @FADD @FDIV

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@FORMAT
Syntax:

@FORMAT(<value>,<format>)

Description:

This function returns <value> formatted in accordance with <format>, which must be in the form n.d where n is the total
number of digits and d is the number of decimal places.    If only n is specified then two decimal places are assumed by
default.

OK:

Set to false if either of the arguments is null or non-numeric.

Example:

DIALOG SET,AM1,£@FORMAT(%T,5.2)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FSUB @PRED @PROD @SUCC

@SUM    @ZERO   

@FSUB
Syntax:

@FSUB(<value1>,<value2>)

Description:

This function returns the difference of its two arguments: <value1> - <value2>, which may be floating-point numbers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%F = @FSUB(%A,%B)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @PRED @PROD @SUCC

@SUM    @ZERO   

@GREATER
Syntax:

@GREATER(<value1>, <value2>)

Description:

This function tests two string values, which are assumed to be numeric.    The value 1 (true) is returned if <value1> is
greater than <value2>; otherwise the function returns null (false).

OK:

Unchanged.

Example:

IF @GREATER(%1,%2)
 INFO Larger value is %1
END

See also:

@EQUAL @NOT @ZERO @NULL

@INDEX
Syntax:

@INDEX(<list>)

Description:

This function returns the current index (pointer) value for the string list <list>.    The parameter <list> must be either a list
number or the name of the dialog list control    to which the function will apply.

OK:

Unchanged.

Example:

LIST 1,CREATE,SORTED
LIST 1,LOADFILE,NAMES.TXT
IF @MATCH(1,John)
 INFO John is at position @INDEX(1) in the list
END
LIST 1,CLOSE

See also:

@COUNT @ITEM @MATCH @NEXT LIST

@INIREAD
Syntax:

@INIREAD(<section name>,<key name>)

Description:

This function returns a string containing the value of <key name> in the <section name> section of the INI file that was
specified in the preceding INIFILE command (or DEFAILT.INI if no INIFILE command has been executed.)    If <section
name> is null the section [Scripts] is used.    The returned string is empty if the section or key do not exist.

OK:

Unchanged.

Example:

%A = @INIREAD(Extensions,.txt)
See also:

INIFILE

@INPUT
Syntax:

@INPUT(<prompt text>,<default result>)

Description:

This function prompts the user to enter some text.    The optional default result is returned if the user presses Cancel.

OK:

Unchanged.

Example:

%F = CONFIG.SYS
%F = @INPUT(Enter filename:,%F)

See also:

@ASK @QUERY

@ITEM
Syntax:

@ITEM(<list>)

Description:

This function returns the contents of the string at the current index position in the string list <list>.    The index can be set
using the LIST SEEK command.

The parameter <list> must be either a list number or the name of the dialog list control to which the command will apply.   
An error will occur if the list does not already exist.

OK:

Set to false if <item number> is out of range..

Example:

LIST 1,CREATE
LIST 1,LOADFILE,NAMES.TXT
LIST 1,SEEK,9
%I = @ITEM(1)
INFO The tenth name is %I
LIST 1,CLOSE

See also:

@COUNT @INDEX @MATCH @NEXT LIST

@KEY
Syntax:

@KEY(<key name>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send keystrokes to
another window.    It is used to generate keystrokes that are equivalent to the key named in <key name>.

Valid key names are: HOME, END, UP, DOWN, LEFT, RIGHT, PGUP, PGDN, INS, DEL, plus F1 to F12..

OK:

Unchanged.

Example:

rem move cursor
window send,Test - WordPad,@key(HOME)@key(PGDN)@key(PGDN)

See also:

@ALT @CR @CTRL @SHIFT @TAB Sendng Keystrokes

@LEN
Syntax:

@LEN(<string>)

Description:

This function returns the length of <string> in characters.    The value 0 is returned if the string is empty.

OK:

Unchanged.

Example:

%L = @LEN(%A)
See also:

@POS    @SUBSTR    @UPPER

@MATCH
Syntax:

@MATCH(<list>, <string>)

Description:

This function returns 1 (true) if a string in the string list <list>, starting from the current pointer position, contains text
matching <string>.    The match is not case-sensitive.    The pointer is advanced to the matching item number, so you can
obtain the contents of the string using @ITEM or @NEXT, rewrite it using LIST PUT and obtain the index value using
@INDEX.    If no match is found, null (false) is returned and the index value is unchanged.

The parameter <list> must be either a list number or the name of the dialog list control to which the command will apply.

OK:

Set to false if no match is found.

Example:

LIST 1,CREATE
LIST 1,LOADFILE,NAMES.TXT
%M = @MATCH(1,Jim)
INFO %M
LIST 1,CLOSE

See also:

@COUNT @INDEX @ITEM    @NEXT LIST

@MCI
Syntax:

@MCI(< MCI command string >)

Description:

This function is used to control multimedia devices using the Multimedia Control Interface (MCI).    An MCI command is
supplied as the parameter to the function.    The function returns the result of the command.    It returns the text of the MCI
error message if the command fails..

Note: MCI is a feature of Windows.    For a full description of how to use it you will need documentation such as the
Microsoft Multimedia Development Kit Programmer's Workbook or the Microsoft Windows Software Development Kit
Multimedia Programmer's Reference.

OK:

Set to false if the command fails.

Example:

%R = @MCI(open C:\WINDOWS\MEDIA\THEMIC~1.WAV alias sound)
if @ok()
 %R = @MCI(play sound)
else
 warn MCI error: %R
end

See also:

PLAY Example Using MCI

@NAME
Syntax:

@NAME(<string>)

Description:

This function returns the filename portion (not including the extension) of a file path specified in <string>.

OK:

Unchanged.

Example:

%N = @NAME(C:\WINDOWS\WIN.INI)
REM %N now contains WIN

See also:

@EXT @PATH @SHORTNAME

@NEXT
Syntax:

@NEXT(<list>)

Description:

This function returns the contents of the next item in the string list <list>.    The first item returned will be the first item (item
0) unless the item pointer has been repositioned using the LIST SEEK command.    After the function has been executed
the list index is advanced by 1.

The parameter <list> must be either a list number or the name of the dialog list control to which the command will apply.

You use the @NEXT function if you want to read sequentially through the items in a list.

OK:

Set to false when the end of the list is reached.

Example:

LIST 1,CREATE
LIST 1,LOADFILE,NAMES.TXT
REPEAT
 INFO @NEXT(1)
UNTIL @NOT(@OK())
LIST 1,CLOSE

See also:

@COUNT @INDEX @ITEM @MATCH LIST

@NOT
Syntax:

@NOT(<string>)

Description:

This function returns the value 1 (true) if the string is empty (null); otherwise the function returns null (false).

This function is equivalent to @NULL.

OK:

Unchanged.

Example:

IF @NOT(@ZERO(%2))
 GOTO loop
END

See also:

@EQUAL @NULL    @ZERO

@NULL
Syntax:

@NULL(<string>)

Description:

This function tests whether the enclosed string is empty.    The value 1 (true) is returned if it is empty (null), otherwise the
function returns null (false).

This function is equivalent to @NOT.

OK:

Unchanged.

Example:

IF @NULL(%2)
 WARN No command line parameter supplied!
END

See also:

@EQUAL @NOT @ZERO

@OK
Syntax:

@OK()

Description:

This function is used to test the status of various I/O commands which set the DialogScript OK flag.    It returns 1 (true) if
OK is true, otherwise the function returns null (false).

OK:

Unchanged.

Example:

IF @OK()
 rem Do something useful
ELSE
 WARN Operation failed!
END

See also:

@PATH
Syntax:

@PATH(<string>)

Description:

This function returns the path portion (up to and including the final colon or backslash) of the file path specified in <string>.

OK:

Unchanged.

Example:

%P = @PATH(C:\WINDOWS\WIN.INI)
REM %P now contains C:\WINDOWS\

See also:

@EXT @NAME @SHORTNAME

@POS
Syntax:

@POS(<string1>,<string2>)

Description:

This function returns the starting character position of the first occurrence of <string1> in <string2>.    The characters in the
string are counted from 1.    The value 0 is returned if either string is empty or <string1> does not occur in <string2>.    Note
that the comparison is not case sensitive.

OK:

Unchanged.

Example:

%P = @pos(a,%A)
info Position of a in %A is: %P

See also:

@LEN    @SUBSTR    @UPPER

@PRED
Syntax:

@PRED(<value>)

Description:

This function returns the predecessor of <value>, i.e. <value> - 1.    It is more efficient than using @diff(<value>,1)..

OK:

Set to false if <value> is null or non-numeric, or if overflow occurs.

Example:

%P = @PRED(%P)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PROD @SUCC

@SUM    @ZERO   

@PROD
Syntax:

@PROD(<value1>,<value2>)

Description:

This function returns the product of its two arguments: <value1> x <value2>.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%C = @PROD(%A,%B)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @SUCC

@SUM    @ZERO   

@QUERY
Syntax:

@QUERY(<string>)

Description:

This function displays a dialog box containing a question mark icon, the message <string>, and buttons for OK and
Cancel.    The value 1 (true) is returned (and OK is set to true) if the user responds OK; otherwise the function returns null
(false) and OK is set to false.

OK:

Set to true if OK is pressed; otherwise set to false.

Example:

IF @QUERY(Insert disk in drive A: and press OK)
 REM Do something with disk in drive A:
END

See also:

@ASK @INPUT

@REGREAD
Syntax:

@REGREAD(<root key>, <subkey>, <name>, <default>)

Description:

This function returns the value of the specified key from the Windows registry.

<root key> specifies the root key to search from.    The permissible values are:

ROOT specifies HKEY_CLASSES_ROOT
CURUSER specifies HKEY_CURRENT_USER
LOCAL specifies HKEY_LOCAL_MACHINE
USERS specifies HKEY_USERS
DEFAULT specifies the key Software\JM Tech\DialogScript\2.0\UserScripts in HKEY_CURRENT_USER.

<subkey> specifies the key value to retrieve.    Use backslashes to specify keys several levels deep.

<name> specifies the named value to retrieve.    If omitted, the value of the default value of the key is retrieved.

<default> specifies the value to be returned if the specified key does not exist.

It is recommended that the DEFAULT root key is used for any registry keys created for the use of DialogScript programs.

OK:

Set to false if the key does not exist, or if the contents exceed the buffer size.    This can be changed using the OPTION
REGBUF command.

Example:

%T = @regread(CURUSER,Software\JM Tech\DialogScript\2.0\SourceWin,Top)
See also:

REGISTRY Example Tip

@RETCODE (32-bit only)
Syntax:

@RETCODE()

Description:

This function returns the exit code (e.g. DOS errorlevel) of the last program executed using a RUN or SHELL command
with a WAIT parameter.

OK:

Unchanged.

Example:

RUN PKZIP.EXE
info Return code was @retcode()

See also:

RUN SHELL

@SHIFT
Syntax:

@SHIFT(<string>)

Description:

This function is only useful when used within the string argument of a WINDOW SEND command to send keystrokes to
another window.    It generates keystrokes that are the equivalent of holding down the Shift key while the keys in <string>
are being sent.

OK:

Unchanged.

Example:

rem highlight some text
window send,Test - WordPad,@shift(@key(HOME)@key(DOWN)@key(DOWN))

See also:

@ALT @CR @CTRL @KEY @TAB Sendng Keystrokes

@SHORTNAME (32-bit only)
Syntax:

@SHORTNAME(<file description>)

Description:

This function returns a DOS-compatible short filename version of the file path <file description> if it exists.

OK:

Set to false if the function fails.

Example:

run LIST @shortname(%1),wait
See also:

@FILE OPTION

@SUBSTR
Syntax:

@SUBSTR(<string>,<pos1>,<pos2>)

Description:

This function returns the substring of <string> starting at character position <pos1> and ending at character position
<pos2>.    The characters in the string are counted from 1.    If <pos2> is negative, the ending position is counted from the
end of the string.    If< pos2> is zero or omitted, just the single character at <pos1> is returned.

OK:

Unchanged.

Example:

%S = @substr(%A,4,8)
info Substring of %A from 4 to 8 is: %S

See also:

@LEN      @POS    @UPPER

@SUCC
Syntax:

@SUCC(<value>)

Description:

This function returns the successor of <value>, i.e. <value> + 1.    It is more efficient than using @sum(<value>,1)..

OK:

Set to false if <value> is null or non-numeric, or if overflow occurs.

Example:

%S = @SUCC(%S)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD

@SUM    @ZERO   

@SUM
Syntax:

@SUM(<value1>,<value2>)

Description:

This function returns the sum of its two arguments, which are treated as integers.

OK:

Set to false if either of the arguments is null or non-numeric, or if overflow occurs.

Example:

%S = @SUM(%S,10)
See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@ZERO   

@SYSINFO
Syntax:

@SYSINFO(<string>)

Description:

This function returns various system information dependent on the value of <string>.

The possible values are:

DOSVER Returns the DOS version number, e.g. 6.20
FREEMEM Returns the amount of memory currently free, in Kb
MEMLOAD Returns the percentage utilisation of memory
PIXPERIN Returns the number of pixels pr inch of screen resolution
SCREENHEIGHT Returns the height of the screen in pixels
SCREENWIDTH Returns the width of the screen in pixels
TOTMEM Returns the total memory available to Windows, in Kb
WINVER Returns the Windows version numbe
WIN32 Returns the value 1 (true) if running in a 32 bit version of Windows.
WSVER Returns the DialogScript version number

OK:

Unchanged.

Example:

title System Information
%D = DOS version@tab()= @SYSINFO(DOSVER)
%W = Windows version@tab()= @SYSINFO(WINVER)
%M = Free memory@tab()= @SYSINFO(FREEMEM)Kb
%S = Screen width@tab()= @SYSINFO(SCREENWIDTH)
%T = Screen height@tab()= @SYSINFO(SCREENHEIGHT)
%P = Pixels per inch@tab()= @SYSINFO(PIXPERIN)
info %D@CR()%W@CR()%M@CR()%S@CR()%T@CR()%P

See also:

Screen metrics

@TAB
Syntax:

@TAB()

Description:

This function returns a tab character.    You use it to insert a tab in text which is being output, or to send a tab keystroke in
a WINDOW SEND command.

OK:

Unchanged.

Example:

WINDOW SEND,Report - WordPad,Column 1@TAB()Column 2
See also:

@CR    WINDOW

@TRIM
Syntax:

@TRIM(<string>)

Description:

This function returns a string which is the same as <string> but with leading and trailing spaces and other control
characters removed.

OK:

Unchanged.

Example:

%T = @trim(@next(1))
See also:

@UPPER
Syntax:

@UPPER(<string>)

Description:

This function returns the string <string> converted entirely to upper case characters.

OK:

Unchanged.

Example:

%S = @UPPER(The quick brown fox)
REM %S now contains THE QUICK BROWN FOX

See also:

@VERINFO
Syntax:

@VERINFO(<filename>, <information type>)

Description:

This function returns the embedded version informaton (if present) about the specified file, which must be an executable
file type.

The information type contains flags, which can be:

C - company name
D - file description
N - original file name
P - product name
T - type of executable file
V - version
X - product version
Y - copyright message

If no <information type> is specified, the default V is used.

If more than one flag is specified, each item of information is separated by the field separator character. The data can be
stored in separate variables using the PARSE command.

The type of executable can be either 'NE', a Windows 16-bit New Executable file, or 'PE', a Windows 32-bit Portable
Executable file.    Other file types return the value '??'.    Version information is not present in all Windows executable files.

OK:

Not changed.

Example:

%V = @verinfo(MYPROG.EXE,V)
See also:

@FILE Version Information example

@VOLINFO
Syntax:

@VOLINFO(<drive>, <information type>)

Description:

This function returns informaton about the specified volume.

The information type contains flags, which can be:

F - return amount of space free (Kb)
N - return volume name
S - return total space on drive (Kb)
T - return type of volume:removable, Fixed, Network, CD-ROM or RAM. (32-bit only)

If no <information type> is specified, the default N is used.

If more than one flag is specified, each item of information is separated by the field separator character. The data can be
stored in separate variables using the PARSE command.

OK:

Set to false if function fails

Example:

rem find free space on D:
%E = @volinfo(D,F)

See also:

@FILE

@WINACTIVE
Syntax:

@WINACTIVE(<flags>)

Description:

This function is used to return the name or window class name of the currently active window.    It is necessary to know
this when using certain window control commands, such as WINDOW SEND.

The optional flags are N, which causes the name (title bar text) to be returned, or C, which returns the class name.    N is
assumed by default.

OK:

Unchanged.

Example:

%W = @winactive()
See also:

WINDOW @WINPOS

@WINDIR
Syntax:

@WINDIR(<parameter>)

Description:

This function returns the full path of the Windows directory.    The optional <parameter> may be either W or S.    If S, the
full path of the Windows system directory is returned instead.

OK:

Unchanged.

Example:

%W = @WINDIR()
REM On most systems %W will now contain C:\WINDOWS

See also:

@CURDIR

@WINEXISTS
Syntax:

@WINEXISTS(<window title>)

Description:

This function is used to determine whether an application is running or not.    It returns the value 1 (true) if a main window
or dialog box with a title bar of <string> exists and null (false) if not.    You can also test for the existence of a window using
its window class name (if you know this) by prefixing the class name with a # symbol.

Note: only main windows and dialogs are recognised by this function.    MDI child windows are not.

OK:

Unchanged.

Example:

if @not(@WinExists(Untitled - Notepad))
 run NOTEPAD.EXE
end

See also:

WINDOW @WINPOS

@WINPOS
Syntax:

@WINPOS(<window name>, <flags>)

Description:

This function returns information about the position of the window <window-name> according to the value of <flags>.   
Either the full window title text or its class name prefixed by a # character must be used to identify the target window.

Valid flags are:

T return the top co-ordinate
L return the left co-ordinate
W return the width
H return the height
S return the window status (1 = normal; 2 = iconized; 3 = maximized)

Where more than one flag is specified the information returned is separated using the current field separator.

