
RTED 0.6.1
RTED (RT Editor) is a freeware program. Read file “licence.wri”.

If you are interested on this program, you have created some good images or you have found some bugs please send a
mail to “sergio.per@iol.it”, or you can write to:

Sergio Perani
Via Filippo Turati, 27
05100 Terni (TR) , Italy

RT email newsletter
You can subscribe to RT email newsletter.
Subscribe to RT: The best way to hear about new content and preview
upcoming events on RT is to subscribe to RT email newsletter.
You can subscribe sending the message "SUBSCRIBE" to "sergio.per@iol.it".
You can unsubscribe if you send the message "NO SUBSCRIBE".

Download
The home page for RT program is :

http://www.geocities.com/SiliconValley/3526

if the page is moved you can ask me the new url.

You can download the last version of the program at SimTel:

http://www.coast.net/SimTel/win95/graphics.html

OR
ftp://ftp.coast.net

OR in any SimTel mirror site.

The program can work with:
processor :386
OS: Windows 3.1 + Win32s
RAM: 4 Meg

But it works better with:
processor: 486 or better
RAM: 8 Meg or better
Video: true color display

Introduction
The program RT is a ray tracer with the following features:

Ray Casting and Ray Tracing
Antialiasing
Depth bitmap for stereogram
VRML 1.0 output
Texture mapping (from bitmap Windows .bmp with 24 bit color)

Models of illumination

Phong
1

Sources of light (Lamp)

Point
Cone
Area

Geometric Models

Box
Sphere
Cylinder
CSG General
Boundary Representation (with Phong interpolation)
Bezier mesh
Polyline

The program reads a text file,which describes the scene ed returns a bitmap file.

How the program works

The program RT gets the scene description in a file .rt and creates the 24 bit image in a file .bmp. RT uses geometric
models and textures.
The scene description is a text file divided in some sections which describe the 3d view, the texture used, the object
materials, the objects and the light sources.

Limits of the raytracer
The program works with any number of object and of light source. There are some constraints to follow:

you must use only closed objects. A closed object is for any line in the space, the intersection with the object consists or
in no intersection point or in a even number of intersection points. It is possible to create objects non closed (es. with
the brep). This object are wrong. The program doesn’ t control if an object is closed.

Compenetrations between objects are forbidden. Two objects cannot share the same point of the space. The program
doesn’ t control this. If you want the same effect of a compenetration use a csg node of type union.

2

User Manual
RTED (RT Editor) 0.6.0

Features

- trivial but complete undo
- mixed editing (editor and text)
- read RT file format
- on screen selection for objects and view
- editing tools

REMEMBER: Don’ t work with unnamed file, always save it. If you don’ t have a named file, you haven’ t a directory
where to get model and to save undo.

In the title bar, you will see:
RT Scene Editor - c:\Dir\foo.rt [actuallay]

actuallay is the name of the layer that is now selected. When you start to create a scene, you will start from layer
default.
The layers are usefull when you work with a great number of objects. No problem, create a new layer and put in this all
the object you need to edit. The layers are usefull also to create a group of objects. Follow this:
1) Create a new layer with the same name of the group
2) Add in this layer the objects that you want in the group
3) Use command Layer|Group. The program will create the group and will put it in default layer.
You can open a group with command Layer|Open Group. The program will recreate the layer.
If you open a group you will not loose the trasformation (rotation, scale, translation) applied to group. The program
will keep an empty group to remember of them when you will want to rebuild the group.

Read first the file “Edtut.wri”, the editor tutorial, where is explained how
to build the first scene.
COMMANDS:

Left button of the mouse
1) Select a view. You can see e little triangle in the top on the left in the selected view.
2) Select an object. If you click with left button on a object in the selected view you select the object.
You can edit some types of object if you select them.

Right button of the mouse

Active only in 3D views. click on objects and view (VUP, VPN, VRP, PRP).
If you select multiple object, a dialog box pops up and ask you an item.
If it starts with “$” it is an object, with an “*” is a lamp, with a “&” is a view value.
If you select an object or a lamp then will appear a submenu with action for objects or lamps:
translate, rotate, scale. If you select translate then click for new object position.

File|Load ...
You can load a .rt file.

File|Save
You can save actual .rt file. If the file has no name, no action will be made.

3

File|Save as...
You can save the actual file with a new name.
Remeber: save the new file in the same directory. If you must save in another, you must copy all the
referenced file *.brp, *.bzr.

File|Exit
Exit the program.

Edit|Duplicate
Duplicate an object.

Edit|Object|Create

you must choose an object type. Then a specific dialog box will pop up. You must always
give the name to the object.

- sphere
- brep
- box
- cylinder
- intersection
- subtraction
- union
- bezier
- polyline
- anim
- deformgraph

Look after to see how to modify polyline, anim and deformgraph.

Edit|Object|Modify
You must choose the object name from the list. A dialog box will pop up, where you can edit the object

characteristics.

Edit|Object|Modify Comm
You must choose the object name from the list.
A dialog box will pop up. You can change the object name, its material and texture and apply the current

mapping, if you have created one.

Edit|Object|Delete
You must choose the object name from the list.
The program will delete the object from the scene.

Edit|Object|Traslate
You must choose the object name from the list.
Choose the translation values for x,y,z axes.

Edit|Object|Rotate
You must choose the object name from the list.
Then you choose the rotation angle for x, y, and z axes.

Edit|Object|Scale
You must choose the object name from the list.
Then you choose the scale factor for x, y, and z axes.
Choose negative values for mirroring.

4

Edit|Object|Special
Special menu for object. Not all the objects have a special menu.

Edit|Object|Extra Info
You can change some extra caracteristic for objects.
style is the type of visualization: normal, fastview and box.
fastview is usefull for object with a great number of lines. With fastview the program
show only a line every n times, where n is a value in the fastview attribute.
With box you will see only the box of the object.

Edit|Lamp|Create
you must choose an lamp type (only a lamp type for now).
Then a specific dialog box will pop up. You must always give the name to the lamp.
Now the program don’ t check if two lamps have the same name!

- pointlamp
give center and color (intensity).

- conelamp

Edit|Lamp|Modify
You must choose the lamp name from the list.
A dialog box similar to the “Edit|Lamp|Create” will appear.
There is no other way to change the lamp position for now.

Edit|Lamp|Modify Comm
You must choose the lamp name from the list.
A dialog box will pop up. You can change the object name.

Edit|Lamp|Delete
You must choose the lamp name from the list.
The lamp will be deleted from the scene.

Edit|Lamp|Special
Special menu for lamp. Not all the lamps have a special menu.

Edit|Material|Create
A dialog box will appear. Give the name of the new material, then the material editor will appear.
Look in manual or in tutorial for attribute meaning.

Edit|Material|Modify
You must choose the material name from the list.
The material editor dialog box will appare.
Look in manual or in tutorial for attribute meaning.

Edit|Material|Delete
You must choose the material name from the list.
The program will delete the material from the scene.

