
csh.doc.hyper



csh.doc.hyper ii

COLLABORATORS

TITLE :

csh.doc.hyper

ACTION NAME DATE SIGNATURE

WRITTEN BY January 7, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



csh.doc.hyper iii

Contents

1 csh.doc.hyper 1

1.1 C-Shell documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.4 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.6 credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.7 author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.8 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.9 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.10 goodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.11 scrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.12 closegad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.13 menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.14 rback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.15 prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.16 Differences to AmigaDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.17 Differences to UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.18 restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.19 startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.20 editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.21 completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.22 fkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.23 terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.24 parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.25 wildcards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.26 Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.27 history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.28 Command execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.29 commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



csh.doc.hyper iv

1.30 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.31 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.32 programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.33 aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.34 scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.35 blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.36 exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.37 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.38 identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.39 actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.40 superclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.41 keymaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.42 keycodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.43 editfuncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.44 commandtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



csh.doc.hyper 1 / 26

Chapter 1

csh.doc.hyper

1.1 C-Shell documentation

C-SHELL 5.19 1991-1992 by U. DOMINIK MUELLER TUTORIAL

@{ " Installation " link Installation } How to install csh
@{ " Introduction " link Introduction } For first time csh users
@{ " Features " link Features } What csh can do
@{ " Restrictions " link Restrictions } What csh can’t do
@{ " Startup " link Startup } What csh does when starting up
@{ " Editing " link Editing } How to enter a command line
@{ " Parser " link Parser } What csh does before calling ←↩

commands
@{ " Execution " link Execution } How csh tries to execute commands
@{ " Commands " link Commands } Csh’s built in commands
@{ " Functions " link Functions } Csh’s built in functions
@{ " Variables " link Variables } Csh’s special meaning variables
@{ " Programming " link Programming } How to write csh scripts
@{ " Classes " link Classes } Csh’s unique file class feature
@{ " Keymaps " link Keymaps } How to program the command line ←↩

editing

1.2 installation

You can simply invoke csh from the command line or at the end
of your startup-sequence, because csh is, from the AmigaDOS
standpoint, not a true shell like l:shell-seg.

@{ " Final installation " link final }
@{ " Supporting files " link support }

1.3 final

For a final setup, csh should be resident. This makes
things faster and saves memory. Csh is ’pure’, so if your
archiver forgot to set the ’p’ bit, do it right now.



csh.doc.hyper 2 / 26

Then...

1. Copy csh anywhere on your disk, e.g. dh1:tools
2. Add to the bottom of your startup-sequence:

Stack 8000
Resident dh1:tools/csh ADD
csh s:firstlogin.sh

3. In s:firstlogin.sh, put any commands to be called only once,
like setmap, assign, setclock. This is a shell script, use #
for comments, and don’t use .key type commands. At the end of
this file, add
source s:login.sh

4. In s:login.sh, you put any commands that need to be executed
on every invocation, like ’alias’, ’set’ and so on.

5. Put the following the s:cli-startup and s:shell-startup, so
csh will be started in any window opened by NewCLI, NewShell
or from workbench:

csh s:login.sh

See
Scripts
for details on how to write your startup scripts.

1.4 support

I recommend to assign CSH: somewhere and put your docs and
csh scripts there. You can do the assign from inside the
shell, it’s not needed at startup. The file s:.login is
executed on every startup if it exists.

For online help inside csh, put csh.doc to CSH:. Then you can
use the ’man’ command for any desired command. Press the HELP
key for a command list.

1.5 introduction

C-Shell is a replacement for the AmigaDOS command line
interface. It’s main intentions are: Save the user as
much typing as possible, give him/her a fast and powerful
scripting language, and do whatever makes controlling the
Amiga more comforable.

Author

Availability

Credits

1.6 credits



csh.doc.hyper 3 / 26

Arexx is a program by William Hawes.
Cygnus Ed Professional (C) 1988 CygnusSoft Software.
ARP is copyrighted by the authors.