OK:

Set to false if the specified window cannot be found.

Example:

PARSE "%T;%L",@winpos(Explorer,TL)
See also:

WINDOW @WINACTIVE @WINEXISTS

@ZERO
Syntax:

@ZERO(<string>)

Description:

This function returns the value 1 (true) if the value of <string> is zero; otherwise the function returns null (false).

OK:

Unchanged.

Example:

IF @ZERO(%V)
 INFO Result is zero.
END

See also:

@DIFF @DIV @FADD @FDIV @FMUL

@FORMAT @FSUB @PRED @PROD @SUCC

@SUM

Adding Dialog Elements
To add a control or define a new style for the dialog select the dialog element list on the Dialog tab, and press Ins, or use the context
menu.    The following dialog will appear:

From the drop-down list you can select the type of dialog element you want to add.    The Dialog Editor will choose a name for the
element, which you can overwrite with a name of your choice if you prefer.    The Dialog Editor will validate that the name is unique
and does not contain any illegal characters when you press the OK button.

When you press OK, in the case of a control a control is added to the form with the minimum default attributes.    The new control is
selected and its details displayed in the Dialog Editor ready for you to edit them, as you would an existing control.    For a style the
editor shows a style with all fields left blank, ready for you to define the font and color attributes.

Address Book
This example shows how Visual DialogScript can be used as a simple database, storing data in ASCII text form.    Amongst other
things, it demonstrates the use of styles and the use of the PARSE command.

Title Address Book
DIALOG CREATE,Address Book,%T,%L,296,220,STYLE(Gray3D),
 STYLE(Bold;;;B),DLGTYPE(SAVEPOS),-
 Text(T1;10;10;80;;Name:),Edit(E1;10;100;180;;;gray3d),-
 Text(T2;30;10;80;;Address:),Edit(E2;30;100;180;;;gray3d),-
 Edit(E3;50;100;180;;;gray3d),Edit(E4;70;100;180;;;gray3d),-
 Text(T3;90;10;80;;Post Code:),Edit(E5;90;100;100;;;gray3d),-
 Text(T4;110;10;80;;Country:),Edit(E6;110;100;100;;;gray3d),-
 Text(T5;130;10;80;;Telephone:),Edit(E7;130;100;100;;;gray3d),-
 Button(Find;162;140;40),Button(Next;162;190;40),
 Button(Prev;162;10;24;;<<;Bold),-
 Button(New;162;40;24;;+;Bold),Button(Del;162;70;24;;-;Bold),-
 Button(Nxt;162;100;24;;>>;Bold),Button(Copy;110;240;40),
 Button(Quit;162;240;40),Status(SP;No data)
list 1,create,sorted
%N = 1
list 1,loadfile,addrbook.txt
if @not(@zero(@count(1)))
 gosub showrec
 %N = 0
end
:evloop
wait event
goto @event()
:NewButton
 gosub updaterec
 parse E1;E2;E3;E4;E5;E6;E7,|||||||
 %N = 1
 dialog set,SP,New record
 dialog focus,E1
 goto evloop
:PrevButton
 gosub updaterec
 %S = @index(1)
 if @not(@zero(%S))
 list 1,seek,@pred(%S)
 end
 gosub showrec
 goto evloop
:NxtButton
 gosub updaterec
 %S = @succ(@index(1))
 if @greater(@count(1),%S)
 list 1,seek,%S
 end
 gosub showrec

 goto evloop
:DelButton
 if @ask(Delete record for @dlgtext(E1)?)
 list 1,delete
 end
 gosub showrec
 goto evloop
:FindButton
 %S = @index(1)
 gosub finddlg
 gosub match
 gosub showrec
 goto evloop
:NextButton
 if @null(%G)
 gosub finddlg
 else
 %S = @index(1)
 if @equal(@succ(%S),@count(1))
 info No more matches
 goto evloop
 end
 list 1,seek,@succ(%S)
 end
 gosub match
 gosub showrec
 goto evloop
:CopyButton
 clipboard clear
 %I = 1
 repeat
 clipboard append,@dlgtext(E%I)
 %I = @succ(%I)
 until @greater(%I,6)
 goto evloop
:QuitButton
:Close
 gosub updaterec
 list 1,savefile,addrbook.txt
 exit
:updaterec
 if @dlgtext(E1)
 %T = @dlg(E1)|@dlg(E2)|@dlg(E3)|@dlg(E4)|@dlg(E5)|@dlg(E6)|@dlg(E7)|
 if @not(@equal(%Y,%T))
 if @zero(%N)
 list 1,delete,%S
 end
 list 1,add,%T
 end
 end
 %N = 0
exit
:showrec
 %Y = @item(1)
 parse E1;E2;E3;E4;E5;E6;E7,%Y
 dialog set,SP,Record @succ(@index(1)) of @count(1)
 dialog focus,E1
 exit
:finddlg
 %G = @input(Enter search text:,%G)
 list 1,seek,0
 exit
:match
 if @not(@match(1,%G))
 info No match for %G found
 list 1,seek,%S
 end
 exit

Assignments
Like commands, assignments need not start in the first character position, so they may be indented using spaces for readability.

An assignment consists of a variable name, an equals symbol and a string, (which may contain variable or function references) each
separated by spaces.

Here are some examples of assignments:

%S = @VOLINFO(D:,S)
%T = Backing up drive %D

BEEP
Syntax:

BEEP

Description:

Sounds a beep.

OK:

Unchanged.

Example:

BEEP
See also:

BITMAP(<name>;<top>;<left>;<width>;<height>;<filename>;<style> {; <style>})

This dialog element creates a bitmap at the position and size specified, containing the image <filename>.    The image can be a
bitmap (BMP) icon (ICO) or metafile (WMF) format.    If an executable (EXE) file is specified then its icon is displayed.    If the width
or height are omitted then the bitmap control is automatically sized to the image.    If STRETCH is specified then the image is sized
to fit the bitmap control (note that this has no effect on icons.)    If CLICK is specified bitmap will generate CLICK events when
clicked with the mouse.    The HAND    style is the same as CLICK, but a hand cursor will be shown when over the bitmap.    The
CROSS style is the same as CLICK, but a cross cursor will be shown when over the bitmap.

BREAK
Syntax:

BREAK

Description:

Marks the position of a breakpoint during debugging.

NOTE: this command should not be entered into the script manually; instead, the Add/Clear Breakpoint at Cursor options
from the script window context menu should be used.

OK:

Unchanged.

Example:

BREAK
See also:

The Visual DialogScript development environment

BUTTON(<name>;<top>;<left>;<width>;<height>,<caption>;<style>)

This dialog element creates a button at the position and size specified.    The name is used as the caption for the button. If you want
to use characters in the button caption that are invalid in a name, such as the & symbol which makes the following character a
keyboard shortcut, you can specify a separate caption. When the button is pressed, it will cause an event of type <name>BUTTON.

Bitmap Editor
Windows already includes a useful bitmap editor - Windows Paint.    The Bitmap Editor option of the Tools menu provides you with a
quick method of accessing this utility.

CHECK(<name>;<top>;<left>;<width>;<height>;<caption>;<initial state>;<style>)

This dialog element creates a check box at the size and position specified, with a text caption of <caption> and an initial state of
unchecked (0) or checked (1).

CLIPBOARD
Syntax:

CLIPBOARD APPEND,    <string>

CLIPBOARD CLEAR

CLIPBOARD SET, <string>

Description:

The CLIPBOARD command is used to put data into the Windows clipboard.

CLIPBOARD APPEND adds the contents of <string> to whatever is already in the clipboard. Successive appends add the
text on a new line.

CLIPBOARD CLEAR empties the clipboard of any data that was in it.

CLIPBOARD SET sets the contents of the clipboard to the text <string>.

OK:

Unchanged.

Example:

CLIPBOARD SET,Hello Clipboard!
See also:

LIST

COMBO(<name>;<top>;<left>;<width>;<height>;<value>;<style>{; <style>})

This dialog element creates a combo box at the position and size specified.    A combo box is a combination list box and edit control. 
To get data into and out of the edit control you use the DIALOG SET command and @DLGTEXT function.    To get data into and out
of the list box you must use the LIST command. The optional style SORTED specifies whether the list items are to be maintained in
ASCII order or not.    Data entered in the edit control is automatically inserted into the list box when the focus moves away from the
control.

Capturing icons
If you are not very artistic, it is often easier to create an icon by modifying an existing icon or a bitmap containing a design that you
want to use.

There are two ways by which you can get images into Icon Editor.    You can open a bitmap file (*.BMP), then use the scroll bars that
appear alongside the editing area to pan the 32 x 32 window until the graphics you want are positioned in the window.    Then you
can edit the graphics in the normal way.

You can also paste bitmaps into the editor from the clipboard.

To capture an icon from another program, use Explorer to show the folder containing the program file as large icons, scroll the
Explorer window until the icon is in view, press Alt + PrtScr to capture that window to the clipboard, then use Edit / Paste to copy the
window into the Icon Editor.    Then use the scroll bars to move the editing area to the icon you want.

Command Reference
BEEP
CLIPBOARD
DDE
DIALOG
DIRECTORY
EXIT
EXITWIN
FILE
GOSUB
GOTO
IF
INFO
INIFILE
LIST
OPTION
PARSE
PLAY
REGISTRY
REM
REPEAT
RUN
RUNH
RUNM
RUNZ
SHELL
SHIFT
TITLE
WAIT
WARN
WINDOW

Commands
Unlike labels, commands need not start in the first character position.    It is recommended that they are indented using spaces for
readability.

A command consists of the command name (see Command Reference) followed optionally by a string.    The string is used as the
argument (or parameters) to the command.    Most commands have only a single argument, but some have more than one, in which
case commas are used to separate the parameters.    A space must separate the command from the string.    Commands are not
case-sensitive.

Here are some examples of commands:

TITLE My first script
INIFILE WRITE,Reg_Info,UserName,Fred Bloggs

Strings may include variable and function references, which are evaluated before the command is carried out.    Here is an example
of commands containing variable and function references:

IF @FILE(%F)
 INFO File %F exists
END

Contents
User Guide

Command Reference

Function Reference

Examples

How to Register

Upgrade Notes

Controlling Notepad
This script gives an example of how to control another application (the Windows 95 Notepad) using Visual DialogScript. Note the
use of repeat .. until @winexists() to ensure that a window has appeared before sending keystrokes to it, and the use of wait
commands to give the application time to respond to commands.

title WinTest
%A = Notepad
%W = Untitled - Notepad
%X = Help Topics: Notepad Help
%Y = Notepad Help
%Z = Save As
if @winexists(%W)
 window activate,%W
else
 run %A.EXE
end
file delete,test.txt
wait 1
window position,%W,84,640,400
rem enter some text
window send,%W,This is a test string@CR()
window send,%W,This is some more text@CR()
window send,%W,@tab()This text is indented.@CR()
window send,%W,123+£456=£789!! 5 > 4 = true?@CR()
wait 1
rem open and close help
window send,%W,Let's look at the help file!@CR()
window send,%W,@key(F1)
rem wait for Help Topics dialog
%C = 1000
repeat
 %C = @pred(%C)
 if @zero(%C)
 warn Cannot find window %X - aborting
 exit
 end
until @winexists(%X)
wait 1
window send,%X,@key(down)@key(down)@cr()@key(down)@cr()
%C = 1000
repeat
 %C = @pred(%C)
 if @zero(%C)
 warn Cannot find window %Y - aborting
 exit
 end
until @winexists(%Y)
wait 2
window send,%Y,@alt(@key(F4))
wait 2
window send,%W,Let's copy some text to the clipboard...@CR()
wait 1
window send,%W,@ctrl(@key(home))@shift(@key(end)@key(down)@key(down)@key(down)@key(end))
wait 1
window send,%W,@ctrl(c)
wait 1
window send,%W,@ctrl(@key(end))
wait 1
window send,%W,... and insert the copied text here.@CR()
wait 1
window send,%W,@shift(@key(ins))
wait 3
window send,%W,@CR()Now let's save the file.@CR()
rem save the file as TEST.TXT
window send,%W,@alt(F)A
rem wait for Save As dialog
%C = 1000
repeat
 %C = @pred(%C)
 if @zero(%C)

 warn Cannot find window %Z - aborting
 exit
 end
until @winexists(%Z)
wait 1
window send,%Z,TEST.TXT
wait 2
window send,Save As,@chr(27)
wait 1
window send,%W,Changed my mind!@CR()
wait 2
rem quit Notepad
window send,%W,@alt(FX)
%C = 1000
repeat
 %C = @pred(%C)
 if @zero(%C)
 warn Cannot find window %A - aborting
 exit
 end
until @winexists(%A)
wait 1
rem select No option on dialog
window send,%A,@alt(n)
exit

Converting bitmaps to icons
You can convert bitmap files (*.BMP) to icons using the Icon Editor.    This means that you can use another bitmap editor (such as a
paint program) to create your icons, if you prefer.    You can open a bitmap file from the File / Open menu using the Open tool bar
button.

Bitmaps must be the correct size for an icon (32 x 32 pixels).    If the bitmap is larger you will have to use the scroll bars to select the
32 x 32 area you want.

Next you must change the background of the design to the transparent color by selecting that color in the color box and using the
Fill tool.    If you don't want your icon to have a transparent background then make sure that the selected transparent color is not
used in the icon.

Then save the icon using File / Save or the Save tool bar button.

Creating Dialogs
DialogScript allows you to create a dialog window for your script, containing buttons and other controls.    You can use the dialog to
present information to (and obtain it from) the user.    You create a dialog window using the DIALOG CREATE command, which has
the format:

DIALOG CREATE, <window name>, <top>, <left>, <width>, <height>, <description>

The text <window name> appears in the title bar of the window.    The parameters    <top>, <left>, <width> and <height> specify the
initial position and dimensions of the dialog window.    If the value of <top> is negative then the window is positioned in the center of
the screen.    The value of <height> refers to the client area of the window: it does not include the height of the title bar.

The <description> consists of one or more dialog elements, separated by commas.    Because the description can consist of many
elements, DialogScript allows you to continue the description on the following line, by ending the line with a comma followed by a
dash.    Note that the dialog position and size parameters must be in the first line of the command.

Dialog elements begin with the element type, which is optionally followed by details such as the control name, size, position and
initial value.    The details are contained within brackets and separated by semicolons.    See Dialog Elements for more information.   
See also Example.

Visual DialogScript's Dialog Editor allows you to design a dialog box interactively, and then generates the DIALOG CREATE
command for you.

Creating new icons
To create a new icon from scratch choose File / New or press the New button on the tool bar.    The icon editing area will be cleared
showing only the current transparent color.

Choose the foreground and background colors by clicking with the left and right mouse buttons on colors in the color box.    Then
select drawing tools, and draw with them using the left or right mouse button to chose the color to use.

Use Edit / Undo (or press the Undo button) to reverse the effect of your last change.    To erase areas of the icon use the drawing
tools (such as the Pen) with the background color selected.

When an icon is displayed in Windows, the window background shows through those pixels that have been defined as transparent.   
Usually these are the border or background of the icon.    The icon editor lets you choose which color to use to represent the
transparent areas of the icon.

DDE
Syntax:

DDE    LINK, <servername>,    <topicname>
DDE    EXECUTE, <macro>
DDE    POKE,    <itemname>,    <data>
DDE    TERMINATE

Description:

The DDE commands are used to establish and terminate a link using DDE between a script program acting as a DDE
client and another application acting as a DDE server.

The DDE LINK command is used to initiate the DDE link before any communication can take place.    The DDE
TERMINATE command is used to terminate the link once communication has finished.

The DDE EXECUTE command is used to send to the server application a command (or DDE macro) to be executed.   
The commands that are valid are dependent on the application.

The DDE POKE command is used to send data to a named item in the DDE server.    Many applications do not accept
poked data.

OK:

Set to false if the DDE command fails.

Example:
DDE LINK,Progman,Progman
if @ok()
 DDE EXECUTE,[CreateGroup(Visual DialogScript 2.0)]
end
if @ok()
 DDE EXECUTE,[ShowGroup(Visual DialogScript 2.0,1)]
end
if @ok()
 DDE EXECUTE,[AddItem(@shortname(C:\Visual DialogScript\ds.exe)",Visual DialogScript")]
 DDE EXECUTE,[AddItem(@shortname(C:\Visual DialogScript\ds.hlp)",Visual DialogScript 2.0
Help,winhelp.exe")]
end
if @not(@ok())
 warn Setup failed to create start menu shortcuts
end

See also:

@DDEITEM   

DIALOG
Syntax:

DIALOG    CLEAR,    <control name>
DIALOG    CLEARSEL,    <control name>
DIALOG    CLOSE
DIALOG CREATE, <window name>,    <top>, <left>, <width>, <height>, <description>
DIALOG    CURSOR {, WAIT}
DIALOG    DISABLE,    <control name>
DIALOG    ENABLE,    <control name>
DIALOG    FOCUS,    <control name>
DIALOG    HIDE,    <control name>
DIALOG    POPUP
DIALOG    SET,    <control name>, <text>
DIALOG    SHOW,    <control name>
DIALOG    TITLE,    <title>

Description:

The DIALOG command is used to create a dialog window for the program and manage its controls.    The dialog becomes
the program's main window, and will exist until the program terminates.

DIALOG CLEAR clears the text in the control named <control name>.

DIALOG CLEARSEL clears the selected item in a list box control named <control name>.

DIALOG CLOSE tells the dialog window to close.    It has the same effect as closing the dialog from the system menu or
the close button, and will generate a CLOSE event.

DIALOG CURSOR, WAIT sets the cursor for the dialog to an hourglass.    The command DIALOG CURSOR sets it back to
the default cursor.    To provide feedback to the user your script program should show the hourglass cursor whenever it will
take some time to respond to a user action.