Edit|Mapping|Create
You must choose the mapping type from the list. A new mapping will be created. The mapping created will be

5

the selected mapping.You can apply it to objects using the command “Edit|Object|Modify Comm”.

Edit|Mapping|Get from ...
Get the selected mapping from an object. You must choose from the object list.

Edit|Mapping|Delete
Delete the selected mapping.

Edit|Mapping|Show
Show the mapping on view windows, so you can edit it. You can edit only the mapping, to return to normal edit
mode use command “Edit|Mapping|Hide”.

Edit|Mapping|Hide
Hide the mapping and return to normal mapping mode.

Edit|Texture|Create
You must choose a texture from the list. In the list there are the texture found in the texture path.

Edit|Texture|Delete
You must choose the texture name from the list. This command will not delete the texture from you disk but

only from the scene.

Edit|View|General ...
Allow to change the view in a simpler way, and this will preserve the aspect ratio.
Dimx, Dimy are like in Edit|Param, but this change the window dimension too.
Focal is the focal distance (The distance from PRP to VRP).
High is the semi high of the view window.

Edit|View|VRP
Change the VRP position. You can change this with right button of the mouse.
Look in the tutorial for more information.

Edit|View|VUP
Change the VUP position. You can change this with right button of the mouse.
Look in the tutorial for more information.

Edit|View|VPN
Change the VPN position. You can change this with right button of the mouse.
Look in the tutorial for more information.

Edit|View|PRP
Change the PRP position.
Look in the tutorial for more information.

Edit|View|Window
Modify the window in the view plane.
Look in the tutorial for more information.

Edit|Param
You can edit varius parameters from the param section.
Look in the tutorial for more information.

6

Command|Redraw 3D
Redraw the front, top, left views. You can press “F5” key.

Command|Preview
Redraw the preview. You can press “F9” key.

Command|Zoom In
Zoom in the selected view window. This command does not work with the preview window. You can press the

“i” key.

Command|Zoom Out
Zoom out the selected view window. This command does not work with the preview window. You can press

the “o” key.

Command|Center
Allow to change the center of the front, top, left views.
Click with the left mouse in the new center of the window.

Command|Axes
Show or hide the axes.

Window|Single window
Show only the selected window.

Window|All windows
Allow to return to the edit windows.

Window|Show image
Show the last rendered image.

Window|Front view
Show only the front view.

Window|Top view
Show only the top view.

Window|Side view
Show only the side view.

Window|Preview view
Show only the preview view.

Action|Create Image
Create and display the image on the view.

Action|Create all frames
Create all the frames of a animation.

Animate|Go to frame ...
Select a frame of the animation, and enter in the animation mode.

7

Animate|NFrame
Set the number of frame in the animation.

Animate|End
Exit from the animation mode.

Help|About
Information about the program.

Layer|Create
Create a layer. You must enter the new name.

Layer|Delete
Delete a layer

Layer|Add to ...
Add an object to a layer. An object can be in more than a layer.

Layer|Remove from ...
Remove an object from a layer.

Layer|Group
Create a group from the selected layer.

Layer|Open group ...
Trasform a group in a layer.

Layer|Select
Select a layer. You will see only the object in the layer.

Insert|File RT
Ask for a .rt file. It will insert the .rt file in the actual scene.

Insert|File DXF
Ask for a .dxf file. It will insert the .dxf file in the actual scene. It generate .brp files and a .rt file in the scene
directory.

Insert|File RAW
Ask for a .raw file. It will create a .brp file in the scene directory.

Option|General
You can change some editor values:
KeepEdge speedup redraw, but needs more memory.
UseColor use colors to draw object in wireframe mode.
DirectBox show all the objects like boxs.
Background the color of the background.
SelectedColor the color of the selected object.
UseGrid use the grid for polyline editing.
GridDim dimension of the grid.
InvertY invert the y axes on Top view.

8

Option|Interface
You can change some interface values:
DimPixel pixel dimension, during image costruction.

0 no draw
1 normal
2..6 bigger image

CBitmap hold image in memory, after image creation.
MultiTask31 multitasking for Windows 3.1.

Editing Curves (polyline)
If you click with left button of the mouse on a curve in a selected view, you select the curve. The curve will change
color, and its control points will appear on display (you will see a little square for any control point). If you click again
far form the curve, you deselect it.
If on a selected curve you press the left button of the mouse in a control point, the square will become red., you have
selected the control point. There are some actions you can do in this situation:
press key d’. This delete the control point.
press key a’. A new point control will be added in the cursor position.
press key m’. You move the control point position. The new position will be the same of the cursor.
You can use the grid (Option|General...) to limit the positions of the point.

The only curve you can edit is the polyline.
You can use the polyline in many way. You can use it to build brep objects. Remember to work always in the Top view!
It is possible to build rotation brep or sweep brep.

Rotation brep

To build a brep you need to rotate a polyline around an axis. The rotation axis will be the Y axis. To see the
axis press the F12 key or use Command|Axis. The polyline can be open or close. (Use the special menu for
open or close a polyline).
If the polyline is open you need that the first and the last point of the curve are on the Y axis, like in the picture.

The first and the last point can not be exactly on the axis but near; the program will move them for you.

The curve can be closed:

9

All the points must be all positive or all negative.

To make a rotation of a polyline you must choose “rotation” from the special menu of the polyline.
The program will ask for the name of the new object, the number of subdivisions and the angle of rotation.

Sweep brep

You may build a sweep brep only from a closed polyline. Choose “sweep” from the special menu of the
polyline.
The program will ask for the name and the height of the new object.

It is possible to build more complex sweep object, with hole, following a path or with deformations.
Before you have to create a shape to sweep. This must be a group of polylines. Follow this procedure:
1) Create a new layer with the name of the shape (es. test_shape).
2) Select the new layer
3) Select the top view
4) Draw the external and the internal polyline (you must draw one external polyline and one or more internal
polyline or no internal polyline).

5) Use command Layer|Group to create group “test_shape”.
6) Now in the default layer, draw a polyline that will be the sweep path (in the front or side view) with name

10

“path1”.
7) Select the group “test_shape” and call the special menu of the object.
8) Choose “Sweep”.
9) In the dialog box give a name to the brep object, and choose “path1” in the path listbox.

At the end you will have a sweep brep.
You can also deform the shape when it follow the path. You need a deformation graph (“deformgraph”).

Creating a deformation graph
A deformation graph is used for a general sweep operation, to deform the shape of the sweep.
You can work only in the Top view and only in the range 0 <= x <= 1. Draw a curve in the range like in the picture.

This curve start from point (0,1) to point (1,0). You can see it like a function f(x). The 1-value means an unmodified
shape, greater than 1 a bigger shape and smaller than 1 a reduced shape. When the program creates the sweep , it
divides the interval from 0 to 1 in as many parts as the times it uses the shape.
To create a deformation graph from this curve use command Edit|Object|Create and choose deformgraph.