This version of Shell is the successor of:
1.00 Lattice (c) 1986 Matthew Dillon
2.05 Manx(M) versions by Steve Drew
3.00 ARP (A) versions by Carlo Borreo, Cesare Dieni
4.00 ARP 1.3 versions by Carlo Borreo, Cesare Dieni
5.00 Lattice versions by U. Dominik Mueller

Thanks to:

Matt Dillon, Steve Drew, Carlo Borreo and Cesare Dieni for the
previous versions of Csh.

Eddy Carroll, Gary Duncan, Randell Jesup, Steve Koren, Tim
MacKenzie, Axel Roebel, Mike Schwartz for their code
contributions and suggestions.

Michael Beer, Carl Johan Block, Hubert Feyere, Magnus
Heldestad, Carsten Heyl, Alex Liu, Declan McArdle, Svante
Eriksson, Luke Mewburn, Peter Orbaek, Allard Siemelink, Roddi
Walker, Shimon Weissman and the unknown Swedish guy who found
the double-LF bug for their bug reports and feedback.

Roy Haverman, Martin Horneffer, Hans-Christian Huerlimann,
Daniel Pfulg, Patrizio Rusconi, Christian Schneider and
especially Markus Illenseer for the German translation of the
doc.

Olivier Berger for the French translation of the doc.

1.7 author

Csh 5.xx was written by

U. Dominik Mueller
Schulhausstrasse 83
CH-6312 Steinhausen
SWITZERLAND

FIDONET : Urban Mueller@2:302/906 (AUGL)
INTERNET: umueller@amiga.physik.unizh.ch

umueller@iiic.ethz.ch

Feel free to send me all kinds of feedback, flames and
flattery. I speak English (obviously), German and French.
Please check the ’restrictions’ chapter before reporting any
bugs and add your csh version and a description of your
configuration.



csh.doc.hyper 4 / 26

1.8 Availability

The support BBS is AUGL (FIDO address 2:302/906). Numbers:
+41 75 8 20 19
+41 75 8 20 18 (all lines USR/USR Dual)
+41 75 2 15 87

Log in with username ’cshell’, password=’support’. You may
file request there as well, the file name is cshxxx.lha, where
xxx is the version number of csh.

The support FTP site is amiga.physik.unizh.ch [130.60.80.80].
The file is named /amiga/csh/cshxxx.lha, where xxx is the
version number of csh. You may also try ab20.larc.nasa.gov
[128.155.23.64], in the directory /incoming/amiga or
/amiga/utilities/shells.

You may distribute this program unmodified and for non-profit
only. You may not modify this program and redistribute it!
Please contact me if you want to make changes, possibly

*before* doing them.

1.9 features

Shell provides a convenient AmigaDos alternative command
interface. All its commands are built, which is faster and
works fine when no disk is in drive. But Amiga csh is not
compatible to UNIX csh nor AmigaDOS (although it can execute
AmigaDOS scripts).

Major features include:

EDITING
is freely programmable

completion
of abbreviated file names

history
with history search

terminal
mode, works on VT terminals

PARSER
processes your command lines before passing them

variables
& variable handling (embedded variables)

wildcards
(’?’, ’*’ and more)



csh.doc.hyper 5 / 26

pipes
between programs

execution
tries to execute a file

PROGRAMMING
faster and more powerful than other languages

commands
that require no system disk

functions
for use in scripts and aliases

aliases
with arguments

scripts
(w/ gotos and labels)

GOODIES
various useful stuff

scrolling
internal commands can jump scroll

classes
of files, actions on classes

menus
lets you attach Intuition menus

Click to see main differences to
AmigaShell
and
UNIX

1.10 goodies

Some goodies in csh that you should look up:

scrolling
internal commands can jump scroll

closegad
the effect of the closing gadget can be programmed

classes
of files, actions on classes

menus
lets you attach Intuition menus



csh.doc.hyper 6 / 26

rback
can be replace by appending &

prompt
and titlebar can show all kinds of data

1.11 scrolling

Csh allows you to do quick scrolling in large windows.
Quick scrolling means that whenever the cursor reaches the
bottom of the window, the text jumps up 3 or more lines at
once. However, only the following commands support this:

dir, cat, htype, strings, search, truncate, tee
You can choose the number of lines to scroll at once by
setting the variable _scroll. Unsetting it or setting it
to a value <=1 completely disables quick scrolling.