DIALOG CREATE creates a dialog window to the design you specify.    This command has many different parameters
which form the <description>.    It is described in more detail in the topics Creating Dialogs and Dialog Elements.    You
would normally use the Dialog Editor to generate this command.

DIALOG DISABLE and DIALOG ENABLE disable and enable the control named <control name>.

DIALOG FOCUS sets the input focus to the control named <control name>.

DIALOG HIDE and DIALOG SHOW hide and show the control named <control name>.

DIALOG POPUP causes the dialog's popup menu to pop up at the current cursor location.    This is mainly used to display
a menu when the user clicks on a task bar icon and the dialog itself is hidden.

DIALOG SET sets the text in the control named <control name> to <text>.    In the case of a list box the text replaces the
selected item; it is added if no item is selected.    In the case of a bitmap the bitmap file <text> is loaded into the control.

DIALOG TITLE sets the text in the title bar of the dialog window to <title>.    This is different from setting the title of the
script program, which is done using the TITLE command.

OK:

Unchanged.

Example:

dialog title,Address Book
dialog clear,Name
dialog set,NM,1
dialog focus,Name

See also:

@DLGTEXT TITLE Dialog Programming

DIRECTORY
Syntax:

DIRECTORY CHANGE, <path>

DIRECTORY CREATE, <path>

DIRECTORY DELETE, <path>

Description:

The DIRECTORY command is used to change, create or delete directories.

DIRECTORY CHANGE changes the current directory to the one named in <path>.    If <path> is on a different drive to the
current drive then this is changed as well.    This command is similar in operation to the MS-DOS CHDIR command.

DIRECTORY CREATE creates a new directory named <path>.    If necessary, it will recursively create all the
subdirectories in the path.    This command is similar in operation to the MS-DOS MKDIR command.

DIRECTORY DELETE removes the directory named in <path>.    The directory must be empty or it will not be removed.   
This command is similar in operation to the MS-DOS RMDIR command.

OK:

True if the operation is successful; false if not.

Example:

directory delete,f:\tmp1
directory create c:\test\subdir1\subdir2

See also:

DLGTYPE(<style> {, <style>})

Styles can include DRAGDROP - dialog accepts drag-and-drop operations, which will cause a DRAGDROP event to occur; ONTOP
- Dialog will remain on top of other windows even when inactive; SAVEPOS - Dialog will remember its last screen position whenever
the program is run; SMALLCAP (32-bit only) - Dialog will have a small toolbar-style title bar; plus user defined styles that are to
apply to the whole dialog.

Data Lists
Syntax:

LIST    <list>, DROPFILES
LIST    <list>, FILELIST, <filespec>, {<attributes>}
LIST    <list>, LOADFILE, <filename>
LIST    <list>, REGKEYS, <root key>,    <subkey>
LIST    <list>, REGVALS, <root key>,    <subkey>
LIST    <list>, SAVEFILE, <filename>

Description:

These LIST commands are used to get data into string lists.    The parameter <list> must be either a list number or the
name of the dialog list control to which the command will apply.    An error will occur if the list does not already exist.

DROPFILES is used to add to the list <list> the names of files that have been dropped on to a dialog window that has the
DRAGDROP property.    For more information see Dialog Programming and the WinTouch example script.

FILELIST is used to add to the list <list> the names of files that match a particular specification, which may include
wildcards.    Note that whether just the name and extension or the full path is returned depends on whether a full path is
given in <filespec>. The file specification may optionally be followed by a list of attributes which will be used to filter the list
of files selected.    The attributes may be specified as: A - archive; D - directory; H - hidden; R - read only; S - system; V -
volume label. The pseudo-attribute * (asterisk) may be specified; this will return a recursive list of directories starting from
(but not including in the list) <filespec>.    For an example of this in use see the File Deleter example script.

LOADFILE is used to create a list holding the contents of a named text file.

REGKEYS is used to obtain a list of subkeys of the named subkey (see the REGISTRY command for more details).

REGVALS is used to obtain a list of values of the named subkey. (32-bit only)

SAVEFILE is used to save the contents of a list to a named text file.

OK:

Set to false if the LIST command fails.

Example:

LIST 1,LOADFILE,C:\CONFIG.SYS
LIST LB1,FILELIST,*.tmp

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT LIST Using
Lists

Debug Window
The debug window is used to examine the contents of variables, lists and the OK status variable.

This window is most useful when single-stepping through a script.

Development Environment
Visual DialogScript has an interactive development environment (IDE) which makes it easy to develop and debug your Windows
scripts.    The environment is run from the main window, shown below, which is normally positioned at the top of the screen.

 For a description of each feature of the IDE interface, click on a button or menu on the picture below.

Scripts are edited in the script window, which is a standard Windows text editor similar to Notepad.    Scripts can be run from the
main window, using either the menu options or the toolbar buttons.

Visual DialogScript provides several aids to debugging.    You can set a breakpoint at any point in the script, and then check the
value of each variable using the debug window.      You can also use single-step mode to step through the script a line at a time.

The Tools menu provides access to several tools which will help you to create your script program, including the Window Spy, the
Icon Editor the Bitmap Editor and the Dialog Editor.    You can add your own tools to the menu.    Check our Web site for add-in tools
you can download.

Dialog
The fields on the Dialog page of the dialog editor should be filled in as follows:

Title: This is the text that will appear in the caption bar of the dialog.

Position: These are the top position, left hand edge position, width and height, respectively, of the dialog.    You can enter the
value -1for the Top position if you want the dialog to appear in the center of the screen.    The width and height can be
set by dragging the edges of the dialog using the mouse.

Elements: This is the list of dialog elements that determines the appearance and behavior of the dialog and what controls
appear on it.    To edit an element you can double-click on it.    To add a new element press Ins, or right-click the list
and select Add Item from the context menu.

The order in which the elements appear can affect how the dialog works.    When the user hits the Tab key the input
focus will move from one control to the next in the order that the elements appear in the list.    The first button to be
defined will be the default button, which is the one executed when the user hits Enter.    You can move elements up
and down the list using Ctrl+U and Ctrl+D.

Dialog Editor
The Dialog Editor lets you design dialogs visually, instead of by writing a DIALOG CREATE command.

You can access the Dialog Editor in three ways:
from the Tools menu, you can create a new dialog from scratch, and then paste the generated description into the code

window using the context menu.
from the code window using the context menu.    To edit an existing dialog description, place the cursor on the first line of

the DIALOG CREATE command before right clicking the mouse.
from the File menu, you can choose New, and then pick the Dialog Wizard.    The wizard will let you run the Dialog Editor

to design a new dialog from scratch, and then generate all the DialogScript code for a working (though non-functional) application.

See also:

Using the Dialog Editor

Dialog Elements
Dialog elements are parameters to the DIALOG CREATE command which specify the characteristics of the dialog window you want
to create and the controls that should appear on it.

Most dialog elements have parameters, which are enclosed in brackets after the element name.    The parameters are separated by
semicolons.    The name parameter, where required, is mandatory and is used to address the control when you want to write text to it
or read text from it.    Most of the remaining parameters are optional, and may be left as null or omitted;.    When omitted,
DialogScript will use suitable defaults.    With controls you will usually want to specify at least the top and left position co-ordinates.   
Position co-ordinates are relative to the client area of the dialog window.

The following dialog elements are available:

BITMAP(<name>;<top>;<left>;<width>;<height>;<filename>;<style> {; <style>})
BUTTON(<name>;<top>;<left>;<width>;<height>;<caption>;<style>)
CHECK(<name>;<top>;<left>;<width>;<height>;<caption>;<value>;<style>)
COMBO(<name>;<top>;<left>;<width>;<height>;<value>;<style>{;<style>})
DLGTYPE(<style> {, <style>})
EDIT(<name>;<top>;<left>;<width>;<height>;<value>;<style>)
LIST(<name>;<top>;<left>;<width>;<height>;<style>{; <style>})
POPUP(<item>{; <item>...})
PROGRESS(<name>;<top>;<left>;<width>;<height>;<value>)
RADIO(<name>;<top>;<left>;<width>;<height>;<caption>;<value list>;<value>;<style>)
STATUS(<name>;<value>;<style>)
STYLE(<name>
TASKICON(<name>;<filename>;<tooltip text>) (32-bit only)
TEXT(<name>;<top>;<left>;<width>;<height>;<value>;<style>)

The order of specifying the dialog elements can be important.    The first button to be specified will be the default button which is
executed if the user presses Enter.    The tab order of controls that can accept input will be the order of specification, and the first
such control to be specified will be the one that has the input focus when the dialog window is created.

An easier way to create a dialog than by working out a list of dialog elements is to use the Dialog Editor.

Dialog Programming
DialogScript allows you to create dialog windows which function as the main window for your script application.    Dialog windows
may contain a number of controls, such as text controls and a status panel for displaying captions and other information, and edit
controls, check boxes and list boxes which can not only display information but allow interaction with the user, plus buttons and
menus which tell you when to process information by generating events.

You create a dialog using the DIALOG CREATE command.    You can design the dialog interactively using the Dialog Editor, which
will then generate the correct DialogScript code to create the dialog.    The dialog must include buttons which users can press when
they want the script to do something with the information in the dialog.    See Creating Dialogs for more information.

When a button is pressed it generates an event.    For a user-defined button the name of the event is the name of the button
followed by BUTTON; for example, when the OK button is pressed an OKBUTTON event occurs.    The dialog close button (and
selecting Close from the system menu) generates a CLOSE event.    Other possible events are the DRAGDROP event, which
occurs if the dialog window is drag and drop enabled and files are dragged to the window, and the CLICK event which occur when
the mouse is clicked over a bitmap.    See Events for more information.

There are two ways to process events.    You can use WAIT EVENT.    This halts the script entirely until an event occurs.    When it
does, you can test it using the @EVENT function, carry out whatever processing is required, and if appropriate loop back to the
WAIT EVENT command to wait for the next event.

If you require your script to do other work while the dialog is displayed then you can simply test @EVENT regularly: it will return null
if no event has occurred.    If your script needs to respond to events as well as doing some processing on a regular basis you can
use WAIT EVENT,<n>, which in addition to dialog events will generate a TIMER event every n seconds.

The dialog will remain until the program terminates, when the final EXIT command is executed.    For an example of dialog
processing, see the Dialog Example.

The simplest way to write a dialog-based DialogScript program is to use the Dialog Wizard.    This lets you design the dialog using
the Dialog Editor and then generates a skeleton program with labels for all the possible events.    All you need do is write the code to
respond to each event.

Dialog Wizard
The Dialog Wizard helps you to write a dialog-based DialogScript program.

When you run the Wizard, you enter a title for your program, design the dialog using the Dialog Editor, and then the Wizard
generates all the code for the program, including dummy handlers for each of the possible events.    You then simply replace the
dummy event handlers with your own code.

Dialog
This script displays a dialog showing all the available control types (except the task bar icon and the popup menu) and
demonstrates the use of styles and how data is got into and out of the controls.

title Dialog Example
DIALOG CREATE,Dialog test,-1,0,310,270,-
 STYLE(Cyantext;Times New Roman;10;I;backgrnd;cyan),-
 STYLE(BigText;Arial;12;B),STYLE(Gray3D),-
 STYLE(Bold;MS Sans Serif;8;B),-
 STYLE(Yellowtext;Arial;8;;backgrnd;yellow),-
 DLGTYPE(SAVEPOS),-
 Text(Txt;6;10;;;This is a text control;BigText),-
 Edit(edt;26;10;118;;This is an edit control;Gray3D),-
 status(stat;This is a status bar;Cyantext),-
 list(lst;52;10;;80;Gray3D),-
 COMBO(COMBO1;140;10;;;This is a combo control;GRAY3D),-
 radio(rg;24;208;;;Radio Group;Button 1|Button 2|Button 3|Button 4|Button 5;Button 1),-
 check(chk;142;210;80;;Check box;;Yellowtext),-
 BITMAP(bmp;170;210;32;32;Mmplay.ico),-
 progress(prog;170;10;;;50),button(OK;210;10;;;;Bold),-
 button(Cancel;210;124;;;;Bold)
dialog set,edt,This is an edit control
list lst,loadfile,c:\autoexec.bat
%P = 0
:evloop
wait 1,event
%E = @event()
if @equal(%E,TIMER)
 %P = @succ(%P)
 dialog set,prog,%P
 dialog set,stat,Progress: %P%
 goto evloop
end
if @equal(%E,OKButton)
 info
Edit:@tab()@dlgtext(edt)@CR()List:@tab()@dlgtext(lst)@CR()Check:@tab()@dlgtext(chk)@CR()Ra
dio:@tab()@dlgtext(rg)
 goto evloop
end
if @equal(%E,CancelButton)
 info You pressed Cancel
 exit
end
if @equal(%E,CLOSE)
 info You pressed Close
 exit

end

DialogScript Language
The DialogScript programming language has been designed to be simple, flexible and easy to use.    The language has three main
elements, labels, commands and assignments.

EDIT(<name>;<top>;<left>;<width>;<height>;<text>;<style>)

This dialog element creates an edit (input) box at the position and size specified, containing the text <text>.    The PASSWORD
style, specific to edit controls, causes asterisks to be displayed for every character typed.

ELSE
See: IF

END
See: IF

EXIT
Syntax:

EXIT

Description:

When obeyed after a GOSUB command, causes execution to continue at the line following the GOSUB.    Otherwise,
EXIT causes execution of the script to terminate.

OK:

Unchanged.

Example:

EXIT
See also:

GOSUB   

EXITWIN
Syntax:

EXITWIN    <exit option>

Description:

This command lets you shut down Windows under script control.

The valid options are:

SHUTDOWN A normal shutdown.    This is the default.

REBOOT Shuts down Windows and reboots the system.

POWEROFF On a system with software power control, shuts down and turns off the power. (32-bit only)

OK:

Unchanged.

Example:

EXITWIN REBOOT
See also:

Editing Dialog Elements
You can change the size and position of a dialog control by dragging it on the dialog itself.    To change the other attributes you must
edit the dialog element which is displayed on the Dialog Element tab of the Dialog Editor.

For dialog controls the Dialog Editor looks as shown above.    The type and name of the control are shown in the first two fields.   
They cannot be changed.    To rename a control you must delete it and then recreate it.
The remaining fields are editable.    Not all fields are applicable to every control type.    Those which are not are disabled.    When you
press the Help button you will call up a page of help describing the type of control currently being edited and the fields that are
applicable.    After you have changed a field, press Enter or Tab and the change will be reflected in the dialog.

Note that default values are used where an applicable field is left blank.    Typically, the height of a control is left blank, as controls
are normally created at the appropriate height for the default size of text.

The Caption field is used for text that describes the control, such as the name of a button.

The Filename field is used to specify the name of a file, such as a bitmap file for a BITMAP control, or an icon for a TASKICON
dialog element.    The name can be entered manually, or selected from a standard Windows File Open dialog which is called up by
pressing the button captioned ...

The Values field is used to define multiple values for a control, such as a group of radio buttons or the items on a popup menu.   
Note that values are separated from one another by vertical bar characters.

The Value field is used to set an initial value for a control which will be displayed when the dialog first appears.

In the Styles field you can select the valid styles from the drop down list.    If more than one style is chosen, a semicolon must
separate each one.    Valid styles include those you have defined, plus special styles that apply only to a particular control, such as
the PASSWORD style for an EDIT control.

Editing Styles
Styles are used to specify the colors or fonts to be used for a control, or for the entire dialog.    When you are defining or editing a
style, the Dialog Editor looks like this:

Again, the name of a style once defined is fixed, and can only be changed by deleting the style and redefining it.
The font name, size and style (bold, italic) can be entered manually or selected from the standard Windows font selection dialog
which can be called up by pressing the button captioned ...The Position field determines whether text is left or right justified, or
centered in the control.

The Backgrnd and Foregrnd fields set the background and foreground colors, respectively.

Defaults are used where fields are left blank.

Error Messages
1 Invalid Command

An invalid DialogScript command has been encountered.    Usually this means it has been misspelt.

2 Missing parameter(s)

The command executed expects more parameters than the number given.

3 Style already defined

An OPTION STYLE command defining this style has previously been executed.

4 Invalid list operation

The string list or list box control referenced in this command does not exist..

5 Invalid variable in assignment

Valid variable names are %1 .. %9 and %A .. %Z.

6 "=" symbol expected

A command started with a variable name but no equals symbol was found.

7 Invalid @ function

An invalid DialogScript function has been encountered.    Usually this means it has been misspelt.

8 Syntax error in @ function

Something is wrong with a function call (often a bracket missing.)

9 Missing END or ELSE

An IF or ELSE command has been executed but the corresponding ELSE or END could not be found.

10 Command nested too deeply

REPEAT or GOSUB commands have been nested more than 9 deep.    This can be caused by incorrect use of the GOTO
command.

11 Missing argument(s) to @ function

The function executed expects more parameters than the number given.

12 Label not found

The label named in a GOTO or GOSUB command could not be found.

13 Invalid argument to @function

One of the parameters to a function is not valid.

14 Invalid parameter to command

One of the parameters to a command is not valid.

15 UNTIL without REPEAT

An UNTIL command was encountered but no previous REPEAT has been executed.

17 Dialog already exists

A DIALOG CREATE command cannot be executed when a dialog window already exists..

18 Dialog control does not exist

The dialog control referenced in the DIALOG or LIST command or @DLGTEXT function does not exist.

19 List index out of range

The item number in a list index operation is less than 0 or greater than the number of items in the list.

20 File does not exist

The icon or bitmap file referenced in a dialog element cannot be found.

21 Cannot create control

Visual DialogScript cannot create a control specified in a DIALOG CREATE command.    A dialog element may contain an
invalid parameter, for example, the control name may be duplicated or invalid.

22 Operation invalid when no dialog showing

Function or command can only be used when a dialog is being displayed.

23 Control name not valid

The name specified for a dialog control contains an invalid character: names should contain only alphanumerics, and
begin with a letter.