A deformation graph can be in any layer, when you create a general sweep you can select it also if in a different layer.

UNDO FEATURE:
If you work with a .rt file which name is “name.rt”, the program will create a directory “name.rtd”, and will put some
files in it. Inside there is the directory “editor” which contains files used by the scene editor. Inside there is a directory
“UNDO”. After every action RTED will put there a copy of the scene. This because the program can crash in every time
so you will have you work save.

Definition of configuration file

The position of the configuration file of the program RTED is definited in file win.ini in the section [Rtw] in record Ini.
Es.

[Rtw]
Ini = c:\rt\rtw.ini

Section view
Definitions of the metods to display image during creation.

Dimpixel.
Dimension of pixel of image showed during creation. 3 means that the image will occupate a grid of 3x3 pixel.
You can use it when you create a small image.

11

Use Editor|Interface... to change this value.

CBitmap
If the value is 1 RTED keep a copy of the bitmap in memory.
Use Editor|Interface... to change this value.

Section Dir
Definition of directory used by the program.

TextureDir.
Directory where the program looks for the textures.

ModelDir.
Directory where the program looks for geometric models.

12

TUTORIAL (for RT 0.1.2 file format)

Introduction

This tutorial explains step by step how to create a scene that you can render with RT program. There are explained some
advanced features too.
The scene is described by a text file; the extension used is “rt”.
You must write a .rt file using a text editor, like the dos edit, windows notepad or the editor which you prefer. You must
be able to use one of it, to read a file and to save it.
That is not the only a way to create a .rt file. You may use the RT Scene Editor. It creates a .rt file in the same format
explained here.

For all paragraphs in the form :

title (Tutxx.rt)

there is a .rt file which uses a specific characteristic. You can find that file in the “examples\tutorial” directory; so you
can print this and not the examples.

Basic arguments
How data are organised in a file
The .rt file is a text file.
This is an example which describes the way data are subdivided:

{ section1
{ subsection1

attribute1 value;
}
attribute2 value;

}
{ section2

}
.

This file cannot be read by RT, it is only a template to show the highlight of the structure of a .rt file. The real identifiers
used in a real .rt file are described after, with their meanings.
The parts of file separated by { and } are called sections. The file ends with a dot (.) .
The word after { is the type of the section.
A section can contain other sections (called subsections) or attribute.
A section contains some attributes. Every attribute has a value. The value depends on the attribute, name. The attribute
values can be also subsection.
The attribute that can be in a section depends on the type of the section.
The sections describe things in the scene. The attributes tell how things are made. If a section needs the data of another
one, the first one must follow the second.

Don’ t worry if you don’ t understand exactly, you will understand when you see the examples.

A simple scene (Tut01.RT)

Look at file TUT01.RT.
Tut01.rt is the simplest scene you can render. All sections are needed.
This scene is a sphere with a light source (lamp) .
Here a short description of the sections used:

vcr
view coordinate reference, it describes the 3d view of the scene.

13

lamp
is a light source.

material
describes the physical characteristics of an object, if it is red or white, if it is opaque or transparent.

object
is an object of the scene.

They can be declared in any order, except in the case of materials which must precede objects, because, the object
sections reference to the material section.
For lamps, materials, and objects vary types of model exist. For example an object can be a sphere (like in this case) or
a box or other. All the objects have some attributes that are common to all objects, (the part before model) while others
that are specific to the particular type of object. The common attributes in the section object that must always be
declared are name and material.

Give a look to the section object. The common attribute can be:

name
is the name of the object. All objects in the scene must have an unique name; if not the new object will override the
old.

material
is the name of the material which describes the physical characteristics of an object. It must exist a material section
which declares a material which name will be used in a object section.
For some type of object, called metaobjects, you must not include the attribute material, but these are not real object.
They are explained later.

model
its value is a subsection which name is the type of the object: in this case sphere. It must be the last attribute in the
section.

The sphere is the most simple object. It has only two attributes: center and radius.

center
is the center of the sphere. It is described in the point format "(x , y , z)".

radius
is a real, the radius of the sphere.

For material section , it is the same. There is a common part, but you can use only the common attribute name. Now is
available only a type of material: phong, so you must always use phong. It will be used by one or more object section
(a material never used is not an error). The name must be unique, if not it will delete old definition.
We can divide its attribute into three groups: the group which start with letter K (coefficient) , which start with O
(colors) , the others.
The K attributes are:

Ka
is the ambient-reflection coefficient.

Kd
is the diffusive-reflection coefficient.

Ks
is the specular-reflection coefficient.

Kt

14

the transmission coefficient.

They determinates the object color and the direction of the ray when it intersects an object with this characteristics.
Ka allows to show object without a lamp, using a special ambient lamp, but you don’ t get good results with Ka
attribute.

Some examples:
Ka=0, Kd=0.7, Ks=0, Kt=0 an opaque object
Ka=0, Kd=0.6, Ks=0.1, Kt=0 a reflexive object
Ka=0, Kd=0.1, Ks=0.7, Kt=0 a mirror
Ka=0, Kd=0.3, Ks=0, Kt=0.8 a transparent object

The O attributes are:

Od
is the diffuse color. If you want change the color of an object change this, it is what you intend for color of an object.

Os
is the specular color. If you want to change the color of the highlight, change Os.

They are specificated in color format "(r , g , b)" where r, g, b are the red, green, blue component, which must be real
numbers between 0 and 1 and 1 means all color , 0 no color.
The other parameters are:

n
the specular-reflection exponent. Defines how large must be the reflex of light sources on object.

ni
the index of refraction. Determinates the deviation of the ray when it crosses a transparent object.

The same is true for lamp. The common attribute is only the name (must be unique).
A model is pointlamp, which can transmit the same energy at any distance. It is all in a point. pointlamp has attributes
pos and color.

pos
the position of the lamp. The lamp is all in a point. It is in the point format "(x , y , z)".

color
color of the lamp. A rgb color in the format "(r , g , b)".

Remember that sometimes you can' t see the object because there are not light sources.

A complex thing is to put the view in a way that you can observe the object you want.
The view described is more complex, but you can make some images without understanding it. If you want to learn it
go to paragraph "Understanding the 3D view". If you don' t want for now, you can use an empirical way, but for a
simple use. You can copy every time the vcr section of the file tut01.rt which we will call the standard view (for
program RT).
It is sufficient you follow a simple rule : your object must have all its points with x coordinates > 0 and the distance
from x axis * 2 < x coordinate.
For example:

 point (-3 , 0 , 2) is out the view
 because x < 0 , for the first condition

 point (7 , 3 , 10) is out the view
 because sqrt(3*3+10*10) * 2 = 20.8 < 7, for the second condition

 point (17 , 3 , 3) is ok

15

You must not calculate it for all the points of an object: you can compute only for the center or another point so you will
see that part. Then , if you want, you can move it empirically to see it better.