You can also choose the number lines a window must at
least have to turn on the quick scrolling by setting the
_minrows variable. (Defaults to 34). Quick scrolling is
automatically disabled when the command is redirected. By
piping any command to cat, you can force it to quick
scroll. Example: List | cat

1.12 closegad

Csh now can be terminated using the closing gadget in the
AmigaDOS 2.0 shell window. The closing button provides a
’quit’ command. You can define

alias quit "Endcli;quit
to assert that the CLI window closes when you click the
button.

1.13 menus

It is possible to append Intuition menus to your csh
console window. Up to six menus with 16 items every can
be installed. Menus can only be selected when the prompt
is showing.

Usage : menu [-n] [ title item...item ]
Example : menu Shell JrComm,,j Rename,"rename ",r quit

If the item is just a string, that string will be in the
menu item. When you select it, it will be put into the
prompt and executed.

If there is a comma and after that comma a second string,



csh.doc.hyper 7 / 26

this will be the command will be inserted at the prompt.
This time you have to add the ^M yourself if you want the
command to be executed.

If there is a second comma, the letter after that comma
will be the keyboard shortcut for that menu item. (This
will be case sensitive some day, use lowercase).

1.14 rback

Whenever you want to start a program in the background, you
can, instead of

rback foo

just type

foo&

You can also chose the command to be used for the
background starting using the system variable _rback.
@endnode

1.15 prompt

By setting the _prompt and the _titlebar variable to
special strings, you can display all kinds of changing
data in the prompt and the titlebar. They will be updated
every time you issue a command.

1.16 Differences to AmigaDOS

If you’re used to the AmigaDOS shell, remember the following:

- Csh internal commands must be lowercase and can be abbreviated
- You can still use your old scripts, with some limitations. But

you better convert the scripts to csh scripts. For simple scripts,
csh is downward compatible to AmigaDOS. See

Scripts
- You can always get more information on a command if csh.doc is

in the current directory or in csh: (you can modify this) and you
enter ’man <command>’

- The wild card #? doesn’t work. Use *

1.17 Differences to UNIX



csh.doc.hyper 8 / 26

If you’re used to the UNIX csh, remember the following:

- Amiga csh is not script compatible
- Some commands, e.g. foreach, head, tail, work slightly different
- Only simple history modifiers work
- Variable modifiers don’t work at all

1.18 restrictions

The following applies only to the V36 version of Kickstart
2.0: The INTERNAL commands cannot be started. The same is
true for the commands in C: if they were made resident using
the AmigaDOS ’Resident’ command (with cshell’s ’resident’ they
work). Thus, you should disable the INTERNAL residents using
the -i0 startup option if you have a V36 Kickstart.

The VDK: handler and Frank Seidel’s BootRam-Handler have a
bug with setting file dates, so when using the copy command
you should try the -d and -p switches, otherwise your file
date will be bad. (This is not a shell bug)

If using it with conman you may consider starting shell with
the -a switch to turn off shell’s command line editing and use
conmans instead. You’ll lose, however, many shell features
like file name completion.

CB-handler (a tool that installs a scrollbar in the CLI
window) is not 100% compatible with cshell. The log will not
always represent the real screen contents.