29 Unexpected error: <explanation>

An error in the DialogScript interpreter has occurred.    Please report details, including the circumstances that caused it, to
J M Technical Services.

30 Breakpoint reached

The script was stopped at a breakpoint.

31 Stopped by user

The script was paused.

Events
Events occur when the user interacts with a dialog which you have created using the DIALOG CREATE command.    You can halt
your script and wait for an event to occur using the WAIT EVENT command.    You can find out the type of event using the @EVENT
function.

BUTTON events occur when a button is pressed.    The type of event is <name>BUTTON, where <name> is the name of the button. 
So when the user presses a button labelled OK an OKBUTTON event occurs.

CLICK events are optional.    They occur when a mouse button is clicked over a bitmap when the CLICK style has been specified.   
You can find out which button was pressed, which bitmap control it was clicked over and the X and Y co-ordinates within the bitmap
by using the @CLICK function.

CLOSE events occur when the user closes the dialog from the system menu or using the close button, or when the user shuts down
Windows.    The script should respond to this event by saving any unsaved data and terminating.

DRAGDROP events are optional.    If the DRAGDROP dialog element is specified and a file or files are dragged to the dialog
window then a DRAGDROP event occurs.    You can find out the filenames by using the LIST DROPFILES command to get them
into a string list.

ICON events occur when the user clicks on a task bar icon created by the script program. (32-bit only)

MENU events occur if you have defined a popup menu for the dialog window.    The type of event is <name>MENU where <name>
is the name of the menu item that was selected.

A TIMER event occurs when you use a command of the form WAIT EVENT, <interval>.    It occurs <interval> seconds after the
command was issued.

Examples
These example scripts illustrate various techniques and ideas for using Visual DialogScript.    To run the examples, simply copy them
to a new script window,.save them to a suitable file name, modify them as necessary and then run them.

Address Book
Controlling Notepad
Dialog
Explorer menu
File deleter
List
MCI Test
Multimedia Player
Registry Information
Setup Wizard
Startup
TaskBar icon demo
Task Launcher example
WinTouch example
Version Info Example
Zip List example
Zip Shell example

Explorer menu example
Even very simple script programs can be extremely useful.    The one line script (two if you include the comment!) shown below lets
you add a "DOS Prompt" item to folder context menus: when you choose the option you get a DOS window that puts you straight
into the chosen folder.

rem Open command prompt in directory %1
shell open,command.com,,@shortname(%1)

Once you have made this script into an EXE (for example, DOSPrmpt.EXE) create the Registry entry for it by entering the following
into a blank script window and then running it:

REGISTRY WRITE,ROOT,Folder\shell\DOS Prompt\command, "<insert path>\DOSPrmpt.EXE %1"

FILE
Syntax:

FILE COPY, <file path 1>, <file path 2> {, <WARNOVERWRITE> }

FILE DELETE, <file path>

FILE RENAME, <file path 1>, <file path 2>

FILE SETDATE, <file path>, <time>, <date>

FILE SETATTR, <file path>, <attributes>

Description:

FILE COPY copies the file named in <file path 1> to <file path 2>.    The original date and time are preserved.    Wildcards
are not supported in the file paths.    The optional WARNOVERWRITE parameter (32-bit only) sets OK to False if the
target file already exists, instead of overwriting it.

FILE DELETE erases the file named in <file path>.    This command is similar in operation to the MS-DOS DEL command.

FILE RENAME renames the file named in <file path 1> to <file path 2>.    A file can be renamed from one directory to
another (in other words, moved) only if both directories reside on the same logical drive.        This command is similar in
operation to the MS-DOS REN command.

FILE SETDATE changes the time and optionally the date of the file <file path>.    The <time> and <date> should be in the
short time and short date styles set in the Windows control panel.

FILE SETATTR changes the attributes of the file <file path>.    The string <attributes> consists of one or more of the
following characters:

+ turns on the attributes following (default)
- turns off the attributes following
A archive attribute
H hidden attribute
R read only attribute
S system attribute

OK:

True if the operation is successful; false if not.

Example:

file delete,TEST.TXT
file copy A:\DS.EXE,%C\DS.EXE
file setdate,DS.HLP,2:00,1/3/96
file setattr,C:\MSDOS.SYS,-SRH

See also:

@FILE

File deleter
This example script is a utility which will search through all the directories on a selected drive looking for files that match a particular
file specification.    Files that it finds can be removed from the list by selecting them and pressing Reprieve; those that remain are
deleted by pressing Delete.    The example demonstrates a number of useful techniques, including how to detect what drives are
present on a system, how to sweep the directory structure, and how to store the last four combo box selections in the Registry.

Title Flush
rem delete all files on a drive with a specified extension
DIALOG CREATE,Flush,-1,0,394,288,DLGTYPE(SAVEPOS),TEXT(T1;12;10;;;Drive:),-
 COMBO(Drv;10;50;50),TEXT(T2;12;180;;;Filespec:),COMBO(Spec;12;230;60),-
 TEXT(T3;36;10;;;Files to delete:),LIST(LB;55;10;366;160),BUTTON(Search;228;24),-
 BUTTON(Reprieve;228;116),BUTTON(Delete;228;208),BUTTON(Quit;228;300),-
 STATUS(SP)
dialog set,Drv,@regread(DEFAULT,Flush,LastDrive,C:)
dialog set,Spec,@regread(DEFAULT,Flush,LastSpec,*.tmp)
%C = 1
repeat
 %E = @regread(DEFAULT,Flush,FileSpec%C)
 if %E
 list Spec,add,%E
 end
 %C = @succ(%C)
until @equal(%C,5)
dialog set,SP,Checking available drives...
gosub builddrv
:evloop
 dialog set,SP,@count(LB) files selected
 wait event
 %E = @event()
 goto %E
:SearchButton
 dialog cursor,wait
 list 1,create
 list 2,create
 %D = @dlgtext(Drv)
 list 1,filelist,%D,*
 repeat
 dialog set,sp,Searching %D
 list 2,filelist,%D\@dlgtext(Spec)
 repeat
 %F = @next(2)
 if %F
 list LB,add,%F
 end

 until @null(%F)
 list 2,clear
 %D = @next(1)
 until @null(%D)
 list 1,close
 list 2,close
 dialog cursor
 goto evloop
:ReprieveButton
 DIALOG CLEARSEL,LB
 goto evloop
:DeleteButton
 list LB,seek,0
 repeat
 %F = @item(LB)
 if @not(@null(%F))
 file delete,%F
 list LB,delete
 end
 until @null(%F)
 dialog clear,LB
 dialog cursor
 goto evloop
:QuitButton
:Close
 registry write,DEFAULT,Flush,LastDrive,@dlgtext(Drv)
 registry write,DEFAULT,Flush,LastSpec,@dlgtext(Spec)
 %C = 0
 if @not(@equal(%C,@count(Spec)))
 list Spec,seek,0
 repeat
 %C = @succ(%C)
 registry write,DEFAULT,Flush,FileSpec%C,@next(Spec)
 until @equal(%C,@count(Spec))@equal(%C,5)
 end
 exit
:builddrv
 dialog cursor,wait
 %C = 65
 repeat
 %S = @volinfo(@chr(%C),S)
 if @ok()
 list Drv,add,@chr(%C):
 end
 %C = @succ(%C)
 until @equal(%C,90)
 dialog cursor
 exit

Function Reference

@ALT @ASC @ASK
@CHR @CLICK @COUNT
@CR @CTRL @CURDIR
@DATETIME @DDEITEM @DIFF
@DIRDLG @DIV @DLGTEXT
@ENV @EQUAL @EVENT
@EXT
@FADD @FDIV @FILE
@FILEDLG @FMUL @FORMAT
@FSUB
@GREATER
@INDEX @INIREAD @INPUT
@ITEM
@KEY
@LEN
@MATCH @MCI
@NAME @NEXT @NOT
@NULL
@OK
@PATH @POS @PRED
@PROD
@QUERY
@REGREAD @RETCODE
@SHIFT @SHORTNAME @SUBSTR
@SUCC @SUM @SYSINFO
@TAB @TRIM
@UPPER
@VERINFO @VOLINFO
@WINACTIVE @WINDIR @WINEXISTS
@WINPOS
@ZERO

Functions
DialogScript contains a range of functions (see Function Reference) which are evaluated at run time and return a string containing
information.

Functions start with an @ symbol followed by the function name.    The argument(s) to the function are in the form of a string
enclosed in parentheses.    The parentheses must be present even if the function takes no arguments.    For functions that take more
than one argument the arguments are separated by commas.

Here are some examples of functions:

@ASK(Do you want to continue?)
@EQUAL(%F,WIN.INI)

Note that because the @ symbol is used to identify functions you cannot use it for any other purpose unless it is enclosed within
double quotes..

GOSUB
Syntax:

GOSUB    <string>

Description:

Causes script execution to continue at the command following the label :<string>.    When an EXIT command is
encountered, execution will jump back to the command following the GOSUB.

OK:

Leaves unchanged.

Example:

GOSUB sayhello
INFO Goodbye
EXIT
:sayhello
 INFO Hello
 EXIT

See also:

EXIT   

GOTO
Syntax:

GOTO    <string>

Description:

Causes script execution to continue at the command following the label :<string>.

Note that using the GOTO command to branch to a label that is within an IF ... END or REPEAT ... UNTIL group of
commands will result in a "Missing END or ELSE" or "UNTIL without REPEAT" error message, unless the GOTO
command and the label are both within the same group of commands.

Using a GOTO command to branch out of a REPEAT ... UNTIL group of commands will eventually result in a "Command
nested too deeply" error.    The reason is that the DialogScript interpreter does not know that the REPEAT command has
finished until it has executed the UNTIL command with the terminating condition as true.

OK:

Leaves unchanged.

Example:

GOTO label
WARN This message box will not be displayed
:label
INFO This message box will be displayed.

See also:

GOSUB

IF
Syntax:

IF    <string>
      ... commands executed if string not null (true)
ELSE
      ... commands executed if string is null (false)
END

Description:

The string is evaluated.    If the result is a null string (false), execution of the script continues from the command after the
ELSE, if present.    If no ELSE is present then execution continues after the END.

If the string is non-null then script execution continues on the next line, but any commands between the ELSE (if present)
and END will be skipped.

IF commands may be nested.    If this is done then it is important to ensure that the correct ELSE and END commands are
not omitted.    For clarity it is a good idea to indent the nested IF commands as shown in the example.    Note also that
unlike many other languages there is no need for a THEN at the end of the IF command line.

Warning: Because DialogScript treats a non-null result for the condition string as true, if you do mistakenly put a THEN at
the end of an IF command line this will be treated as text and the condition will always be true.    A similar problem will
occur if you omit the @ from a function name, causing it to be treated simply as text.

OK:

Leaves unchanged.

Example:

IF @ask(Do you want to continue?)
 info You answered YES
ELSE
 IF @ask(Are you sure?)
 info You answered NO
 ELSE
 info Make your mind up
 END
END

See also:

@NOT @NULL REPEAT Tip

INFO
Syntax:

INFO    <string>

Description:

Displays a dialog box containing an information symbol icon and the message <string>.    Execution of the script continues
when the OK button is pressed.

OK:

Set to true.

Example:

INFO There is %SKb of free space on drive D:
See also:

WARN @ASK @QUERY

INIFILE
Syntax:

INIFILE    OPEN,    <inifile name>

INIFILE    WRITE,    <section name>, <key name>, <string>

Description:

The INIFILE OPEN command sets the name of the INI file which will be used by any succeeding INI file read and write
commands to <inifile name>.    If no INI file is specifically opened, the default file DEFAULT.INI is used..

The INIFILE WRITE command writes a line <key name>=<string> under the section header <section name> in the
currently open INI file.    A section name of [Scripts] is used if the <section name> parameter is null.

Note that there is no INIFILE CLOSE command as Windows only keeps an INI file open for the duration of each read or
write.

OK:

Leaves unchanged.

Example:

INIFILE OPEN,MYSCR.INI
INIFILE WRITE,Data,Name,Fred Bloggs

See also:

@INIREAD   

Icon Editor
The Visual DialogScript Icon Editor enables you to create or modify icons to use with your scripts. You can access the Icon Editor
from the Tools menu, or from the Make an Executable File dialog box.

The editor looks like this:

Click on the various controls to get a description of what they do.
See also:

Creating new icons

Capturing icons

Converting bitmaps to icons

LIST
Syntax:

LIST    <list>, <command>, <parameters>

Description:

The LIST command is used to create, manipulate and dispose of string lists.    DialogScript allows you to have several
string lists (currently 4) each identified by a number.    List boxes and combo boxes (list controls) which appear in a dialog
window can also be treated as string lists.    The parameter <list> must be either a list number or the name of the dialog list
control to which the command will apply

Lists can contain any number of strings holding up to 255 characters each.    A list can either be sorted, or will retain the
order in which the information was entered.

For more information see Using Lists and Data Lists.

OK:

Set to false if the LIST command fails.

Example:

LIST 1, CREATE, SORTED
LIST 1, ADD, Fred Jones
LIST 1, ADD, John Smith

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT

LIST(<name>;<top>;<left>;<width>;<height>;<style>;<style>})

This dialog element creates a list box at the position and size specified.    The optional style SORTED specifies whether the list items
are to be maintained in ASCII order or not.    To get data into the list box you must use the LIST command.

Labels
Labels are used as the target of GOTO and GOSUB commands.    They start in the first character position of a line with a colon, and
are followed by the label name.

This is an example of a label:

:LABEL
Labels, GOTO and GOSUB commands are used to change the order of execution of script commands.

License Agreement
Visual DialogScript is not free software.    The software is the property of J M Technical Services.    You are granted a license giving
limited rights to use the software under the following conditions:

1) This software is provided as is. All responsibility for determining fitness of purpose rests with you, the user, for which purpose the
free evaluation period is provided.    On registration, the user is deemed to have agreed that the software is fit for the intended
purpose of use, and no refund of the registration fee shall be entertained thereafter, for whatever reason.

2) No liability is accepted for any loss or damage or consequential loss or damage arising directly or indirectly out of the use of the
software or for any other reason.    It is entirely your responsibility to take all necessary precautions to safeguard against any such
loss or damage before, during and after the evaluation period.

3) You are granted a free license    to use the software solely and exclusively for the purposes of evaluation, for a period of not
exceeding 28 days.    On the expiry of this period, you agree to either a) register the software, or b) cease using the software and
any programs created using it, and to delete all copies of the software from your system.

4) Registration will be made on the basis of one license per non-networked system on which the Visual DialogScript development
system (DS.EXE) is installed.    In the case of systems in which the program is accessible to more than one system at a time, such
as a network server, registration shall be on the basis of one license for each system which is capable of accessing to the software.

5) A free license is granted to use and distribute the run-time packages DSRUN.EXE (32-bit) and DSRUN16.EXE (16-bit) without
limitation.    The sole condition of distribution is that the file DSRUN.TXT must always be distributed with the run-time package.

Visual DialogScript is copyright © 1995, 1996 J M Technical Services.    All rights are reserved.

List
This example uses a list box to demonstrate some of the things you can do with lists.

title List test
DIALOG CREATE,List Example,-1,0,288,240,LIST(LB;10;4;192;200),TEXT(T1;216;4),-
 BUTTON(Add;22;208),BUTTON(Remove;54;208),BUTTON(Match;86;208),BUTTON(Put;118;208),-
 BUTTON(Copy;150;208),BUTTON(Paste;182;208)
%C = 0
repeat
 list LB,add,This is line %C
 %C = @sum(%C,1)
until @equal(%C,16)
:loop
dialog set,t1,Pointer = @index(LB)
wait event
goto @event()
:addbutton
%A = @input(Enter text to add:)
list LB,add,%A
goto loop
:putbutton
%A = @input(Enter text to put:)
list LB,put,%A
goto loop
:removebutton
list LB,delete
goto loop
:matchbutton
%A = @input(Enter text to match:,%A)
if @not(@match(LB,%A)
 warn No match found
end
goto loop
:copybutton
list lb,copy
goto loop
:pastebutton
list lb,paste
goto loop
:close

MCI Test
This script lets you send Multimedia Control Interface (MCI) commands, and displays any error messages that may result.    It is a
good tool for trying out MCI commands prior to incorporating them into your own scripts.

title Test MCI
%2 = open C:\WIN95\MEDIA\THEMIC~1.WAV alias sound
%3 = play sound
%4 = close sound
:loop
%C = @input(Enter MCI command (Cancel quits):,%2)
if @not(@ok())
 exit
end
if @null(%C)
 exit
end
%R = @MCI(%C)
if @ok()
 info MCI Response: %R
else
 warn MCI error: %R
end
shift
goto loop

See also

Using MCI

Making Scripts into Executable Files
Once your DialogScript programs are finished and fully debugged you will probably want to run them on their own, as standalone
programs.    To do this you must create an executable file.

From the Run menu select Create EXE File, and this dialog appears:

You can choose the name for the executable file, by pressing the first Browse button.    By default the EXE has the same name as
the script, and will be created in the same directory.

You can choose to create either a 16-bit or a 32-bit executable file.    A 32-bit executable runs on Windows 95 and NT and uses the
runtime program DSRUN.EXE.    A 16-bit executable runs under Windows 3.1 and above and uses the 16-bit runtime
DSRUN16.EXE.    If you will be distributing the executable program then you must make sure you distribute the correct runtime
program with the file.    (For the terms under which you can distribute the DialogScript runtime see License Agreement.)

You can change the icon from the default Visual DialogScript icon by pressing the second Browse button and choosing an icon file.   
Note that only 16 color 32 x 32 pixel icons can be used.

Press Create to create the executable file.

You can test the executable by pressing the Test button.    (Note that to test a 16-bit executable the 16-bit run time must be installed
on the search path.)