Some hints
A .rt file is a little verbose. A good technique is to start form some already written files and to modify them, adding
sections using copy and paste in a text editor.

A text file is slower to read than a binary file, but it is simple to edit and understand. It is more flexible.
Next versions or RT will improve the file format, adding new features or modifying olds, but old formats will be always
compatible, so all you learn you can always use: the program will auto-translate old characteristics into new. Another
bonus of text file format is that you can easily write a program which outputs a scene description in text file format,
while it is complex to do in binary mode.

Adding a new sphere (Tut02.rt)
You must only add two section. One material, one object.
You can use copy and paste for file Tut01.rt. Copy the last two section and paste then in the end of file, before the dot
(“.”). Change the name of material and the object, and change the sphere position. Change the name attribute of the
last two sections; subst “name mat1;” with “name mat2;” and “name sph1;” with “name sph2;” so RT can distinguish
them. Then you must move the last object, because it occupies the same space of object sp1 and you will see only one.
Move it up, changing the coordinates of the center. You can see this transformation in file tut02.rt.

Changing the color of an object (Tut03.rt)
In previous example you could use the same material for the two sphere. You use two different material if you want
change the characteristic of one. If you want to change the color change Od in the material section with name “m2”.
Look at file tut03.rt.

Modifying the parameters (Tut04.rt)
Now you may want to change some image characteristics, like the image dimension: in fact a 100 x 100 image may be
too small. To do this, you must add a new section.
Look at file tut04.rt . There is a new param section.
Param section allows to change the parameters which determinate the way to build the image. Below are described the
principal attribute of param section:

dimx, dimy
represent the image dimension in pixel (default is 100x100).
If you change the image dimension, and horizontal dimension becames different from vertical, you can affect the
aspect ratio, so circles became ellipses and squares rectangles. To avoid this you must change the view window in
the view section (look at paragraph “Understanding the view”), or , simply, always use squared image of any
dimension, with dimx = dimy.

shade
is the way the color will be computed. The allowed values are “phong” and “noshadowsphong”. The default is
“phong”. “phong” and “noshadowphong” are similar, but “noshadowphong” does not compute the shadows. It is
faster, but the image could be lighter.

mode
is the number of deviation allowed for a ray. If you set =0 you will not see transparency and reflection. Don’ t
specificate big value. A value of 5 or 7 is good for transparence.

anti_alias
is a technique for creating a smoothed image. Set to 1 if you want, o if not. The program will use adaptive
antialiasing.

backcolor
is the color of the background. its value is in rgb format.
buildhier if set to 1, create an automatic hierarchy to speedup the creation of the image. If set to 0 no hierarchy is
used. This will be explained later.

Adding a box (Tut05.rt)

16

A box is parallel to the x, y, z axes. It is simple like a sphere.
You must only specificate the max and the min value for x, y and z, like in file tut05.rt.

The brep object
Brep stands for boundary representation. You define a solid describing its boundary surface.
You use polygon to make the surface. Every object with a boundary surface is contained in a .brp file.
The .brp file is a text editor, but this can be very complex and boring to write. You can use other program like 3D Studio
for creating a model, save it like a .dxf file and convert it with program dxf2rt. Remember : dxf2rt convert only object
formed by polyline not from 3dface.

Look at his declaration in a .rt file :

{ object
name breptest;
...
model {

name mm1;
constr 1.2;
interp 0;

}
}

This includes a brep object with name “breptest”. It looks for model in the file “mm1.brp”. First it look in the current
directory, then, if RT haven’ t find it, the program will look in the common model directory.

A particular subset are the brep formed only from triangles. They have particular possibility not allowed for general
brep (for now).

The attribute interp create a smooted brep object, but you need that all the faces of the object are triangles.

Cylinder
It is possible to create a cylinder.
The syntax is:

{ cylinder
high 1;
radius 0.5;

}

The cylinder axes is the z axes. The default values are 1 for high , 0.5 for radius.

Cone Lamp
You may create a lamp which lights only in a conic area.

{ conelamp
pos (0 , 0 , 0);
color (1,1,1);
dir (0 , 0 , -1);
ang 0;

}

pos and color are like for the point lamp.

dir
a vector which gives the illumination direction.

ang
17

an angle which tells how large is the conic area of the lamp.

Creating a coloured background (Tut06.rt)
Using a box you can create your own background. It is sufficient you make a big box which cover all the image window
and is back to all the object. You can give it the color you want. Set its material with Kt = 0 and also Ks = 0 if you don’ t
want reflection on it. Look at tut06.rt.

Applying a texture mapping to an object (Tut07.rt)
You can apply a bitmap to an object. If you use a box as a background you can use a bitmap as background. But , if you
want, you can apply a texture mapping to any object.
Before you need a bitmap. It must be a .bmp file, in Windows 3.0 bitmap file format and only at 24bit format (16
million of colors). If , for example, its name is “bitm.bmp” you must put it in the same directory where is the file or in
the default texture directory. Put the bitmap in the same directory with your .rt file if it is the only file will use that
bitmap, while put it in the common directory if more files use it.
You can preload in memory the bitmap with a new section:

{ texture name bitm; }

After in any object section you can use the attribute texture to apply the bitmap: the colors of bitmap will override the
Od parameter.
You must write like this:

{ object
name ...;
texture bitm;

....
}

You have not finished. You have told what texture to apply, not how to apply. In fact you must add a new common
attribute “mapping”.
A mapping associate every point in a 3d system (in this case in the object 3d system) with a point of the bitmap, and
then with a color.
There are many types of mapping, one of this is the planar.

This is an example of the definition of a planar mapping:

mapping { mapping
 model { planar
 center (0 , 0 , 0);
 assx (0 , 1 , 0);
 assy (0 , 0 , -1);
 moltx 0.130;
 molty 0.130;
}

mapping is a common attribute of an object section. The value is a subsection of mapping type. The mapping section
follows the same rule of the already seen sections: a common part for all mapping types (null in this case), a model
attribute, always present and always the last in the section. For now the allowed values are: planar, spherical and
cylinder.
In this case is planar.

The planar model put the bitmapped texture on a plane in the space, fill all the plane with periodic replies of the same
and then it projects the points in the plane in all the space; in this way planar mapping associates every point in the
space with a color. Obvious, this will affect only the object in which the mapping is declared.
center, assx, assy defines the plane and the position of the bitmap. The plane contains the center point and it is parallel
to vector assx and assy. Also they defines a reference system on the plane: center is the origin and assx and assy the
axes. The primary bitmap will lies in the space defined by disequations : 0 <= x <= 1 and 0 <= y <= 1.
You can modify the dimension of the image with moltiplicative factor moltx and molty, which enlarge the image in

18

horizontal and vertical.

Advanced argument
Limits of the raytracer
The program works with any number of object and of light source. There are some constraints to follow:

you must use only closed objects. A closed object is for any line in the space, the intersection with the object consists or
in no intersection point or in a even number of intersection points. It is possible to create objects non closed (es. with
the brep). This object are wrong. The program does not control if an object is closed.