1.19 startup

Csh can be started in the following ways:

csh [-abcCfiknstv] [-c command;command]
csh [-abcCfiknstv] [batchfile1 ... batchfileN]

-a AUX: mode. No command line editing and text highlighting
-b starts shell in background, which means only task priority -1.
-c allows execution of one command line and then exits out

of shell. This is useful for running an internal shell
commands in the background or from an external application:

run csh -c "dir df0:; copy -r df0: df1: >nil:; echo Done"
-C same as -c, but the command line is not parsed twice. This

allows passing of file names with blanks within.
run csh -C rm "Ram Disk:tempfile"

-f starts shell in foreground, which means only task priority 1.
you might reset this prioritiy to 0 at the end of your .login

-i0 disables INTERNAL residents. For V36 kickstarts.
-k sets _nobreak before doing anything
-n suppresses starting of s:.login



csh.doc.hyper 9 / 26

-r copies the Amiga resident list to the ARP resident list. You
can’t remove them anymore. No copying when under kick 2.0 or
if ARP residents present.

-s globally enables the asterisk * as alias for #? in AmigaDOS 2.0.
This means you can use * inside file requesters as well.

-t terminal mode. You can use command line editing and text high-
lighting on a VT100 compatible terminal. To swap backspace
and DEL, refer to the ’keymap’ command

-v sets _verbose to ’hs’ before doing anything.

1.20 editing

The command line can be up to 255 chars. For a permanent
reminder of most editing commands, run the script
’menu.sh’ which installs an inutuition menu that contains
edit functions.

MOVING
Left Arrow One character left
Right Arrow One character right
Shift-Left Arrow One word left
Shift-Right Arrow One word right
ESC-Left Arrow Beginning of line (^A) (^Z)
ESC-Right Arrow End of line (^E)

DELETING
Backspace Previous character
Del Character under cursor
ESC-Backspace Previous word (^W)
ESC-Del Next word
ESC-x-Backspace To start of line (^B)
ESC-x-Del To end of line (^K)
ESC-d Entire line (^X)

HISTORY
Up Arrow Recall previous commands, see

History
Down Arrow Recall commands

Shift-Up Arow Get history from partial (or number)
Shift-Down Arrow Go below last command of history
ESC-Up Arrow Get start of history
ESC-Down Arrow Get end of history
ESC-! Get history from partial (or number)
^T Insert tail (all but first word) of previous line
^P Duplicate previous word (useful for mv)

COMPLETION
TAB Inserts first matching file name, see

Completion
Shift-TAB Inserts longest common substring

ESC-TAB Inserts all matching file names (also ESC-*)
ESC-c Does a quick cd on left word (TAB for cycling)
ESC-~ Inserts the last current directory
^D Shows all files that match a pattern (also ESC-=)



csh.doc.hyper 10 / 26

EXECUTING LINE
Return Executes line
ESC-Return Executes this line of history & brings up next one
^N Next line. Don’t exec this one but store history
^\ EOF (directly exits)

MISCELLANEOUS
^L Retype current line.
^O Echo a ^O
^R Repeat last command (don’t play with this)
^U Undo/Redo last edit
ESC-i Toggle Insert/Overwrite
f1-f10 Execute preset function key. See

FKeys
F1-F10 More commands (Shifted f keys).

Help Invokes help command

The CTRL keys FGVY are unset, feel free to map them to any
function (see

Keymaps
). You can also remap

all preset keys. All edit functions work on a
Terminal

.

1.21 completion

Whenever the cursor is placed on or directly after an
incomplete file name and you press TAB, CShell inserts the
first filename (sorted alphabetically) that matches the name
part already typed. Any wildcards are allowed here, if none
are given, ’*’ is appended. Immediately pressing TAB again
brings up the next file name that matched the substring.
Shift-TAB will only insert the as much as is common to all
files that matched your abbreviation. If pressed again,
behaves just like TAB. ESC-Tab inserts the name of the
directory where you would have ended up with a quick cd to
that substring.