Multimedia Player
This example is a drag-and-drop player for sound (WAV, MID) and video (AVI) files.    You drag the files to the window to play them.

 title Drag'n'Play
 rem version 2 - uses MCI commands
 dialog create,Drag'n'Play,100,100,260,124,DLGTYPE(DRAGDROP),-
 TEXT(T1;10;10;160;84),CHECK(CB;10;180;;;AutoPlay;1),-
 BUTTON(Play;32;180),BUTTON(Stop;62;180),-
 STATUS(SP;Drag files to the window to play them)
 dialog disable,Play
 dialog disable,Stop
 if %2
 %F = %2
 goto file
 end
:loop
 wait event
 goto @event()
:close
 goto closemedia
:dragdrop
 gosub closemedia
 list 1,create
 list 1,dropfiles
 %F = @next(1)
 list 1,close
:file
 if @equal(@ext(%F),WAV)@equal(@ext(%F),MID)@equal(@ext(%F),AVI)
 dialog clear,SP
 %X = @name(%F).@ext(%F)@CR()
 %R = @mci(open %F alias media wait)
 if @ok()
 %R = @mci(set media time format ms))
 if @equal(@ext(%F),WAV)
 %R = @mci(status media channels)
 if @equal(%R,1)
 %X = %XMono@CR()
 else
 %X = %XStereo@CR()
 end
 %R = @mci(status media bitspersample)
 %X = %X%R bits per sample@CR()
 %R = @mci(status media samplespersec)
 %X = %X@fdiv(%R,1000)kHz sampling rate@CR()
 end
 %T = @mci(status media length)
 if @greater(60000,%T)
 %R = @format(@fdiv(%T,1000),4.1) seconds
 else
 %R = @format(@fdiv(%T,60000),4.1) minutes
 end
 %X = %XLength %R
 dialog set,T1,%X
 if @equal(@ext(%F),AVI)
 window position,#AVIWnd,100,360
 %R = @mci(window media state show wait)
 end
 if @dlgtext(CB)

 goto playmedia
 else
 dialog enable,Play
 end
 end
 end
 goto loop
:playbutton
 goto playmedia
:stopbutton
 %R = @mci(stop media)
 dialog clear,SP
 dialog enable,Play
 dialog disable,Stop
 goto loop
:playmedia
 dialog enable,Stop
 dialog disable,Play
 %R = @mci(seek media to start)
 dialog set,SP,Playing: 0%
 %R = @mci(play media)
:ploop
 %P = %R
 wait 2,event
 goto @event()
:timer
 %R = @mci(status media position)
 dialog set,SP,Playing: @div(@prod(%R,100),%T)%
 if @not(@equal(%R,%P))
 goto ploop
 end
 dialog clear,SP
 else
 warn MCI error: %R
 end
 dialog enable,Play
 dialog disable,Stop
 goto loop
:closemedia
 %R = @mci(close media)
 exit

OK

This dialog element provides an easy way to create an OK button which is automatically positioned at the bottom of the window.   
When pressed it causes an OKBUTTON event.

OPTION
Syntax:

OPTION FIELDSEP, <separator character>

OPTION FILENAMES, <SHORT|LONG> (32-bit only)

OPTION REGBUF, <buffer-size>    (32-bit only)

OPTION SLEEPTIME, <interval>    (32-bit only)

Description:

The OPTION command is used to set various options to be used by your script.

OPTION FIELDSEP sets the field separator to be recognised by the PARSE command when it splits a string up into its
separate fields.

OPTION FILENAMES lets you specify whether the LIST ... DROPFILE command returns short or long filenames.    It is
usually better to use short filenames if you will be passing filenames to a DOS program. Note that the LIST ... FILELIST
command and the @FILE() function only return long filenames which are not full paths; to convert these names to short
names the @SHORTNAME function must be used.

OPTION REGBUF lets you specify the size of the buffer used when reading and writing Registry key entries using the
REGISTRY command and @REGREAD function.    The default size is 256 bytes, which is large enough for most
purposes.    Registry keys can be much larger, though, in which case you will need to use this option to make the buffer
larger.

OPTION SLEEPTIME can be used to specify the interval, in milliseconds, that a DialogScript program suspends itself
while executing a WAIT command.    The default is 50.    Increasing this value to, say, 500, would reduce the system
overhead of a script that simply waits in the background, but would give poor performance when users interact with a
dialog.

OK:

Unchanged.

Example:

OPTION FILENAMES,SHORT
OPTION SLEEPTIME,200

See also:

Registering by post
Please use this form when registering by post and enclosing payment using a cheque.

NOTE: We can only accept cheques made out in pounds sterling and drawn on a bank based in the United Kingdom.   
Users are encouraged to register electronically using CompuServe SWREG or RegNet.

Product: Visual DialogScript version 2.00 32-bit

Unit price No. copies Total

Program registration fee: £39.00 ______ £______

========
TOTAL (payable to J M Technical Services) £

========

Order number: _____________________

Your name: __

Company name: __

Your address: __

__

__

Post/Zip code: _________________________

Country: _________________________

Email address: _________________________

Send to: J M Technical Services
11a Cedar Lane
Cockermouth
Cumbria
CA13 9HN
United Kingdom

Email: sales@jmtech.demon.co.uk
100015,1242@compuserve.com

What is Visual DialogScript?
Visual DialogScript is a programming tool that enables you to quickly develop simple batch procedures or dialog-based programs for
Windows as easily as writing a batch file or Basic program for DOS.    It includes an interactive editor and debugger for creating
programs, called scripts, which are written in the DialogScript programming language.    The package also includes tools such as a
dialog editor for visually designing dialog boxes, and an icon editor for creating icons for your completed programs.    There is also a
Dialog Wizard which will generate all the DialogScript code for a complete dialog-based program.

DialogScript has a simple syntax, with English-like commands, spreadsheet-like formula functions and typeless variables.    Script
programs can be tested instantly using the development environment.    When completed, you can create a small EXE file which can
then be run just like any other Windows application.

DialogScript is not intended to be an alternative to programming languages like C, Basic or Pascal for application development.   
But it is a better choice when you need a simple utility or a quick solution to a problem.    Most DialogScript scripts can be written
and tested in a matter of minutes once you are familiar with the script language.    We are confident that you will find Visual
DialogScript an indispensible addition to your collection of Windows utilities.

Examples of tasks for which you could use Visual DialogScript are:
create an 'intelligent' start-up script to load applications or perform housekeeping tasks at start-up, dependent on time,

date etc.;
create a start-up menu with buttons to select which applications are loaded;
create an 'Agent' script that runs in the background and performs actions at certain times;
control other Windows applications by sending keystrokes, using DDE and setting the size and position of their windows;
create software installation programs;
create simple utilities such as databases or system resource monitors;
create front-ends for DOS programs, which can run invisibly in the background so that it looks as if a Windows application

is running;
produce interactive multimedia applications that display bitmaps and play sounds.

Visual DialogScript can create both 32-bit and 16-bit executable files.    16-bit executables must be run using the 16-bit runtime
engine.    16-bit DialogScript programs can use all of the same commands and functions as 32-bit programs, except those that relate
to features not supported under 16-bit Windows, for example long filenames, named Registry values, task bar icons.    Note,
however, that the 16-bit implementation uses fixed length strings internally (maximum length 255 characters) whereas using the 32-
bit version strings are practically unlimited in length.

PARSE
Syntax:

PARSE <field list>, <string>

Description:

The PARSE command provides an easy way to split up strings which represent records in a database into their
constituent data fields.

The <field list> parameter consists of a semicolon-separated list of DialogScript variables or, if a dialog is showing, dialog
control names, which are to receive the data.    The <string> contains the data record.

Note that because DialogScript uses commas to separate parameters on a command line, semicolons are used to
separate the variable and field identifiers in the field list.    Also, if a comma appears in <string> any data after the comma
will be lost.    This should not be a problem as the data will normally be passed to the command line using a variable, not a
literal string.

Note also that to prevent variables where they appear in the field list from being substituted by their initial contents the
field list itself should be enclosed in quotes.    This is not necessary if the list contains only dialog control names.

OPTION FIELDSEP sets the field separator used by the PARSE command when it splits a string up into its separate
fields.    By default this is the vertical bar character: |.

OK:

Unchanged.

Example:

%Y = @next(1)
parse "%N;%A;%B;%C", %Y

See also:

OPTION Address Book example

PLAY
Syntax:

PLAY    <file name> {, WAIT}

Description:

Plays an audio wave (*.WAV) file.    If the parameter WAIT is specified the script does not proceed to the next command
until the sound is finished.

OK:

Leaves unchanged.

Example:

PLAY intro.wav,WAIT
See also:

@MCI

POPUP(<item>|{<item>;...}

This dialog element defines a popup menu for the dialog window.    When a menu item is selected, it causes an <item>MENU event. 
Note that the popup menu does not have a name, and the item list is a single (and the only) parameter, so the items are separated
by vertical bars not semicolons.

PROGRESS(<name>;<top>;<left>;<width>;<height>;<value>)

This dialog element creates a progress bar at the indicated position.    The number <value> indicates its initial setting, as a
percentage value (0 to 100)..

RADIO(<name>;<top>;<left>;<width>;<height>;<caption>;<value list>;<initial value>;<style>)

This dialog element creates a group of radio buttons at the position and size specified, with a caption of <caption>, representing the
values shown in <value list>.    The values in the value list are separated by a vertical bar delimiter, for example: Male|Female.

REGISTRY
Syntax:

REGISTRY    DELETE, <root key>,    <subkey>

REGISTRY    WRITE, <root key>,    <subkey>,    <name>,    <value>

Description:

The REGISTRY command modifies the value of keys in the Windows registry.

REGISTRY DELETE deletes the specified key and all of its subkeys.

REGISTRY WRITE sets the value of the specified key.    If the subkey does not exist it is created.

<root key> specifies the root key to search from.    The permissible values are:

ROOT specifies HKEY_CLASSES_ROOT
CURUSER specifies HKEY_CURRENT_USER
LOCAL specifies HKEY_LOCAL_MACHINE
USERS specifies HKEY_USERS
DEFAULT specifies the key Software\JM Tech\DialogScript\2.0\UserScripts in HKEY_CURRENT_USER.

<subkey> specifies the key value to use.    Keys several levels deep can be specified using backslashes.

<name> specifies the named value to retrieve.    If null, the value of the first NULL name of the key is changed

<value> is the string value to which the key is set.

Note (32-bit only): Registry keys may be one of a number of differemt types.    DialogScript recognises the following
types: String, DWord (32-bit integer) and Binary (byte array).    Because DialogScript variables are untyped, DialogScript
can only create string type keys.    However, if a Registry key already exists and has a non-string type, DialogScript will
attempt to convert the <value> to the data type used by the key.    Note that binary keys are created using a buffer which
has a default size of 256 bytes.    This can be increased if necessary using the OPTION REGBUF command.

WARNING: Modifying the system registry is potentially dangerous, and can render Windows unable to run.   
Ensure you have a backup of the registry files before experimenting.

OK:

Set to false if the REGISTRY command fails.

Example:

REGISTRY WRITE,ROOT,.wsc,,wnscript
REGISTRY WRITE,DEFAULT,Test,Value,31
REGISTRY WRITE,DEFAULT,Test,Binkey,1,3,5,7,9
REGISTRY DELETE,ROOT,.tmp

See also:

@REGREAD Example Tip

REM
Syntax:

REM    <text>

Description:

Use the REM command to enter a comment in your script.

OK:

Leaves unchanged.

Example:

REM This script does something interesting
See also:

REPEAT
Syntax:

REPEAT
      ... commands ...
UNTIL <string>

Description:

Commands between the REPEAT and UNTIL lines are repeatedly executed while the result of <string> evaluates to null
(false).    If the string is non-null then script execution continues on the line following UNTIL.

REPEAT commands may be nested.    For clarity it is a good idea to indent the commands nested within REPEAT ...
UNTIL as shown in the example.

It is not recommended to use the GOTO command to branch out of a REPEAT ... UNTIL group of commands.

OK:

Leaves unchanged.

Example:

REPEAT
 %A = @SUM(%A,1)
UNTIL @EQUAL(%A,6)

See also:

@NOT @NULL IF Tip

RUN, RUNH, RUNM, RUNZ
Syntax:

RUN    <filename>    <parameters>{,WAIT}

Description:

Runs the file or program <filename>, with the additional parameters specified.    If a filename is given then the file is
opened using the shell open command stored in the Windows registry.

If the WAIT parameter is included then script execution does not continue until the program has terminated.

The variants of the command are:

RUN - run as a normal window;

RUNH - run in a hidden window;

RUNM - run as a maximized window;

RUNZ - run minimized as an icon.

If you run a DOS program and want it to close its window when it finishes make sure the program's "close window on exit"
property is set.

OK:

Set to false if the command fails.

Example:

RUN winword.exe
RUNZ pkzip.exe c:\temp\test.zip *.txt,WAIT

See also:

@RETCODE SHELL

RUNH
see: RUN

RUNM
see: RUN

RUNZ
see: RUN

Registering Visual DialogScript
Visual DialogScript is not free software.    It is distributed as shareware, and you are required to register the software if you wish to
continue using it after an evaluation period of not exceeding 28 days.

The software itself is not time limited, but while it remains unregistered the development environment's startup splash screen will
display a registration reminder and will remain on screen for a long period.    Programs that you create using the unregistered
version will display the message " This program was produced using an UNREGISTERED version of Visual DialogScript" on
termination.

After registration you will be granted a non-exclusive, non-transferable license to use the software on a single computer system,
subject to the terms and conditions set out in the License Agreement.

When your registration has been processed you will receive by post or email a serial number which is keyed to the personal details
you supplied.    To serialize your copy of Visual DialogScript, display the About Visual DialogScript dialog box, press the Enter Serial
No. button, and enter the name, company name (your town will be used here if this field was left blank when you registered) and
serial number EXACTLY as given in the fields provided.    Then press the OK button.    If the details were entered correctly then they
will be displayed in the About dialog and the Enter Serial No. button will disappear.

Please keep your registration details and serial number in a safe place.    Do not give them to another person, or cause them to be
published by any means.    Persons who are discovered to have provided registration details and serial numbers to others for the
purpose of allowing them to use the software as a registered user without themselves registering will be prosecuted to the maximum
extent possible under the law.

How to Register: CompuServe Members

How to Register: Payment by Cheque

How to Register: RegNet

Where to find the latest Visual DialogScript

Registering using CompuServe
If you are a member of CompuServe, you can register by choosing GO SWREG at a system prompt and then picking the option to
register a shareware applicaion.    There is an option to do this using WinCIM.    You will need to enter the registration ID to use for
Visual DialogScript 2.0, which    is 12327.    You will also need to enter your name, company name and address details.

Registration by this method costs $49.00 US.    There are no additional charges for overseas registrations as everything is done
electronically.    You will receive your personal serial number by email, usually within 2 working days.    From the About box, press the
Enter Serial No. button and enter your name, company name and serial number exactly as received on the registration advice, to
register your copy of the program.

Updated versions of the software can be downloaded from the Windows Shareware forum or our Web site
http://www.netlink.co.uk/users/jmtech as and when they appear.    You can reach the Web site using the Connect to JM Tech Web
Site option on the Help menu.

Registering using RegNet
This program can be registered through RegNet - The Registration Network.    RegNet can be located on the World Wide Web at the
following URL:

http://www.xmission.com/~wintrnx/regnet/regnet.htm

Registration using this method costs $49.00 US. You can register online using your credit card.    RegNet offers secure transactions
for users of NetScape or Microsoft Internet Explorer 3.    To go to the registration page for Visual DialogScript 2 (32-bit) go to:

http://www.xmission.com/~wintrnx/regnet/222p.htm

You can reach this page by using the Register using RegNet option on the Help menu.

Alternatively you can call the toll-free number 1 800 WWW2REG (1 800 999-2734).    Callers from outside the US should call    (801)
355-5110.

Upon registration (allow one working day for RegNet to pass your details to us, plus two working days for your registration to be
processed) you will receive your personal serial number.    This will be sent by email if an email address was specified when
registering.

When you receive your registration details, run Visual DialogScript, display the About Visual DialogScript box, press the Enter Serial
No. button and enter your name, company name and serial number exactly as received on the registration advice.

Registry Information
This script displays information about the file associations that are set up in the Windows registry.

title Registry Information
%X = @input(Enter extension,.doc)
if @ok()
 %A = @regread(ROOT,%X)
 if @null(%A)
 info No registry association for %X
 else
 %B = @regread(ROOT,%A)
 %D = @regread(ROOT,%A\shell\open\command)
 %E = Registry association for %X@CR()ProgID: %A@CR()Description: %B@CR()Shell Open:%D
 info %E
 end
end

SHELL
Syntax:

SHELL    <operation>, <filename>, <parameters>, <start-dir> {, WAIT}

Description:

Performs the Windows shell operation <operation> on the file <filename> with optional parameters <parameters> in the
optional startup directory <start-dir>.    If WAIT is specified the script waits until the operation is complete.

If the <operation> is null, the default operation is used. The effect is the same as when you double-click on the file in
Windows Explorer.

OK:

Set to false if the command fails.

Example:

SHELL "",My Data.LNK
SHELL open,http://www.netlink.co.uk/users/jmtech
SHELL print,Report.DOC
SHELL printto,Budgets.XLS,"Microsoft Fax WPSUNI.DRV FAX:",,WAIT

See also:

@RETCODE RUN

SHIFT
Syntax:

SHIFT

Description:

Shifts the command line parameter variables so that %8 takes the value of %9, %7 takes the value of %8 and so on down
to %1 takes the value of %2.    This is similar to the MS-DOS SHIFT batch file command.

OK:

Leaves unchanged.

Example:

SHIFT
See also:

STATUS(<name>;<text>;<style>)

This dialog element creates a status panel at the bottom of the dialog window, containing the text <text>.    A dialog can only have
one status panel.