Compenetrations between objects are forbidden. Two objects cannot share the same point of the space. The program
does not control this. If you want the same effect of a compenetration use a csg node of type union.

This limits are true if you want transparent objects. An object with material characteristic with Kt equal to 0, the object
is not transparent and you can use open objects.

The program never checks if things are good, it thinks you know what are you doing.

A transformation of an object (Tut08.rt , Tut09.rt) or a lamp

transf describes an object rotated, translated, scalated.

 { object
 name transfname;
 model { transf

 s x x x;
 r x x x;
 s x x x;
 t x x x;

 {object

 }
 }
 }

the object transformation is described by a sequence of r(rotation),
s(scale), t(translation). The object in the transf. Section can be any type of object, also another transf. transf is a
metaobject.

In Tut08.rt there is a box rotated. The box, centered in the origin, is rotated around z axes.
In Tut09.rt a sphere becomes an ellipsoid. The sphere, centred in the origin, is scaled in y axes.

If you want to apply a transformation to an object, you must check if the object is centred in the origin, because the
rotation and the scale are made on this assumption. If not, the object will be rotate and scaled as you want, but also it
will be moved in a unwanted position.
If you know the center of an object, you should first translate it to the origin of the axis, then you can rotate or scale it
how you want. The object will be scaled and rotated, but the center will not move from the origin. Now you can remove
the center in the original position.

You can now apply a transformation to a lamp too. The syntax is similar.

{ lamp
 name transfname;
 model { transf

 s x x x;
19

 r x x x;
 s x x x;
 t x x x;

 {lamp

 }
 }
 }

This is usefull for some special effects, like to scale a cone lamp.

Group of objects
group describes a group of objects. The syntax is:

 { object
 name groupname;
 model { group

 { object
 ...
 }

 { object
 ...
 }

 ...
 }
 }

The object in the group can be anyone, also other groups. group is a metaobject.
What can you do with this ?
1) you can group more objects in a logical way (for example, an computer is a complex object, a group of monitor,
keyword, desktop and so on).
2) you can translate or rotate or scale a group of objects only with a transf section.

Building a csg node (Tut10.rt)
CSG stands for constructive solid geometry.
In tut10.rt you can see, from left to right the subtraction, the union and the intersection between two spheres.
You must give the two objects, like attributes :first and second. This attribute values can be also other csg node.
The material is not needed, csg node use the material of the associate objects.
Remember : objects in csg node must be always closed.
Look at file tut10.rt for an example of all tree case.

Bezier Mesh
I suppose you know what a bezier patch is. The bezier mesh is a series of path which form an object.
To add a bezier mesh, you must add a new subsection to attribute “model” in a section “object”.

{ bezier
name xxx;
cache x;
div x;

}

Only name is needed.
“name” is the name of the model. The model is in a .bzr file in the model path (the same for brep model).
20

“cache” tells is rt must record the data needed to render the object. The value for “cache” must be 1 if you want to
record, 0 if not. Default value is 1.
RT will convert bezier mesh in a brep object. “div” tells RT how accurate must be the convertion.

There is a new .bzr format. A bezier mesh is a series of bezier patch. Here there is a template :

{ bezier

 { patch
 (1.40000, 0.00000, 2.40000)
 (1.40000, -0.78400, 2.40000)
 (0.78400, -1.40000, 2.40000)
 (0.00000, -1.40000, 2.40000)

 (1.33750, 0.00000, 2.53125)
 (1.33750, -0.74900, 2.53125)
 (0.74900, -1.33750, 2.53125)
 (0.00000, -1.33750, 2.53125)

 (1.43750, 0.00000, 2.53125)
 (1.43750, -0.80500, 2.53125)
 (0.80500, -1.43750, 2.53125)
 (0.00000, -1.43750, 2.53125)

 (1.50000, 0.00000, 2.40000)
 (1.50000, -0.84000, 2.40000)
 (0.84000, -1.50000, 2.40000)
 (0.00000, -1.50000, 2.40000)
 }

 { patch
 (0.00000, -1.40000, 2.40000)

....

 }

......
}
.

Understanding the view
The complete format (not all are used by RT) is:

{ vrc
 vrp (0 , 0 , 0);
 prp (0 , 0 , -10);
 vup (0 , 0 , 1);
 vpn (1 , 0 , 0);
 umax 3;
 umin 0;
 vmax 3;
 vmin 0;
 type 1;
 f 1;
 b 0;
 fon 0;
 bon 0;
}
21

All the scene is described in an absolute system.
With param vcr, vup, vpn, you describe a second system, the observer system. So, if you want to modify the view, you
must modify only some parameter in vcr section. The tree axes are called u,v,n.
So if you want to modify the view, you must modify only some parameter in vcr system.

vrc
is the origin of the new coordinate system.

vpn
defines the n axis.

vup
defines the v axis.

Fixed this three parameter, the new system is defined. The image will be on plane uv. We can define which part of plane
we want to represent the image, with:

Umin, Umax, Vmin, Vmax
the min and max value on the u,v axes, which represent the image that we want to see.

The others parameters are :

prp
describes the position of the observer. IMPORTANT: its coordinates are in the vcr system and not in the absolute
system like other parameters. The rays will start from prp point and will go through the window and in the scene.

type
is the way of representation: o means parallel projection, 1 means perspective projection.

Example:
If you want to center an object at position (10,20,5) you must follow this procedure.

1) fix parameter prp, Umin, Umax, Vmin, Vmax. They will not change if you move the system.
2) put vcr in a point quiet near the object. Es. (0,10,0).
3) the n axis is the direction where you see. We can set vpn equal to (10,10,5) so it is in the direction exactly (vcr + vpn
= object position). Don’t worry if vpn is not a versor.
4) You can use vup to set the top of the image. You can set it to (0,0,1). Don’t worry if vup is not a versor or it is not
vertical to vpn, but it is important that vup and vpn are not parallel.

If you want an aspect ratio = 1 you must follow the rule :

dimx / dimy = (Umax - Umin) / (Vmax - Vmin)

where dimx and dimy are attributes of param section, while Umax, Umin, Vmax, Vmin are attributes of vcr section.

Other attribute on param section
Other attributes that you may encounter in the param section are:

render
is the type of output. The allowed values are : “raytracing” (standard), “depth”, “vrml”, “t_analysis”.
“raytracing” is the standard output.
“vrml” outputs a .wrl file. It is in VRML 1.0 file format. You can see it with a VRML browser.
“t_analysis” outputs a .ana file. It describes some characteristics of the objects in the scene.

toll
is a value used in intersection calculus. Intersection is true if the distance is less then toll. This avoid the noise. If in
your image you get some noise you may change this.

anti_al_toll
22

if it is low RT makes a more in depth analysis for antialiasing.

ambientcolor
is the ambient lamp color. Default is (1,1,1). You don’ t need to change this.

backcolor
color of the background. The default is (0,0,0).

ambient_ni
value for refraction coefficient of the vacuum. Default is 1.