1.22 fkeys

Function keys insert text to the current position on the
command line. They may be terminated with a ^M (return).
f1 would be non shifted whereas F1 is shifted.

set f1 dir df0:^M

will add the text ’dir df0:<return>’ to the current line.

set f1 "dir "

would only add ’dir ’ you could then enter ’df0:<return>’



csh.doc.hyper 11 / 26

1.23 terminal

If you want to use csh’s command line editing on a VT
compatible terminal, you must do the following:

1. Create a file s:Aux-startup that contains
csh -t

2. Execute the following command
Newcli AUX: from s:aux-startup

Then csh should show up on the terminal. See also the
_hilite variable for highlighting methods.

1.24 parser

The following is done on the command line before it is passed
on to an internal or external command:

; delimits commands. echo charlie ; echo ben.

’ ’ (a space). Spaces delimit arguments.

"string" a quoted string. Trailing quotes are optional. No further
parsing happens inside. Example: echo " Indented!"

$name where name is a variable name: Inserts the value of the
named variable. See

Variables
^c where c is a character is converted to that control ←↩

character.
Thus, say ’^l’ for control-l.

\c override the meaning of special characters. ’\^a’ is a
circumflex and an a rather than control-a. To get a backslash,
you must say ’\’.
Also used to overide alias searching for commands.

\nnn insert character code nnn octal. Do not use values between
\200 and \232, as they have special meanings.

* ? Wild cards. * stands for any string, ? for any letter. For
details refer to @{ " Wildcards " link wildcards}

>file specify output redirection. All output from the command is
placed in the specified file. Note: No blank before the
file name allowed.

>>file specify append redirection

<file specify input redirection. The command takes input from the
file rather than the keyboard (note: not all commands require
input; it makes no sense to say ’echo <charlie’ since
the ’echo’ command only outputs its arguments).



csh.doc.hyper 12 / 26

| Pipe specifier. The output from the command on the left becomes
the input to the command on the right. See

Pipes
!x Insert a previous command, e.g. !1 for the first, !! for the

last one. See
History
# enter comment. The rest of the line is discarded (note: \#

will, of course, overide the comment character’s special
meaning)

{e hi;e ho} executes two commands as one, so they can be redirected
together (see ALIAS command). The trailing curly brace is
optional. See

Blocks
$(foo) insert the stdout of the command ’foo’ at this position ←↩

of
the command line. Every line of the output will count as one
argument. The closing parenthesis is optional.

‘foo‘ insert the stdout of the command ’foo’ at this position of
the command line. Every blank separated word will count as
one argument. Leading, trailing and multiple blanks will be
removed. The trailing backtick is optional.

-- stop option parsing here. Works for internal commands only.
Example: rm -- -x will remove the file ’-x’

After all this, the parsed command line is passed to
Execution

.

1.25 wildcards

Most shell commands will accept multiple arguments that
can be as a result of wild card expansion. Also when
calling an external command, csh will first expand any
wild cards to separate arguments. If you wish to have the
external command handle it’s own wild carding you will
need to insert quotes around the special wild card
characters or use a special alias (see

Aliases
).

Example:

arc a new.arc *.txt - shell will expand and pass to arc
arc a new.arc "*.txt" - let arc expand the wild cards.
alias arc "*a arc $a" - now shell will never expand

Wildcards allowed:

? match any single character

* match any string
.../* recursive search down ALL sub directories from current level



csh.doc.hyper 13 / 26

~ exclude pattern matching specifier
! synonym for ~, supported for compatibility
& prefixed to patterns, ask confirmation for each file
[] character class
~ the previous current directory (if separated)

Note that a pattern must contain a ’?’ or a ’*’, otherwise
the other special characters are not recognized.
Furthermore, you cannot specify a single ’?’ as a pattern
in the first argument to a command, as this will be passed
on to the command in order to show its usage. If
pattern.library is present it LIBS:, it will be used for
the matching.