STYLE(<name>, <fontname>, <fontsize>, <text attributes>, <background color>, <foreground color>)

The STYLE dialog element defines a typeface, text attributes and colors which are associated with a style name.    The style name
can be used in the DLGTYPE dialog element to have it apply globally to the whole dialog, or it can be applied to individual elements.
The default font is MS Sans Serif, size 8.    The text attributes are B (bold), I (italic), L (left justified), C (centered) or R (right justified).
The colors can be BACKGRND, FOREGRND, BLACK, DKRED, DKGREEN, BROWN, DKBLUE, MAGENTA, GRAY, SILVER, RED,
LTGREEN, YELLOW, LTBLUE, CYAN, WHITE.    Not all dialog controls are affected by all style attributes.

Screen metrics
Metrics is the term used by Microsoft to describe the characteristics of an output device, such as the display.    One factor that may
affect your scripts is the number of pixels per inch used by the display driver.. Windows displays typically use either 96ppi or 120ppi,
the latter when the Large Fonts display option is selected.

When large fonts are used, text takes up more space relative to the dialog controls it is displayed in.    There are two solutions you
can adopt if your scripts may be run on systems using either small or large fonts.    Either allow plenty of space so that text displays
correctly in any event, or hold the relevant co-ordinates in variables and scale them by a factor of 5 / 4 when large fonts are used.

Script Window
The script window is used for editing and debugging scripts.    The window supports all the editing options and shortcut keys of a
standard Windows text editor such as Notepad.

During single-step debugging, the command which is about to be executed is shown highlighted in the script window.    If an error is
found during execution of a script, the line containing the error is highlighted when the DialogScript interpreter displays the error
message.
The context menu provides a quick way to access many useful functions.

The menu is context sensitive.    You can place the cursor in the middle of a command or function and select Help at Cursor to call
up the help page for that command or function from the menu.    Alternatively you can select some text with the mouse and then
press Control + F1.    The command reference and function reference sections of the online help can be called up directly from the
menu.
You can set breakpoints to halt the execution of a script by placing the cursor in the line at which you want execution to stop, right-
clicking the mouse and selecting Add Breakpoint at Cursor from the menu. If you place the cursor on a breakpoint the option
changes to Clear Breakpoint at Cursor.    You can also clear all breakpoints in one go.

You can also call up the Dialog Editor from the context menu, or by pressing F2.    To edit an existing dialog description, place the
cursor in the first line of the DIALOG CREATE command before opening the editor.

Sending Keystrokes
Text and keystrokes can be sent to another application just as if they were typed at the keyboard, using the WINDOW SEND
command.

To identify the window to which keystrokes are to be sent, the title of the window or dialog or its class name must be specified.    Just
as when using the keyboard, the window which will receive keyboard input is the active window, so DialogScript makes the window
active by executing a WINDOW ACTIVATE command.    Note that MDI child windows can only be controlled through the
application's main window.

The keystrokes to be sent are specified as a string parameter to the WINDOW SEND command.    Text can be entered as ordinary
text.    Functions like @TAB() and @CR() can be used for the Tab and Enter keys.    DialogScript also provides several special
functions which can be used to generate keystrokes for certain other important keys.    @ALT can be used to simulate the Alt key
being pressed, @CTRL simulates the Ctrl key being pressed, and @SHIFT simulates the Shift key being pressed.    In addition, the
@KEY function can be used to generate the keystrokes for the Home, End, Up arrow, Down arrow, Left arrow, Right arrow, PgUp,
PgDn, Ins and    Del. keys.    If the @CHR function is used to generate characters that do not correspond to a key on the keyboard
then the results may be unpredictable.

Keystrokes sent to another application may be ignored if the application is not ready to process them.    Some experimentation may
be necessary to obtain reliable operation.

If a keystroke causes another window or dialog to be displayed, use the code:

repeat
until @winexists(<new dialog title>)
wait 1

to make sure that following keystrokes are not sent until the new receiving window is ready.    Use WAIT commands between strings
of keystrokes sent to the same window to allow time for the application to process the keystrokes, if you find that keystrokes are
sometimes being ignored.

For an example of how to control another application using DialogScript, see the Controlling Notepad example.

Setup Wizard example
The Setup Wizard which you used to install DialogScript to your hard disk is a DialogScript program.    This is how it works.    The
controls for each page lay on top of each other. A page count, %P, is maintained which is used when going from one page to the
next to hide the current page's controls and show the next one.    Note that the contents of all controls are accessible, even when
they are not visible.    This example also shows how to create shortcut groups on the Windows 95 start menu.

 title Visual DialogScript Setup Wizard
 if @not(@file(PACKING.LST))
 warn Unable to run setup@CR()Cannot find file PACKING.LST
 exit
 end
 %T = Visual DialogScript Setup
 %U = Visual DialogScript 2.0
 %V = This wizard will copy the %U files to your hard disk and create a program group on
the start menu.
 %X = Press Finish to install %U to your hard disk.
 rem %D is default directory
 %D = C:\Program Files\Visual DialogScript
 dialog create,%T,-1,0,400,160,style(Title;Arial;18;B;;Blue),-
 text(title;20;40;340;120;%U;Title),text(text1;70;40;320;40;%V),-
 text(text2;30;40;;;Install into this directory:),-
 edit(eddir;52;40;288;;%D),button(brwse;52;332;24;21;...),-
 button(bcdir;82;236;120;22;Use current directory),-
 check(cbmenu;30;40;320;;Create start menu shortcuts?;1),-
 check(cbass;52;40;320;;Create file type association?;1),-
 text(text4;30;40;320;;%X),progress(prog;64;40;320;32;0),-
 button(Back;120;140;;;<< Back),button(Next;120;208;;;Next >>),-
 button(Finish;120;296;;;Cancel)
 dialog disable,Back
 rem %Z = no. of pages
 %Z = 4
 rem %P = current page no.
 %P = %Z
 %A = HIDE
 repeat
 rem hide all but first page controls
 gosub pagectrl
 %P = @pred(%P)
 until @equal(%P,1)
:evloop
 wait event
 goto @event()
:nextbutton
 %A = HIDE
 gosub pagectrl
 %P = @succ(%P)
 %A = show
 gosub pagectrl
 if @greater(%P,1)
 dialog enable,Back
 end
 if @equal(%P,%Z)
 dialog disable,Next
 dialog set,Finish,Finish
 end

 goto evloop
:backbutton
 %A = HIDE
 gosub pagectrl
 %P = @pred(%P)
 %A = show
 gosub pagectrl
 if @equal(%P,1)
 dialog disable,Back
 end
 if @greater(%Z,%P)
 dialog enable,Next
 dialog set,Finish,Cancel
 end
 goto evloop
:finishbutton
 if @equal(%P,%Z)
 gosub install
 exit
 else
 if @ask(Are you sure you want to cancel %T?)
 exit
 end
 end
 goto evloop
:brwsebutton
 %D = @dirdlg()
 if @ok()
 dialog set,eddir,%D
 end
 goto evloop
:bcdirbutton
 %D = @curdir()
 dialog set,eddir,%D
 goto evloop
:pagectrl
 if @equal(%P,4)
 dialog %A,text4
 dialog %A,prog
 end
 if @equal(%P,3)
 dialog %A,cbmenu
 dialog %A,cbass
 end
 if @equal(%P,2)
 dialog %A,text2
 dialog %A,eddir
 dialog %A,brwse
 dialog %A,bcdir
 end
 if @equal(%P,1)
 dialog %A,text1
 dialog %A,title
 end
 exit
:install
 rem load the list of files to install
 list 1,create
 list 1,loadfile,PACKING.LST
 %Z = @sum(@count(1),4)
 %P = 100
 %D = @dlgtext(eddir)
 if @not(@equal(%D,@curdir()))
 rem create the output directory
 gosub showprog
 dialog set,text4,Creating directory %D
 if @file(%D,D)
 if @not(@ask(Directory %D already exists.@CR()Files may be overwritten. Continue?))
 exit
 end
 else

 directory create,%D
 if @not(@file(%D,D))
 beep
 warn Could not create %D
 exit
 end
 end
 repeat
 %F = @next(1)
 if %F
 %P = @sum(%P,100)
 gosub showprog
 dialog set,text4,Copying file %F
 file copy,%F,%D\%F
 end
 until @null(%F)
 list 1,close
 end
 %P = @prod(@diff(%Z,2),100)
 gosub showprog
 wait 1
 if @dlgtext(cbmenu)
 dialog set,text4,Create the start menu shortcuts
 DDE LINK,Progman,Progman
 if @ok()
 DDE EXECUTE,[CreateGroup(%U)]
 end
 if @ok()
 DDE EXECUTE,[ShowGroup(%U,1)]
 end
 if @ok()
 DDE EXECUTE,[AddItem(@shortname(%D\ds.exe)",Visual DialogScript")]
 DDE EXECUTE,[AddItem(@shortname(%D\ds.hlp)",Visual DialogScript 2.0
Help,winhelp.exe")]
 end
 if @not(@ok())
 warn Setup failed to create start menu shortcuts
 end
 end
 wait 1
 %P = @prod(@diff(%Z,1),100)
 gosub showprog
 wait 1
 if @dlgtext(cbass)
 dialog set,text4,Create the file type association
 %W = Visual DialogScript.Script
 registry write,root,.dsc,,%W
 registry write,root,%W,,DialogScript File
 registry write,root,%W\shell\open\command,,@chr(34)%D"\ds.exe %1"@chr(34)
 end
 wait 1
 %P = @prod(%Z,100)
 gosub showprog
 wait 1
 if @file(%D\README.TXT)
 if @ask(Would you like to view the README.TXT file?)
 run notepad README.TXT,wait
 end
 end
 info %T finished.
 exit
:showprog
 dialog set,prog,@div(%P,%Z)
 exit

Startup example
This example creates a startup menu with two buttons in the center of the screen, which you can use to select which programs are
run automatically at startup.

title Startup Menu
dialog create,Startup,-1,20,160,142,STYLE(ONTOP),-
 TEXT(T1;10;20;;;Choose a startup option:),-
 BUTTON(Standard;36;20;120),BUTTON(Quick;76;20;120),STATUS(SB)
%C = 10
repeat
 dialog set,SB,Time remaining: %C seconds
 %C = @pred(%C)
 %D = 400
 wait 1
 %E = @event()
 if @zero(%C)
 rem default
 %E = STANDARDBUTTON
 end
until %E
:startup
wait 1
:
: run stuff that should always be run
:
if @equal(%E,STANDARDBUTTON)
:
: run stuff that won't be run if you
: press the Quick button
:
end
exit

String Lists
String lists can be used to hold the contents of text files as well as lists of ASCII data.    As the name implies, they are lists of strings. 
The length and number of strings in a string list are limited only by available memory.

DialogScript supports four independent string lists, identified as 1 to 4.    In addition, the list box and combo box dialog controls are
also string lists, and can be manipulated using the same list commands.

String lists can be unsorted, in which case strings remain in the order they were loaded and items may be added at the end using
LIST ADD, inserted using LIST INSERT or replaced using LIST PUT. Using the LIST SEEK and LIST PUT commands, and the
@MATCH and @ITEM functions, lists can be used as random access files.

Alternatively lists may be sorted, in which case DialogScript maintains the order of items and new items must only be added using
LIST ADD.    To replace an item in a sorted list you must delete it and then add it.

For more information on how lists are used, see Using Lists.

For information on how to load data into lists see Data Lists.

Strings
In DialogScript, all variables and parameters to commands and functions are strings.    Strings can contain embedded variables and
functions, which are substituted or evaluated as the string is processed from left to right.

So if %D contains C: then the string:

Drive %D has @VOLINFO(%D,F)Kb free
would be evaluated to:

Drive C: has 32456Kb free
Note that the symbols % and @ (which are used to denote variables and functions), commas (which are used to split strings into
two or more parameters for commands or functions that expect multiple parameters), and brackets (which enclose the parameters
of an individual function), cannot normally appear in a string because of the special meaning attached to them.    To overcome this,
strings can be enclosed in double quotes (").

Text within double quotes is interpreted simply as text: no variable substitution or function evaluation will be performed.    Quotes can
appear anywhere in a string to prevent substitution or evaluation for a particular section, as in this example:

%A = Order @input(Enter quantity,1) "widgets @ "%R" each (incl. "%T"% sales tax)"

TASKICON(<name>;<filename>,<caption>) (32-bit only)

This dialog element creates a task bar icon which will generate <name>ICON events when clicked with the mouse.    If no
<filename> is specified the script's own icon is used, otherwise the named icon (which can be an EXE or ICO file) is used.    The
<caption> appears as a tooltip when the cursor is placed over the icon.    The caption text can be changed using the DIALOG SET
command.    The icon can be enabled and disabled using DIALOG ENABLE and DIALOG DISABLE.

TEXT(<name>;<top>;<left>;<width>;<height>;<text>;<style>)

This dialog element creates a text control at the position and size specified, containing the text <text>.

TITLE
Syntax:

TITLE    <string>

Description:

Sets the title of the script program.    This will appear in message and input boxes and on the Windows 95 Task Bar.    If no
title is set, the default name of Visual DialogScript is used.

OK:

Leaves unchanged.

Example:

TITLE Daily Backup
See also:

DIALOG

Task Launcher
This handy little utility uses the TASKICON dialog element to create a popup menu of the shortcuts on the Windows 95 desktop,
which can be used to launch the shortcuts even when they are obscured by other windows.    It also contains a list of shortcuts in the
Favorites folder, which can be used to add quick-access menu options to your favorite applications.    The task launcher also
displays the time and date, the amount of free space on C: and the swap file size (a useful indicator of how overcommitted the
system memory is) in a small window that can optionally be hidden from the menu.    It is a good example of the sort of utility that
can easily be created using Visual DialogScript.

title TaskLauncher
:reload
 %D = @windir()\Desktop
 %G = @windir()\Favorites
 list 1,create,sorted
 %P = %G*.lnk
 gosub buildmenu
 %P = %D*.lnk
 gosub buildmenu
 if @not(@zero(@len(%M)))
 %M = @substr(%M,2,1024)|
 end
 %M = %MToggle Status|Customize Favorites|Close
 list 1,close
DIALOG CREATE,Task Launcher,-1,0,296,36,DLGTYPE(SavePos;SmallCap),-
 TASKICON(Task),BITMAP(BITMAP1;0;254;;;%0),POPUP(%M),-
 TEXT(TEXT1;2;10;;;Drive C:),TEXT(TEXT2;18;10;;;Swap file:),-
 PROGRESS(PROG1;2;64;120;14),PROGRESS(PROG2;18;64;120;14),-
 TEXT(TEXT3;2;188),TEXT(TEXT4;18;188)
 wait 1
 %M =
 %C = @volinfo(C,S)
 %4 =
 %V = 1
 %R =
 window Hide,TaskLauncher
:loop
 %T = @datetime(t dddddd)
 dialog title,%T
 dialog set,task,%T
 if %V
 gosub updatestatus
 end
 wait 10,event
 %E = @event()
if @equal(%E,TIMER)
 if %R
 if @not(@winexists(Favorites))
 rem start a new instance and close this one
 run TaskLauncher.exe
 exit
 end
 end
 goto loop
end
if @equal(%E,TaskIcon)
 dialog popup
 goto loop
end
if @equal(%E,CLOSE)
 exit
end
if @equal(%E,closemenu)

 exit
end
if @equal(%E,Toggle StatusMENU)
 if %V
 window hide,%T
 %V =
 else
 window normal,%T
 %V = 1
 end
 goto loop
end
if @equal(%E,Customize FavoritesMENU)
 shell open,@windir()\Favorites
 %R = reload
 goto loop
end
%L = @diff(@len(%E),4)
%F = @substr(%E,1,%L)
if @file(%G\%F.LNK)
 shell ,%G\%F.LNK
else
 shell ,%D\%F.LNK
end
goto loop
:buildmenu
 list 1,filelist,%P
 if @not(@zero(@count(1)))
 repeat
 %F = @next(1)
 if %F
 %M = %M|@name(%F)
 end
 until @null(%F)
 %M = %M|-
 end
 list 1,clear
 exit
:updatestatus
 %1 = @volinfo(C,F)
 %2 = @div(@sum(@file(@windir()\win386.swp,z),524288),1048576)
 dialog set,text3,@div(%1,1024)Mb free
 dialog set,prog1,@div(@prod(@diff(%C,%1),100),%C)
 dialog set,text4,%2Mb
 dialog set,prog2,@div(@prod(%2,100),64)
 exit

TaskBar Icon Demo
This example demonstrates a dialog that has an associated task bar icon, and how to disable and enable the icon, change its tooltip
caption text and respond when the icon is clicked.

title TaskIcon Test
dialog create,TaskIcon Test,-1,0,100,120,-
 TASKICON(Task;;Task Icon),-
 BUTTON(Enable;20;20),BUTTON(Disable;50;20),BUTTON(SetText;80;20)
:loop
wait event
%E = @event()
if @equal(%E,CLOSE)
 exit
end
if @equal(%E,EnableButton)
 dialog enable,Task
end
if @equal(%E,DisableButton)
 dialog disable,Task
end
if @equal(%E,SetTextButton)
 dialog set,Task,@input(Enter new icon text)
end
if @equal(%E,TaskIcon)
 info You clicked on the task bar icon!
end
goto loop

DialogScript does not allow compound conditions.    However, you can have a group of statements executed if one or more of
several conditions are true by concatenating the conditions, since DialogScript considers a non-null result to be true.    For example:

if @ext(%F,COM)@ext(%F,EXE)@ext(%F,BAT)
 run %F
end

To convert from using INI files to registry keys you can usually just replace the INIFILE command with REGISTRY, and insert the
parameter DEFAULT at the front of the parameter list.

Troubleshooting tips
Script does not halt at WAIT EVENT command

You must clear the event by reading the event type using the @EVENT function, even if your script does not care what the
event is.    If not, the event will still be active at the next WAIT EVENT command.

When I try to enter my registration serial number, or run the Add-In Tools Manager, a folder opens instead

The runtime engine DSRUN.EXE is either missing, or not on the search path.