Adding comment
You can add your comment to .rt files.
They use the C++ style:
1) you can put you comments from "/*" to "*/"
2) you can start comments from "//" until the end of line
For example:

 /* RT example

 more line, this is a comment

 */

 {object
 ...
 model { sphere // comment until the end of line

 ...
 }
 }
 .

Remember that if you use with some automatic programs which work on .rt file you will lose these comments!

Creating stereogram
There are two phases to create stereogram:
1) create a depth bitmap with program rtw
2) create the stereo bitmap from depth bitmap with program rtst or other program.

1) from file .rt you want to create a stereogram, modify or add the attribute render equal to “depth”. Add if you want the
attribute depthmax, depthmin, depthback.
depthmax is the max value allowed in the depth image, depthmin is the min. depthback is the value for dot without
objects (the background).
The default values are: depthmax 64, depthmin 48, depthback 64. Remember that the output is a grey scale image, but
in the 24bit format. For some use you must convert it.

2) if you use rtst you must only execute from file manager
rtst <depth image> <output bitmap>

Using hierarchy
If in the param section of a .rt file exist attribute buildhier with value 1, then the program will use an hierarchy for
speedup the creation of the image.
If it is the first time that it loads the .rt file (for example demo.rt) then the program creates an hierarchy and save it in a
file with extension .rt_ and the same name (it will be demo.rt_ in the example). The next time you load the file to create
the image, it will find the saved file and load the hierarchy without creation.
If you have changed some object, or added or deleted, you may encounter an error or a wrong image; in this case you
should delete the .rt_ file.
You should not delete the file if you change a section different from object section.

23

Appendix
If something goes wrong
If you get an error or an unknown exception, perhaps you have find a bug in the program. You could contact the authors
to inform about it. We like to know the file which make the problem and your computer configuration. We will correct
the bug or will explain you which was the cause.
If you get an error when you load a scene, perhaps there is an error in the .rt file. Error code 1 means generic error, the
program cannot explain you what type of error is. But you obtain the position in which the error was encountered, so
you can read the file and modify it.
Sometimes the position could be a little incorrect, a little moved forward,
but at least a line.

About .brp file format
The description of a simple file .brp:

{ pbrep
vertices
3
0 0 0
1 0 0
1 1 0
0 1 0

faces
1
{ 1 { 4 0 1 2 3 } }

}

This is a simple object. It is a square in the plane x-y with edge of 1.
Remember this is an open brep, you cannot assume it will be a transparent object.
There are definite four vertices, which we call A for (0,0,0) , B for (1,0,0) , C for (1,1,0) , D for (0,1,0) . It is definite
one face with one contour. A face can have more than a contour; in this case the first contour is the external contour,
while the others are holes in the face.
Every face has a normal versor, which describes the external side of a face. We can tell this to the program with the
order we put the vertices in the contour description:

x exit
. enter

ABCD anticlockwise

24

ADCB clockwise

If you have a hole, the order of the hole contour must be opposite to the external.

25

26

File format
The file format is defined in a formal way for sintax, in a informal for the semantic.

Definition of the metalanguage:

Definition

A = B means A is defined like B

Sequence

A + B means A is tied with B

Selection

A | B means A or B

Repetition

{A } means that it is possible repeat A a inprecisate number or time (also zero).

Optional

[A] means A or nothing

Non rapprentable simble

description’ in this way you can indicate a simbol the you can’t print

Also:
An identificator in bold means a terminal simbol, a normal identificator means a non terminal simbol.

Numeric definition

plus = the simbol +’
dot = the simbol .’
digit = [0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]
number_integer = [- | plus |] + digit + { digit }
number_float = number_integer + [. + { digit }]
number_real = number_float + [E + number_integer]

number_integer
is an integer number (es. 18554).

number_float
is a number with comma (es. 34.87653).

number_real
is a number in scientific format (es. 13.47E-2).

definition of identificator

alfama = [A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | X | Y | Z]
alfami = [a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | x | y | z]
alfa = [alfama | alfami]

27

ident_first = [alfa | _]
ident_other = [alfa | digit | _]
ident = ident_first + [{ ident_other }]

ident_first
is the first character of an identifer.

ident_other
the type of all characters of an identifier but the first.

ident
declaretion of an identifier.

definition of a separator
(between identifiers or numbers or other)

ret_carriage = 'carriage return (ASCII = 13) '
space = ' '
tab = ' tabulation character (ASCII = 6) '
sep = { [space | ret_carriage | tab] }

The separator is used to separe two identifiers.
There is no difference between space, carriage return and tabulation.

Now we will use a new meta-operator dot (.), with the meaning of “ + sep +”.
For example: a . b is the same of “a b” or of “a b”

Other common definition

vector = (. number_real . { , . number_real } .)
matrix = [. number_real . { [, | ;] . number_real } .]
point = (. number_real . , . number_real . , . number_real .)
color = point

matrix
this definition is meaningfull if the groups which are separated from ; have the same number of elements
separated from , .
For example [2 , 3 ; 4 1.2] is correct, [3, 1; 7] is not correct.

Section

For the text type definition the common way to represent the structured data is to create a section which contains the
data with similar definition.
The definition prototype is :

section = { . sectionname . defsection . }

sectionname = ident

section
definition of whole section.

sectionname
definition of the type of the section.

defsection
declaration of the data in the section. It is impossible to define this non terminal; it must be defined every time.

28

Definition of the file format
File .bmp
It is the standard file format for bitmap defined for Windows 3.0.
You can use only bitmap with 24bit.

File .brp
Definition of a geometric model of type Boundary Representation.

A face is defined by some contours. The first contour is the extern contour, which must be always included; the other
contours describe the holes in the face.
A contour of a face is defined by the values of vertex indexes which limit it.
You must verificate the condition that all vertices of all contours in a face are complanar.

filebrp = { . pbrep . section_vertex . section_face . } . dot
section_vertex = { . vertices . defvertex . }
section_face = { . faces . defface . }
defvertex = number_vertex . { vertex }
number_vertex = number_integer
vertex = number_real . number_real . number_real
defface = number_face . { defcontour }
defcontour = { . number_contour . { . contour . } . }
contour = number_index . { index }
number_index = number_integer
index = number_integer

filebrp
definition of file .brp.

section_vertex
definition of all vertex. All the vertex are definited by a sequence of vertex definition. It is possible to associate
an index to every vertex, 0 to the first, 1 to the next and so on.

defvertex
definition of the verteces.

number_vertex
definition of the number of the verteces in a brep model.

vertex
definition of a single vertex. A vertex is a point in the space.

sections_face
definition of all faces.

defface
definition of the faces.

defcontour
definition of the contours in a face.

contour
definition of a contour.

number_index
number of verteces in a contour.

index
29

index of a vertex of a contour.