Examples:

df0:.../* all files in all directories on df0:
df0:.../!*.info full directory tree of df0: but exclude

any ugly .info files.
!*.o !*.c will result in ALL files matching since what

doesn’t match the !*.o will match the !*.c
df1:&* all files in root of df1:, but ask

confirmation for each

*.[co] all files ending in .c or .o
~*.[co] all files NOT ending in .c nor in .o
~ the previous current directory
~/*.c all .c files in the previous current directory
~// the parent of the previous current directory
. the current directory
./foo.c the same as foo.c
.. the parent of the current directory
../foo.c the file foo.c in the parent directory

Note that some commands prevent wild card expansion. These are:
- dir, rpn, whereis, window

Those commands will expand the wild cards themselves. This is why
dir @without( *.? , *.o )

will not work. Instead use:
set arg @without( *.? , *.o );dir $arg

The following symbols are not yet supported by wild card
expansions, but are accepted in search -w and @match( ):

( | ) OR matching
# 0 or more times the pattern following

Examples:

"k#a" matches ka, kaa, kaaa, etc.
"hel(lo|p)" matches hello or help.

1.26 Pipes

A pipe means that the output of one command becomes the input
if another.



csh.doc.hyper 14 / 26

alias | qsort | truncate

will show all aliases, sort them, cut long lines and print the
result to the screen.

Pipes have been implemented using temporary T: files. Thus,
you should be careful when specifying a ’t:*’ expansion as it
might include the temporary files. These files are deleted on
completion of the pipe segment. A nice example of a pipe:

echo "echo mem | csh" | csh

Now figure...

1.27 history

History means that whatever commands you type in at the
prompt are stored for later retrieve. To see what you
typed before, use the ’history’ command. There are
various ways how you can get your text back.

One way is doing a history retrieve command. The
following commands are recognized:

!! Execute previous command
!3 Execute third command
!-2 Execute second-but-last command
!hi Execute last command that starts with ’hi’

The other way to retrieve old commands is the command line
editing. Cursor up and cursor down keys will move through
history. You can also get a specific history line into
the command line: Type any of the above strings without
the first exclamation mark and type shift-cursor up. For
example 1 and a shift-up will bring the first command you
typed pack into command line editing. Especially useful
is typing an abbreviation of the command line you want
back and press shift-up until you’ve got the line you
want.

1.28 Command execution

The first argument of the command line is interpreted as the
command. Here is how csh tries to execute it:

1) The alias list is searched for an alias with an exactly
matching name. Case is significant.

2) Internal commands list is scanned for a command even partially
matching name (so you can, for instance, say resi for resident;
however, you should specify enough of a command to be unique).
Again, case is significant.



csh.doc.hyper 15 / 26

3) Then, the list of functions is scanned for a command that
matches completely. If one is found, the result of the function
is echoed to stdout.

4) Now the command is assumed to be external. Arguments with blanks,
semicolons or empty strings will be surrounded by quotes.

5) If the file is a directory, a ’cd <file>’ will be performed to
it.

6) AmigaDOS and ARP resident list are scanned for it (you can use
Shell’s ’resident’ command to add/remove a file in the ARP list).

7) If the file is in the current directory and it’s executable, it
is started.

8) Then it is searched in the AmigaDOS path and c: (NOTE: Path
assigns to C: under Kickstart 2.0 don’t work; use ’path’)

9) Now, the shell path ($_path) is searched. If it’s found and
executable, it’s started. If it has the ’s’ bit set, it will
be executed using the appropriate shell. See FOREIGN SHELLS

10) If there exists a file with the suffix ’.sh’ and the same root
in the current directory or in the shell path, it is ’source’d.

11) Then the variable _rxpath is examined. If there exists a file
with the suffix ’.rexx’ and the same root in the current direc-
tory or in ’$_rxpath’, ’RX <file>’ will be performed.

12) If all failed, an ’exec’ action is sent to the file. See chapter
XIV for more info on classes and actions.