I used the Dialog Wizard to create a dialog which included the DLGTYPE(DRAGDROP) element, but the code generated by
the Wizard did not include a handler for the DRAGDROP event.

Styles, including DRAGDROP, do not take effect in the Dialog Editor until you refresh the dialog (Ctrl+R).    If you refresh
the dialog before exiting the Dialog Editor and closing the Dialog Wizard all events will be handled by the generated code.

I used DLGTYPE(SMALLCAP) in the Dialog Editor but the caption bar appears the usual size

The SMALLCAP style only takes effect when the dialog is created by a program, not by the Dialog Editor.

I used a bitmap or icon in my dialog but when another user runs the program the image does not appear.

The path to the bitmap or icon file is a full path which is not valid on the user's system.    It is safer to use the filename only
and ensure the image file is in the same directory as the program EXE.

Using Lists
Syntax:

LIST    <list>, ADD,    <text>
LIST <list>, ASSIGN, <list2>
LIST <list>, CLEAR
LIST    <list>, CLOSE
LIST    <list>, COPY
LIST    <list>, CREATE, {SORTED}
LIST    <list>, DELETE
LIST <list>, INSERT
LIST    <list>, PASTE
LIST    <list>, PUT,    <text>
LIST    <list>, SEEK,    <record number>
LIST    <list>, WRITE,    <text>

Description:

These LIST commands are used to modify, save and dispose of string lists.    The parameters <list> and <list2> must be
either a list number or the name of the dialog list box to which the command will apply.    An error will occur if the list does
not already exist or the record number (for the SEEK command) is out of range.

ADD is used to add an item to the list.    You use this to add items to a sorted list (they are inserted in the correct position
according to the sort order) or to append items to an unsorted list, much as you would write successive lines to a text file.

ASSIGN copies the contents of <list2> to <list>

CLEAR is used to remove all items from a list and reset the item pointer to zero.

CLOSE must be used to dispose of a list that you have CREATEd once you have finished with it.    This releases the
memory it used, and makes the list number available again for a new list.

COPY causes the contents of <list> to be copied to the Clipboard.

CREATE creates a new, empty string list.    The option SORTED specifies whether the list is to be maintained in ASCII
code order.

DELETE deletes the item at the position in the list indicated by the index (pointer).    This is the first item (item 0) when the
list is first opened, but can be modified by means of the SEEK command.

INSERT inserts a new item at the current pointer position.    Note that you should not use INSERT with sorted lists.

PASTE causes <list> to be filled with the contents of the Clipboard (as text.)

PUT is used to write the specified text to the position in the list indicated by the index (pointer).    PUT lets you treat a list
as a random access file.    Note that you cannot use PUT with sorted lists.

SEEK is used to set the index pointer to a specific item number.

OK:

Set to false if the LIST command fails.

Example:

LIST 1, SEEK, 3
LIST 1, WRITE, This is item 4 in the list
LIST 1, SAVEFILE, LIST.TXT
LIST 1, CLOSE

See also:

@COUNT @INDEX @ITEM @MATCH @NEXT LIST Data Lists
Example

Using MCI
DialogScript allows you to control multimedia devices using the Windows Multimedia Control Interface (MCI).    DialogScript provides
the @MCI function, which can be used to send MCI command strings and obtain the response, which may consist of information or
an error message.

MCI is a command language in its own right.    For a complete description of it, refer to Microsoft's own multimedia documentation or
third party books on Windows multimedia development.    If you can obtain the help file MCISTRWH.HLP, supplied with Microsoft
Visual C++, this will also be a useful reference.

MCI command strings are English-like and readily understandable.    You open a device, play it, and then close it when you are
finished with it.    For example, the command strings:

open cdaudio
play cdaudio from 1 to 2
close cdaudio

would play the first track of an audio CD.    Audio data files must be given a name, called an alias, which is used in the MCI
commands.    For example:

open C:\WINDOWS\MEDIA\THEMIC~1.WAV alias sound
play sound
close sound

If the above MCI command strings were sent using a DialogScript script then the result would be nothing, because the sound would
be stopped by the close command before it had a chance to play.    By appending the word wait to an MCI command string,
control is not returned to the script until the command has completed.    If the command

play cdaudio from 1 to 2 wait

was sent then execution of the script would be held up until the track had finished playing.

Using the Dialog Editor
The Dialog Editor lets you design and edit dialogs interactively, so you can see the result of your changes straight away.

The Dialog Editor is a context sensitive, tabbed dialog which lets you create and edit dialog elements by entering values into fields.   
Fields inapplicable to a particular dialog element are disabled, so it is difficult to enter invalid information.

The Dialog tab is used to set the title text, position and size attributes of the dialog. The first field is for the title text.    Type the text
into the field, press Enter and you will see the title of the dialog itself change.

You can set the top, left, width and height attributes, respectively, in the next four fields.    The text in the status line changes as you
enter each field to tell you which attribute is being changed.    A value of -1 for the top position means that the dialog will be created
in the center of the screen.    This attribute can be overridden using the SAVEPOS dialog type.

You can also change the size of the dialog being designed by dragging the edges using the mouse.

The dialog elements are listed next.    To edit a particular dialog element you can:
double-click on it;
select it with the mouse and then click the Dialog Element tab;
select it and then choose Edit from the context menu, or press F2;
click on the corresponding control on the dialog itself.

You can add a new dialog element from the context menu, or by pressing Ins.

You can delete a dialog element from the context menu or by pressing Del.

You can change the position of a dialog element in the list from the context menu or by keying Ctrl+U (move up) or Ctrl+D (move
down).    The order that they are defined is important.    When you use the dialog, the order in which controls that can accept input
are visited when you press the Tab key will follow the order that the dialog elements appear in the list.    The first button to be
defined will be the default button.

You can also refresh the dialog (cause it to be recreated) from the context menu or by pressing Ctrl+R. It is sometimes necessary to
refresh the dialog because some changes, for example changes to styles, are not immediately reflected by the dialog itself.

Variables
DialogScript allows you to have up to 35 variables.    Variable names start with a percent symbol, followed by the character 1 to 9 or
A to Z.

The variables %1 to %9 contain the command line parameters to DialogScript, which can be used to pass information to the script
program at run time.    Unlike a DOS batch file you can also assign your own data to the variables %1 to %9, overwriting the original
contents.    The read only variable %0 can also be used in a compiled EXE script: it contains the full pathname of the program.

DialogScript variables are untyped strings, each of which contain a maximum of 255 characters.    Because variables are untyped it
is up to you to ensure that, for example, where a function requires a numeric value the variable passed to it contains a string which
is a valid number.

Note that the use of the percent symbol to identify variables, and the @ symbol to identify functions, means that you cannot
generally use these symbols in a string of text.    Double quotes can be used to enclose text containing these symbols and prevent
them from being interpreted as variables or function names, like this:

INFO Email address:@tab()%N"@cix.compulink.co.uk"
DialogScript also supports string lists.    You can think of these as arrays of strings, which can be maintained in sorted or unsorted
order and accessed either sequentially or by item number.

Version Info example
This example script shows how the @VERINFO function can be used to obtain information about executable files.

title Version Test
DIALOG CREATE,Version Test,-1,0,280,240,EDIT(filename;10;10;220),-
 BUTTON(browse;10;240;24;20;...),-
 STATUS(status;Click the button to choose a file),-
 TEXT(TEXT1;40;10;;;Size:),TEXT(size;40;60;80),-
 TEXT(TEXT3;56;10;;;Date:),TEXT(datetime;56;60;200),-
 TEXT(TEXT4;72;10;;;Version:),TEXT(version;72;60;200),-
 TEXT(TEXT5;88;10;;;Name:),TEXT(name;88;60;200),-
 TEXT(TEXT6;104;10;;;Company:),TEXT(company;104;60;200),-
 TEXT(TEXT7;120;10;;;Product:),TEXT(product;120;60;200),-
 TEXT(TEXT8;136;10;;;Version:),TEXT(prodver;136;60;200),-
 TEXT(TEXT9;152;10;;;Copyright:),TEXT(copr;152;60;200),-
 TEXT(TEXT10;168;10;;;Desc:),TEXT(desc;168;60;200;68)
:evloop
 wait event
 goto @event()
:browseBUTTON
 %F = @filedlg("EXE files|*.exe|DLL files|*.dll",Choose file)
 if @ok()
 dialog set,filename,%F
 end
 parse "name;company;version;desc;status",||||||
 parse "%S;%T",@file(@dlgtext(filename),ZT)
 dialog set,size,%S bytes
 dialog set,datetime,@datetime(dd mmm yy t,%T)
 %Z = @verinfo(@dlgtext(filename),TNCPVDXY)
 parse "%T;name;company;product;version;desc;prodver;copr",%Z
 dialog clear,status
 if @equal(%T,NE)
 dialog set,status,16-bit Windows executable file
 end
 if @equal(%T,PE)
 dialog set,status,32-bit Windows executable file
 end
 goto evloop
:CLOSE
 exit

WAIT
Syntax:

WAIT <interval>

WAIT EVENT {, <interval> }

Description:

Pauses execution of the script for a period of <interval> seconds.    If <interval> is not specified then the default period is 1
second.

The WAIT EVENT command is used in dialog programming.    It is only valid when a dialog is being displayed.    It causes
the script to wait indefinitely until an event occurs such as a button being pressed.

If an interval is specified in a WAIT EVENT command, then a TIMER event will be generated when the interval has
elapsed.    This is useful for dialogs that must be updated at intervals, because it allows you to respond immediately to
button and other events as well.

OK:

Not affected.

Example:

%T = @INPUT(Enter alarm time [hh:mm]:)
repeat
 wait 30
 %N = @datetime(t)
until @EQUAL(%T,%N)
beep
warn Wake up!

See also:

Dialog example

WARN
Syntax:

WARN    <string>

Description:

Displays a dialog box containing an exclamation mark icon and the message <string>.    Execution of the script continues
when the OK button is pressed.

OK:

Set to true.

Example:

WARN There is less than 100Kb of free space on drive D:
See also:

INFO @ASK @QUERY

WINDOW
Syntax:

WINDOW    ACTIVATE,    <window name>
WINDOW    CLOSE,    <window name>
WINDOW    HIDE,    <window name>
WINDOW    ICONIZE,    <window name>
WINDOW    MAXIMIZE,    <window name>
WINDOW    NORMAL,    <window name>
WINDOW    ONTOP,    <window name>
WINDOW    POSITION,    <window name>, <top>, <left>, <width>, <height>
WINDOW    SEND,    <window name>,    <string>

Description:

The WINDOW command is used to control other windows.    The string <window name> identifies the window that is the
target of the command. It must either contain the text in the title bar of the main window or dialog box, or the window class
name preceded by a # symbol.    Note that if more than one window has the same <window name> then the command
applies to the first one that Windows finds.    You cannot control MDI child windows directly, only through the MDI
application's main window.

WINDOW ACTIVATE Activates (restores from an icon, or brings to the top) the named window.

WINDOW CLOSE closes the named window.

WINDOW HIDE hides the named window or task bar button.    To un-hide the window, use WINDOW NORMAL.

WINDOW ICONIZE minimizes the named window to the Task Bar.

WINDOW MAXIMIZE maximizes the named window.

WINDOW NORMAL restores to normal size the named window.

WINDOW ONTOP sets the Topmost attribute of the named window so that it remains in view even when not active.

WINDOW POSITION positions the named window so that it's top left corners are at the co-ordinates specified.    The width
and height can also be specified: if they are omitted, the window retains its existing size.

WINDOW SEND sends the contents of <string> to the named window.    For more information, see Sending Keystrokes.

OK:

Set to false if no matching window was found.

Example:

if @winexists(Connected to Internet)
 window position,Connected to Internet,100,100
 window ontop,Connected to Internet
end

See also:

@WINACTIVE @WINEXISTS @WINPOS

What's changed in Visual DialogScript 2.0
There have been a number of minor command changes since version 1 (known as WinScript), either to accommodate new features
or to make the command structure more logical. WinScript scripts may require minor editing before they will run using Visual
DialogScript 2.0

Script files now have the file type .DSC.
Visual DialogScript now creates compiled EXE files (16-bit or 32-bit) which run with a runtime interpreter DSRUN.EXE or

DSRUN16.EXE.    WinScript 1 EXEs will have to be recreated using Visual DialogScript 2.0.
The command DIALOG CREATE is now used to create a dialog, instead of WINDOW CREATEDLG.    The syntax remains

the same.    Only standard dialog styles are now supported.    The OK and CANCEL button dialog elements are no longer supported;
where used these buttons should be redefined using the BUTTON dialog element.

There is now no limit on the number of controls that can be used in a dialog.
Strings in 32-bit programs are no longer limited in length to 255 characters.
The name of the script file is no longer passed as the first parameter to a script, so the first command line parameter will

be %1, not %2.
In 32-bit programs long filenames are now the default in functions and commands that return filenames, such as LIST ...

DROPFILE, LIST ... FILELIST and @FILE.    For compatibility with 16-bt programs use OPTION FILENAMES,SHORT and the
@SHORTNAME function.

The PRINT command has been removed, and its functionality replaced with the more powerful SHELL command,
The @FILE function no longer supports the V parameter to obtain a volume label.    This feature is now provided by the

@VOLINFO function, which also provides information about the amount of space and type of a disk volume.    Consequently, the
@SPACE function has been removed.

The FILE command has new options SETDATE and SETATTR which can be used to change the date and time stamps
and DOS attributes of a file.

32-bit DialogScript programs have an increased level of support for the Windows Registry.    The default INI file used for
scripts that use the INIFILE command and @INIREAD function without defining their own file name is DEFAULT.INI, which is
normally located in the Visual DialogScript 2.0 directory.

The @REGKEYS function has been removed.    It has been replaced with the LIST ... REGKEYS command which returns
the subkeys to a specified Registry key as items in a string list.

The @CLIPBRD function has been removed.    It has been replaced with the LIST ... PASTE command which gets the text
contents of the clipboard into a string list.

The old date and time functions have been replaced with a new, more powerful @DATETIME function which enables
dates and times to be displayed in a wide range of formats.

In WINDOW commands and the @WINEXISTS amd @WINPOS functions, the full text of the window title must now be
specified.    You can also specify the window using its class name which you can find out using the new Window Spy tool.

When the user closes a dialog, or the script executes a DIALOG CLOSE command, the dialog is not automatically closed. 
A CLOSE event occurs, and the script must respond to this by terminating, after saving any information required to be saved.    The
dialog will remain visible until the script terminates.

The ICON dialog element is no longer supported.    Instead, a dialog takes its icon from the icon of the compiled script,
which you specify when you create an EXE file.

Due to stricter limitations on names for dialog controls, some button names that were acceptable under WinScript 1 may
give an error in Visual DialogScript 2.    The solution is to specify a caption for the button, which can be different from the name of
the button control.

What's new in Visual DialogScript 2.0
All-new 32-bit program - performs up to 3 times faster than WinScript 1 scripts.    Create 16-bit executables too!
Small EXE's (typically 10Kb) - and royalty-free redistributable runtime (< 300Kb). Distribute your DialogScript programs on

bulletin boards and the Internet.
Create applications that use task bar icons (32-bit only)
New dialog controls supported include combo boxes, radio buttons and a progress bar.
New directory browser dialog invoked using the @DIRDLG function.
New user-defined styles give you control over fonts and colors.
New Icon Editor and Dialog Editor let you create the graphical elements of your dialog-based program visually, entirely

within the Visual DialogScript development environment,
A new CLIPBOARD SET command lets you set the contents of the clipboard to some specified text.
New LIST command options for manipulating clipboard text and registry data.
A new SHELL command lets you harness all the features available to a Windows shell program.
Window control commands can now use the window class name instead of the title text, and the new @WINACTIVE

function lets you find out the identity of the active window.    The new Window Spy tool lets you do this at design time.
A new @DATETIME function offers a powerful and flexible way to obtain date and time information formatted the way you

want.
A new @RETCODE function lets you obtain the return code of programs run from your scripts (32-bit only)
New EXITWIN command lets you shut down or reboot Windows from a script program. (32-bit only)
New @VERINFO function lets you obtain embedded version information from Windows executable files.

Where to find the latest Visual DialogScript
We are constantly striving to improve Visual DialogScript.    You should therefore check that you have the latest version of the
product.

You will always find the latest version, and other information, on our World Wide Web site http://www.netlink.co.uk/users/jmtech.

If you don't have access to the World Wide Web, other places to look include CompuServe's Windows Utilities Forum (GO
WINUTIL) Library 3 - Batch / Launch Utilities and the Windows Shareware Forum (GO WINSHARE) Library 22 - Programming
Utilities.

We encourage you to upload copies of the Visual DialogScript shareware package to BBS and other locations where shareware is
available.

WinTouch
Here is another example of a useful utility that can be created using Visual DialogScript in a few lines of code.    WinTouch is a
handy way to change the date and time stamp of a set of files. Just drag the files to the list box from Explorer / File Manager, set the
date and time you want, and press Touch!    The example illustrates the use of drag and drop, and of the FILE SETDATE command.

title WinTouch
DIALOG CREATE,WinTouch,-1,0,268,180,DLGTYPE(DRAGDROP;SAVEPOS),-
 TEXT(TEXT1;10;10;;;Files to touch:),LIST(FileList;30;10;240;80),-
 TEXT(TEXT2;120;10;;;Date:),TEXT(TEXT3;140;10;;;Time:),-
 EDIT(Date;120;40;60;;@datetime(ddddd)),EDIT(Time;140;40;60;;@datetime(t)),-
 BUTTON(Touch;120;110;140;40;Touch!)
 dialog disable,Touch
:evloop
 wait event
 goto @event()
:TouchBUTTON
 list FileList,seek,0
 repeat
 %F = @item(FileList)
 file setdate,%F,@dlgtext(time),@dlgtext(date)
 list FileList,delete
 until @zero(@count(FileList))
 goto evloop
:DragDrop
 list FileList,DROPFILES
 dialog enable,Touch
 goto evloop
:CLOSE
 exit

Window Spy
You can use the Window Spy to capture the title or class name of a window that you want to automate with the WINDOW command.