Example of file .brp:

{ pbrep

vertices
10

16 0 54
16 10 54
8 16 54
0 10 54
0 0 54
16 0 30
16 10 30
8 16 30
0 10 30
0 0 30

faces
7

{ 1
{ 5 0 1 2 3 4 }

}
{ 1

{ 4 1 2 7 6 }
}
{ 1

{ 4 2 3 8 7 }
}
{ 1

{ 4 3 4 9 8 }
}
{ 1

{ 4 4 0 5 9 }
}
{ 1

{ 4 1 0 5 6 }
}
{ 1

{ 5 5 6 7 8 9 }
}

}

File .bzr
Definition of a geometric model of type Bezier mesh.

File .rt
The file describes a raytracer scene.
It is so defined :

30

filebrp = section_rt . dot
section_rt = { [section_view | section_param | section_texture | section_material |

section_lamp | section_object] }

filebrp
definition of the entire file .rt .

Section View

This section defines the 3D view of a raytracer scene with the sistem VRC (3D viewing-reference coordinate).
To define exactly all the attributes you can see in [1].

section_view = { . vcr . { [def_vrp | def_prp | def_vup | def_vpn | def_umax | def_umin | def_vmax |
def_vmin | def_type | def_f | def_b | def_fon | def_bon] } . }

def_vrp = vrp . point . ;
def_prp = prp . point . ;
def_vup = vup . point . ;
def_vpn = vpn . point . ;
def_umax = umax . number_real . ;
def_umin = umin . number_real . ;
def_vmax = vmax . number_real . ;
def_vmin = vmin . number_real . ;
def_type = type . number_integer . ;
def_f = f . number_real . ;
def_b = b . number_real . ;
def_fon = fon . number_integer . ;
def_bon = bon . number_integer . ;

section_view
complete definition of the view 3D.

def_vrp
definition of the view reference point (VRP) , the origin of VCR system.
With the VPN defines the plane of the image.

def_prp
definition of the projection reference point (PRP).

def_vup
definition of the view up vector (VUP), which limit the v axis on the image plane.

def_vpn
definition of the view-plane normal (VPN), is the n axis of the VRC system.
With the VPN defines the plane of the image.

def_umax
def_umin
def_vmax
def_vmin

definition of limitis of the image window on the view plane.

def_type
Type of projection.
1 means perspective projection , while 0 means parallel projection.

def_f
the front distance (F). This parameter will be ignored.

31

def_b
the la back distance (B). This parameter will be ignored.

def_fon
This parameter will be ignored.

def_bon
This parameter will be ignored.

Section parameters

This section defines the parameters which change the execution of the raytracer.

section_param = { . param . { [def_toll | def_mode | def_shade | def_anti_alias |
def_anti_al_toll | def_dimx | def_dimy | def_ambientcolor | def_backcolor |
def_buildhier | def_modifydef | def_depthmax | def_depthmin |
def_depthback] } . }

def_toll = toll . number_real . ;
def_mode = mode . number_integer . ;
def_shade = shade . ident . ;
def_anti_alias = anti_alias . number_integer . ;
def_anti_al_toll = anti_al_toll . number_real . ;
def_dimx = dimx . number_integer . ;
def_dimy = dimy . number_integer . ;
def_ambientcolor = ambientcolor . color . ;
def_backcolor = backcolor . color . ;
def_buildhier = buildhier . number_integer . ;
def_modifydef = modifydef . number_integer . ;
def_depthmax = depthmax . number_integer . ;
def_depthmin = depthmin . number_integer . ;
def_depthback = depthback . number_integer . ;

def_toll
definition of the standard tollerance value.

def_mode
max value of ray deviations. 0 == raycasting.

def_shade
type of shading, an identifier recognize from the system. The standard value is “phong”.
“phong” uses the phong shading metod.

def_anti_alias
1 if you want to use the adaptive antialiasing, 0 if you don’t want it.

def_anti_al_toll
value used in antialiasing.

def_dimx
horizontal dimension (pixel) of the image.

def_dimy
vertical dimension (in pixel) of the image.

def_ambientcolor
this is the value of ambiental illumination.

def_backcolor
back color, the color used for a pixel in the image when the ray doesn’ t match an object.

32

def_buildhier
1 if you want to build a hierarchy to speed up the intersection calculus, 0 if you don’ t want it.

def_modifydef
1 if you want that the program changes the file definition, 0 if you don’t want.

def_depthmax
value used to build the depth graph.
It is the maximum value of depth allowed.

def_depthmin
value used to build the depth graph.
It is the minimum value of depth allowed.

def_depthback
value used to build the depth graph.
It is the depth value for pixel of the back.

Section texture

This section is used to declare a texture

section_texture = { . texture . name_texture . ; . }
name_texture = ident

name_texture
the name of file bitmap which contains the texture. The texture file has name name_texture + “.bmp” ed it will
be in the standard directory with all other textures.

Section material

This section defines a material of a specific type and characteristic. In the section object you can use the material
defined in this section.

section_material = { . material . name . name_material . ; . model . { . defmaterial . } . }
name_material = ident
defmaterial = [defmat_phong]
defmat_phong = phong . { [def_Ks | def_Kt | def_ni | def_Ka | def_Kd | def_n | def_Od | def_Os] }
def_Ks = Ks . number_real . ;
def_Kt = Kt . number_real . ;
def_ni = ni . number_real . ;
def_Ka = Ka . number_real . ;
def_Kd = Kd . number_real . ;
def_n = n . number_real . ;
def_Od = Od . color . ;
def_Os = Os . color . ;

name_material
name of the material. It must be unique to distinguish a definition from another.

defmat_phong
definition of material of type phong. See [1].

def_Ks
Specular-reflection coefficient.

33

def_Kt
Refraction coefficient.

def_ni
index of refraction.

def_Ka
Ambient-reflection coefficient.

def_Kd
Diffuse-reflection coefficient.

def_n
Specular-reflection exponent.

def_Od
Diffuse color.

def_Os
Specular color.

Section lamp

This section defines the lamps (or light sources) in the scene.

section_lamp = { . lamp . name . name_lamp . model . { . deflamp . } . }
name_lamp = ident
deflamp = [deflamp_point | deflamp_cone]
deflamp_point = pointlamp . { [defpoint_pos | defpoint_color] }
defpoint_pos = pos . point . ;
defpoint_color = color . color . ;
deflamp_cone = conelamp . { [defcone_pos | defcone_ang | defcone_dir | defcone_color] }
defcone_pos = pos . point . ;
defcone_ang = ang . number_real . ;
defcone_dir = dir . number_real . ;
defcone_color = color . color . ;

name_lamp
name of the lamp. It must be unique.

deflamp_point
definition of a uniform type lamp.

defpoint_pos
definition of the lamp position.

defpoint_color
definition of the lamp color.

deflamp_cone
definition of cone lamp.

defcone_pos
vertex of cone lamp.

defcone_ang
opening angle.

34

defcone_dir
direction of cone lamp.

defcone_color
definition of the color lamp.