Press the Spy button, which then changes to display the caption Stop.    Select the window you want to obtain information about.   
Position the pointer over its title bar and click the mouse button.    The information is then displayed.
To copy the window title to the clipboard, from where it can be pasted into your script program, press the Copy button adjacent to
the title.    This is a less error-prone way of getting the title than typing it in manually.

To copy the window class name to the clipboard, press the Copy button adjacent to the window class.    The window class name is
useful as it does not change, unlike the title text in some applications.    The name is displayed with the preceding # symbol that
DialogScript uses to distinguish a class name from a title.

If a window is not a main window and cannot be controlled with the DialogScript WINDOW command then a message box "This is
not a main window" is displayed.    You may also see this message if you click over a part of a main window other than the title bar:
controls on a window are windows in their own right, but cannot be automated.

After the information has been obtained, the Window Spy resets itself.    You must press the Spy button again to obtain information
about another window.    To stop spying without clicking on a window press the Stop button.

Zip List example
This example script displays a list of the contents of a Zip file in a dialog box.    It uses the freeware Info-ZIP UnZip utility to generate
the list, which is then displayed in a list box with a fixed pitch font.    You can add this to the context menu for Zip files (My Computer:
View / Options / File Types) by editing the entry for Zip files and adding a View action which runs the executable version of this script
with a parameter of %1.

Title Zip List
if @equal(@ext(%1),ZIP)
 dialog create,Zip Contents,-1,0,400,260,-
 style(FixedPitch;Courier New;8;;white),-
 TEXT(T1;10;10),TEXT(T2;28;10),TEXT(T3;46;10),-
 LIST(L1;66;10;374;144;FixedPitch),BUTTON(OK;220;168)
 dialog set,T1,File:@tab()@tab()%1
 parse "%S;%T",@file(%1,TZ)
 dialog set,T2,Size:@tab()@tab()%S bytes
 dialog set,T3,Created: @tab()@datetime(dd mmm yy t,%T)
 dialog cursor,wait
 %T = @env(TEMP)\ZS@datetime(hhnnss).TMP
 runh COMMAND /C UNZIP -l @shortname(%1) >%T,wait
 wait 1
 list 1,create
 list 1,loadfile,%T
 if @not(@zero(@count(1)))
 list 1,delete
 if @match(1,------)
 list 1,delete
 end
 if @match(1,------)
 list 1,delete
 list 1,insert,
 list L1,assign,1
 list 1,close
 end
 file delete,%T
 dialog cursor
 wait event
else
 warn Filename invalid or missing
end

Zip Shell
This example script is a simple drag-and-drop shell for the freeware utility ZIP, which can be obtained by ftp from ftp.uu.net in
/pub/archiving/zip.    The 32-bit Windows version supports long file names, unlike PKZip, with which it is compatible.

 Title Zip Shell
 option filenames,short
 %U = @env(temp)
DIALOG CREATE,Zip Shell,-1,0,360,280,DLGTYPE(DRAGDROP;SAVEPOS),-
 TEXT(T1;10;10;;;Zip file name:),EDIT(E1;30;10;240;24),-
 BUTTON(Browse;30;264),-
 TEXT(T2;60;10;280;;Files:),LIST(L1;75;10;240;132),-
 CHECK(C1;108;264;;;Store paths),CHECK(C2;132;264;;;Recurse dirs),-
 CHECK(C3;156;264;88;;PKZip comp.),BUTTON(Zip;220;264),-
 BUTTON(Deselect;75;264),-
 BUTTON(MakeSFX;182;264),PROGRESS(P1;220;12;238;24),STATUS(SP)
 if @not(@null(%1))
 repeat
 dialog set,L1,%1
 if @null(%E)
 %E = @name(%1)
 dialog set,E1,@windir()\Desktop\%E
 end
 shift
 until @null(%1)
 else
 dialog set,E1,@windir()\Desktop\Zipfile
 end
:evloop
 dialog set,SP,@count(L1) files selected
 dialog set,P1,0
 wait event
 goto @event()
:dragdrop
 list L1,DROPFILES
 goto evloop
end
:BrowseButton
 directory change,@path(@dlgtext(E1))
 %E = @filedlg(*.Zip)
 if %E
 dialog set,E1,%E
 end
 goto evloop
:DeselectButton
 dialog clearsel,L1

 goto evloop
end
:MakeSFXButton
 %N = @name(@dlg(E1).zip)
 %P = @path(@dlg(E1))
 runh command /c copy /b c:\utils\unzipsfx.exe+%P%N.ZIP %P%N.EXE
 goto evloop
:ZipButton
 %S =
 if @not(@dlgtext(C1))
 %S = -j
 end
 if @dlgtext(C2)
 %S = -r
 end
 if @dlgtext(C3)
 %S = %S -k
 end
 %C = @count(L1)
 %N = 0
 list L1,seek,0
 repeat
 %F = @item(L1)
 dialog set,SP,Adding %F
 runh ZIP -u %S -b %U @dlg(E1) %F,wait
 if @not(@zero(@retcode()))
 warn Zip failed: error code @retcode()
 goto evloop
 end
 list L1,delete
 %N = @succ(%N)
 dialog set,P1,@div(@prod(%N,100),%C)
 until @equal(%C,%N)
 goto evloop
end
:close
 exit

Continues execution of the script from the current point

Controls are objects such as buttons, text and list boxes which may appear in a window.

BITMAP dialog element
The fields for a BITMAP dialog element should be filled in as follows:

Type: BITMAP (graphical image control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.

Caption: Not applicable for a BITMAP.

Filename: The name of the bitmap, icon or executable file from which the bitmap image will be loaded.    You can use the button
captioned ... to select this.    Note that if a full path is given, the program might fail when run on a different system and
installed into a different directory.    If the bitmap will be in the same directory as the program, just give the name.

Values: Not applicable for a BITMAP.

Value: Not applicable for a BITMAP.

Style(s): STRETCH - Bitmap will be stretched to fit the size of the control.    (This does not apply to icons.)

CLICK - Bitmap will generate CLICK events when clicked with the mouse.

HAND - As CLICK, but a hand cursor will be shown when over the bitmap.

CROSS - As CLICK, but a cross cursor will be shown when over the bitmap.

User defined styles.

Multiple styles may be used, separated by semicolons.

BUTTON dialog element
The fields for a BUTTON dialog element should be filled in as follows:

Type: BUTTON (button control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.    When
pressed, the button will cause a <name>BUTTON event.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: Optional.    If omitted, the control name will be used.    Use a caption if you want to use characters in the caption that
would not be valid in a control name.

Filename: Not applicable for a BUTTON.

Values: Not applicable for a BUTTON.

Value: Not applicable for a BUTTON.

Style(s): User defined styles only.

CHECK dialog element
The fields for a CHECK dialog element should be filled in as follows:

Type: CHECK (check box control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: This is the text that appears alongside the check box.

Filename: Not applicable for a CHECK.

Values: Not applicable for a CHECK.

Value: Either blank or zero (unchecked) or 1 (checked).

Style(s): User defined styles only.

COMBO dialog element
The fields for a COMBO dialog element should be filled in as follows:

Type: COMBO (edit control with drop-down list).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: Not applicable for a COMBO.

Filename: Not applicable for a COMBO.

Values: Not applicable for a COMBO.

Value: Initial text to appear in the control (if any).

Style(s): SORTED - items in drop-down list should be sorted into ASCII order.

User defined styles.

Multiple styles may be used, separated by semicolons.

DLGTYPE dialog element
The fields for a DLGTYPE dialog element should be filled in as follows:

Type: DLGTYPE (specifies attributes and characteristics of the dialog itself).

Name: Not applicable for a DLGTYPE.

Position: Not applicable for a DLGTYPE.

Caption: Not applicable for a DLGTYPE.

Filename: Not applicable for a DLGTYPE.

Values: Not applicable for a DLGTYPE.

Value: Not applicable for a DLGTYPE.

Style(s): DRAGDROP - Dialog accepts drag-and-drop operations, which will cause a DRAGDROP event to occur.

ONTOP - Dialog will remain on top of other windows even when inactive.

SAVEPOS - Dialog will remember its last screen position whenever the program is run.

SMALLCAP - Dialog will have a small toolbar-style title bar.

User defined styles, to apply to all controls by default.

Multiple styles may be used, separated by semicolons.

EDIT dialog element
The fields for a EDIT dialog element should be filled in as follows:

Type: EDIT (text input control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: Not applicable for a EDIT.

Filename: Not applicable for a EDIT.

Values: Not applicable for a EDIT.

Value: Initial text to appear in the control (if any).

Style(s): PASSWORD - all characters in the control are displayed as asterisks.

User defined styles.

Multiple styles may be used, separated by semicolons.

LIST dialog element
The fields for a LIST dialog element should be filled in as follows:

Type: LIST (list box control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: Not applicable for a LIST.

Filename: Not applicable for a LIST.

Values: Not applicable for a LIST.

Value: Not applicable for a LIST.    To put data into the list use the LIST command.

Style(s): SORTED - items in drop-down list should be sorted into ASCII order.

User defined styles.

Multiple styles may be used, separated by semicolons.

POPUP dialog element
The fields for a POPUP dialog element should be filled in as follows:

Type: POPUP (popup menu control).

Name: Not applicable for a POPUP as a dialog can only have one and you cannot read from or write to it.

Position: Not applicable for a POPUP.

Caption: Not applicable for a POPUP.

Filename: Not applicable for a POPUP.

Values: The values consist of a series of items which will appear on the menu, each separated by a vertical bar.    When
selected, each item will generate an <item>MENU event.

Value: Not applicable for a POPUP.

Style(s): Not applicable for a POPUP.

PROGRESS dialog element
The fields for a PROGRESS dialog element should be filled in as follows:

Type: PROGRESS (progress indicator control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: Not applicable for a PROGRESS.

Filename: Not applicable for a PROGRESS.

Values: Not applicable for a PROGRESS.

Value: Initial value for the progress indicator (from 0 to 100).    By default, the value is zero.

Style(s): Not applicable for a PROGRESS.

RADIO dialog element
The fields for a RADIO dialog element should be filled in as follows:

Type: RADIO (group of radio buttons).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.

Caption: This is the caption text for the whole group.

Filename: Not applicable for a RADIO.

Values: A list of values for each button, separated by vertical bars.    The values will be displayed alongside each button.

Value: One of the values from the list above.    By default, none of the buttons is selected.

Style(s): User defined styles only.

STATUS dialog element
The fields for a STATUS dialog element should be filled in as follows:

Type: STATUS (status panel).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: Not applicable for a STATUS: this is always at the bottom of the dialog.

Caption: Not applicable for a STATUS.

Filename: Not applicable for a STATUS.

Values: Not applicable for a STATUS.

Value: Initial text to be displayed in the panel, if any.

Style(s): User defined styles only.

STYLE dialog element
The fields for a STYLE dialog element should be filled in as follows:

Type: STYLE (defines color and text attributes that can be used by the dialog or by individual controls).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Font: This specifies the typeface to be associated with the style.    You can choose this and the following three attributes
from a common font dialog by pressing the button captioned    The default font is MS Sans Serif.

Size: Specifies the size of the typeface.    The default size is 8.

Bold: Specifies whether the bold attribute is required.

Italic: Specifies whether the italic attribute is required.

Position: Specifies whether text should be left justified, centered, or right justified in a TEXT control.    This attribute does not
apply to other controls.

Backgrnd: Can be one of BACKGRND, FOREGRND or a list of colors selected from a drop-down list.    The default value,
BACKGRND, is the Windows default button color.

Foregrnd: Can be one of BACKGRND, FOREGRND or a list of colors selected from a drop-down list.    The default value,
FOREGRND, is the Windows default text color.

TASKICON dialog element
The fields for a TASKICON dialog element should be filled in as follows:

Type: TASKICON (task bar icon).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.    When
clicked, the icon will generate a <name>ICON event.

Position: Not applicable for a TASKICON: this always appears in the Task Bar Notification Area.

Caption: Not applicable for a TASKICON.

Filename: The name of the icon or executable file from which the icon image will be loaded.    You can use the button
captioned ... to select this.    Note that if a full path is given, the program might fail when run on a different system and
installed into a different directory.    If the icon will be in the same directory as the program, just give the name.

Values: Not applicable for a TASKICON.

Value: Text to be displayed when the user places the cursor over the task bar icon.

Style(s): Not applicable for a TASKICON.

TEXT dialog element
The fields for a TEXT dialog element should be filled in as follows:

Type: TEXT (text control).

Name: As specified.    This cannot be changed once the control exists, except by editing the DialogScript code.

Position: These are the top position, left hand edge position, width and height, respectively, of the control.    You can also
position and size the control using the mouse.    Note that the width and height can be left blank to take default
values.    If the width is blank the control auto-sizes to fit the text.

Caption: Not applicable for a TEXT.

Filename: Not applicable for a TEXT.

Values: Not applicable for a TEXT.

Value: Initial value of text to be displayed in the control.

Style(s): TRANSPARENT - Use when positioning a TEXT element over a BITMAP.

User defined styles.

Multiple styles may be used, separated by semicolons.

Traces through the script.    As each line is executed it is highlighted in the editor window.    If the debug window is showing then its
contents are updated after every line so you can watch the variables changing dynamically.

The Edit menu contains options for cutting text, copying it to and pasting it from the clipboard, and for search and replace.

Copies the text selected in the code window to the clipboard.

Cuts the text selected in the code window to the clipboard

Search for text in the script

Pastes text from the clipboard into the code window at the current cursor position

Events occur as a result of interaction with the script program, such as when a button is pressed or when the dialog window is
closed. Timer events can also occur at intervals.    You can halt a script and wait for an event to occur using the WAIT EVENT
command, and determine the type of event using the @EVENT function..

The field separator is the character used to separate items of data on a line of text, such as a database record.    DialogScript uses
the vertical bar "|" by default, but this can be changed using the OPTION command.    Data fields can be split up and stored in
separate variables or dialog contrls using the PARSE command.

The File menu contains options for creating new scripts, opening and saving scripts, and for exiting Visual DialogScript.

Creates a new blank script.

Opens an existing script.

Saves the script.

The Help menu allows you to access Visual DialogScript's online help.

Displays the contents page of the online help.

Allows you to perform a keyword search of the online help.

You use the color box to select the colors to be used by the drawing tool.    Clicking on a color with the left mouse button selects it as
the foreground color.    Clicking on a color with the right mouse button selects it as the background color.   

This is the area in which you create and modify your icon.    It is displayed at 4 x magnification to make your work easier.

You edit the icon by choosing a drawing tool and then drawing with it using the mouse.    If you hold down the left mouse button, the
foreground color is used.    If you hold down the right mouse button, the background color is used.

The Edit menu lets you paste a bitmap from the Clipboard into the editor window, or copy the icon to the Clipboard. You can also
undo the last action.

This button selects the Ellipse drawing tool.    Use this to draw open ellipses and circles.

The File menu allows you to open icon or bitmap files, save icons, or create a new icon.

This button selects the Fill drawing tool.    Use this to flood fill an area with a color.

This button calls up the online help.

The Help menu lets you call up the online help

This window displays the icon in its real size, so you can see how it will look

This button selects the Line drawing tool.    Use this to draw straight    lines.

Use this button to create a new icon

Use this button to open an icon or bitmap file

This button selects the Pen drawing tool.    Use this to draw pixels and freehand lines.

This button selects the Rectangle drawing tool.    Use this to draw an open rectangle.

Use this button to save the icon

These scroll bars are only displayed when importing a bitmap file using File / Open or Edit / Paste.    You can use them to position
the bitmap image within the 32 x 32 icon area.    As soon as you use another drawing tool, the scroll bars disappear.

This button selects the Filled Ellipse drawing tool.    Use this to draw filled ellipses and circles.

This button selects the Filled Rectangle drawing tool.    Use this to draw filled rectangles.

The status bar shows the current cursor position in X and Y co-ordinates

The Tools menu lets you select the drawing tools, as an alternative to using the tool bar buttons.

This control indicates the color currently selected as the transparent color.    When the icon is created, all the pixels that are this
color will be made transparent, so that when the icon is displayed in Windows, the background color shows through.

To change the transparent color (in case you want to use this color in your icon) click on the control with the left or right mouse
button to select the current foreground or background color to represent transparent.

Use this button to undo the last editing action

A dialog control (list box, combo box) that can be treated as a string list

The Options menu lets you set your preferences, such as whether the environment should iconize while a script is running, and the
font to be used in the editor window.    You can also set the default directory for the location of data and bitmap files..

Prints the script on the default printer

Runs the script.

The Run menu is used to test run    the script.    Other options enable you to set command line parameters for the script being tested,
and make an executable file.

Shell operations are defined for each file type in the Windows Registry.    They are the operations like Open and Print which you see
listed at the top of the context menu when you right-click on a file.

Executes the next line of the script

Stops execution of a running script.    If the script is running in the debugger, you can continue or single step execution from the point
at which it stops, and view the values of the variables in the debug window.

Styles are names which are associated with a set of attributes (such as color, font) that determine how a dialog or a control should
appear.    They are set using the STYLE dialog element.    In addition, there are some predefined styles such as CLICK    that apply
only to dialogs or specific controls.

From the Tools menu you can run the Window Spy, the Icon Editor, the Bitmap Editor and the Dialog Editor.    You can add your own
tools to the menu.

When an icon is displayed in Windows, the window background shows through those pixels that have been defined as transparent.   
Usually these are the border or background of the icon.    The icon editor lets you choose which color to use to represent the
transparent areas of the icon.

Shows or hides the debug window

The window class name is the name given to the window by the application's programmer.    This name, unlike the window title, does
not change.    You can find out the window class name using the Window Spy, which can be selected from the Tools menu.