Section object

This section defines the objects in the scene.

section_object = { . object . name . name_object . attrib_std . model . { . defobject . } . }
name_object = ident
attrib_std = { [attrobj_material | attrobj_toll | attrobj_texture | attrobj_mapping] }
attrobj_toll = toll . number_real . ;
attrobj_texture = texture . ident . ;
attrobj_mapping = mapping . { mapping . model . { name_mapping . defmapping } . }
name_mapping = ident
defmapping = { [attrmap_center | attrmap_assx | attrmap_assy | attrmap_moltx | attrmap_molty] }
attrmap_center = center . point . ;
attrmap_assx = assx . vector . ;
attrmap_assy = assy . vector . ;
attrmap_moltx = moltx . number_real . ;
attrmap_molty = molty . number_real . ;
defobject = [defobj_sphere | defobj_box | defobj_brep | defobj_quad | defobj_csg]

defobj_brep = brep . { [defbrep_name | defbrep_costr] }
defbrep_name = name . ident . ;
defbrep_costr = costr . number_real . ;

defobj_sphere = sphere . { [defsphere_center | defsphere_radius] }
defsphere_center = center . point . ;
defsphere_radius = radius . number_real . ;

defobj_box = box . { [defbox_xmin | defbox_xmax | defbox_ymin | defbox_ymax |
defbox_zmin | defbox_zmax] }

defbox_xmin = xmin . number_real . ;
defbox_xmax = xmax . number_real . ;
defbox_ymin = ymin . number_real . ;
defbox_ymax = ymax . number_real . ;
defbox_zmin = zmin . number_real . ;
defbox_zmax = zmax . number_real . ;

defobj_quad = quad . { [defquad_a | defquad_b | defquad_c | defquad_d | defquad_e
| defquad_f | defquad_g | defquad_h | defquad_i | defquad_j] }

defquad_a = a . number_real . ;
defquad_b = b . number_real . ;
defquad_c = c . number_real . ;
defquad_d = d . number_real . ;
defquad_e = e . number_real . ;
defquad_f = f . number_real . ;
defquad_g = g . number_real . ;
defquad_h = h . number_real . ;
defquad_i = i . number_real . ;
defquad_j = j . number_real . ;

defobj_csg = [intersect | union | subtract] . { [defcsg_first | defcsg_second] }
defcsg_first = first section_object [; |]
defcsg_second = second section_object [; |]
35

section_object
definition of an object.

name_object
name of the object. It must be unique.

attrobj_toll
value of tollerance for the intersection with the object.

attrobj_texture
name of the texture. The texture must be preload in a previous section texture. The object can ignore this value.

attrobj_mapping
mapping of the object. The object can ignore this value.

name_mapping
type of the mapping. The standard values are planar, cilindric, spherical.

defmapping
mapping caracteristic, it define a reference system in the space.

attrmap_center
center of the reference system for mapping.

attrmap_assx
versor parallel to the x axis of the reference system of the mapping.

attrmap_assy
versor parallel to the y axis of the reference system of the mapping.

attrmap_moltx
scale factor for x axis of the mapping reference system.

attrmap_molty
scale factor for y axis of the mapping reference system.

defobject
definition of the object model.

defobj_brep
definition of a brep model.

defbrep_name
name of the file .brp which describes the geometric model of the object. The file .brp will have name
defbrep_name + “.brp” and will be in the directory where are all the models.

defbrep_costr
value for the hierarchy of the object. If the value is equal to zero, no hierarchy will be used. Se the value is
different from zero and a previus hierarchy of the object already exist, this will be used (also if it has been
created with a different value). If the hierarchy doesn’ t exist, the program will create a new with compactness
value equal to the value.

defobj_sphere
definition of a sphere.

defsphere_center
definition of the sphere center.

36

defsphere_radius
definition of the sphere ray.

defobj_box
definition of a box.

defbox_xmin
defbox_xmax
defbox_ymin
defbox_ymax
defbox_zmin
defbox_zmax

extreme values of a box oriented to the axes .

defobj_quad
definition of a quadric.

defquad_a
defquad_b
defquad_c
defquad_d
defquad_e
defquad_f
defquad_g
defquad_h
defquad_i
defquad_j

definition of the form of the quadric. The equation is
A*x^2+B*y^2+C*z^2+D*x*y+E*x*z+F*y*z+G*x+H*y+I*z+J=0

defobj_csg
definition of a csg node.

defcsg_first
first object which is in the csg node.

defcsg_second
second object which is in the csg node.

Example of a file .rt :

{ vrc
vrp (63.7424 , -77.0513 , 0);
prp (0 , 0 , -100);
vup (0 , 0 , 1);
vpn (-0.637424 , 0.770513 , 0);
umax 6;
umin -6;
vmax 4.5;
vmin -4.5;
type 1;
f 1;
b 0;
fon 0;
bon 0;

}

{ param

37

toll 0.01;
mode 5;
shade phong;
anti_alias 1;
anti_al_toll 0.05;
dimx 1024;
dimy 768;
ambientcolor (1,1,1);
backcolor (0,0,0);
ambient_ni 1;
buildhier 1;
modifydef 1;
depthmax 64;
depthmin 48;
depthback 64;

}

{ texture
name wood ;

}

{ material
name mvetro;
model { phong

Ks 0.6;
Kt 0.8;
ni 1.2;
Ka 0.0;
Kd 0.4;
n 10;
Od (0.24,0.19,0.88);
Os (0.24,0.19,0.88);

}
}

{lamp
name lamp1;
model { pointlamp

pos (5 , 0 , 3);
color (0.7,0.7,0.7);

}
}

{object
name watch1;
material mvetro;
toll 0.01;
model { brep

name watch1;
costr 1.1;

}
}

{object
name sph3;
material m3;
texture marple;
mapping { mapping

model { spherical

38

center (10 , 2 , 0);
assx (1 , 0 , 0);
assy (0 , 1 , 0);
moltx 0.1;
molty 0.1;

}
}
toll 0.01;
model { sphere

center (10 , 2 , 0);
radius 0.95;

}
}

{ object
name tcsg;
material m1;
model { intersect

first {object
name sph1;
material m1;
model { sphere

center (5 , 0.5 , 0);
radius 0.95;

}
};
second {object

name sph1;
material m1;
model { sphere

center (5 , -0.5 , 0);
radius 0.95;

}
};

}
}

{object
name box1;
material m1;
model { box

xmin 10;
xmax 12;
ymin -1;
ymax 1;
zmin -1;
zmax 1;

}
}

{object
name sph1;
material m1;
model { quad

a 10;
b -1;
c 2;
d 0;

39

e 0;
f 0;
g 0;
h 0;
i 0;
j -1;

}
}
.

40

Bibliography
[1] Foley, Van Dam, Feiner, Hughes (1992). Computer Graphics. Addison Wesley.
[2] Microsoft Corporation (1992-1993). Microsoft Windows 16bit/32bit Api Reference.

41