To enforce that the external ’dir’-command is used, enter ’Dir’. It
is a good habit to uppercase the first letter of all external com-
mands, even if this is not necessary.

1.29 commands

Csh has more than 100 built in commands. Making them
built in makes script faster, allows you to operate
without a system disk, and removes the need to make lots
of small commands resident first. The drawback is the size
of csh, but I think it’s still acceptable.

Even if you know what on of below commands is doing, check
the csh version anyway. It might have more features. If
a command has a more UNIX like synonym, it is shown in
parentheses.

alias creates short aliases for command sequences
assign assigns a logical name to a physical one
type (cat) write a text file to the screen
cd changes the current directory
copy (cp) copies one or more files
dir (ls) shows the directory
echo prints a line of text
foreach repeats command with different args
help shows all csh commands
info shows information about a device
input inputs a variable from stdin
man shows the manual page for a command
mkdir (md) creates a new directory
rename (mv) changes the name of a file



csh.doc.hyper 16 / 26

delete (rm) removes a file or directory
run starts a command in the background
search searches a text file for a certain string
set assigns a value to a variable
source starts a csh script

Click to see a Table of commands

1.30 functions

Functions are a special kind of built in commands. They
are not (yet) user definable. Since they’re used mostly
in scripts, they can not be abbreviated. They all do
small tasks and yield output for csh to use. There
several ways to use functions as shown in the ’abs’
function:

echo @abs( -5 ) ---> 5
abs -5 ---> 5
$(abs -5) ---> 5

If using the first form, the function call will be
replaced by their return value(s). The functions must be
preceded by a blank and a blank must follow the opening
and precede the closing parenthesis. There must be no
blank between the function name an the opening
parenthesis.

Later versions of Shell might allow that functions need be
at the beginning of an argument, so quote any @-signs not
used for functions.

Functions may be nested. The function names themselves
are case sensitive, but the operations (like strcmp)
aren’t.

When using functions as commands (the second form),
remember that the list of functions is scanned only after
the list of commands.

The third form is nothing function specific, this works
with any command, see

Parser
Click to see a Table of functions

1.31 variables

Wherever $xxx occurs in a command line, csh checks for a
local variable xxx and inserts its value if it exists,
otherwise csh looks for a normal variable xxx. If that
fails as well, csh looks for an ENV: variable xxx and



csh.doc.hyper 17 / 26

inserts its value if it exists. Finally, if even that
fails, "$xxx" is inserted (this behaviour may change).

Variable names can consist of 0-9, a-z, A-Z, and
underscore (_). There is no limit on the length of the
string stored in a variable.

Examples:
set name Fred
echo Hello $name ---> Hello Fred

setenv a ENV:-value
set a global-value
local a
set a local-value
echo $a ---> local-value
unset a; echo $a ---> global-value
unset a; echo $a ---> ENV:-value

Variables can store multiple words, some kind of arrays.
set a 1 2 3 ; words $a ---> 3
set b "1 2 3"; words $b ---> 1
set c "1 2" 3; words $c ---> 2

You won’t see a difference between $a, $b and $c if you
just echo them, but in a foreach, the cause different
number of runs.

There are a number system variables. They are write
variable that have a side effect on your system (e.g.
changing the title bar), and some others, the read
variables, that tell you something about your environment
(e.g. the current shell version). You can also overlay
the write variables with a local variable, so any change
only takes place while the current context is valid.

Click to see the System Variables

1.32 programming

One of the main reasons why I mostly prefer a command line
interface over a GUI is that you can very easily automate
repeated command sequences. And one of the main reasons
why I always preferred csh over the other shells is its
scripting language.

There are two mechanisms how you can program command
sequences: Aliases and scripts (batch files). They can
do very similar things, the main difference is that a
script is always one file, while many aliases can be
defined within one script. Aliases are usually used for
short command sequences, scripts for long ones.

Aliases
memory-resident command sequences



csh.doc.hyper 18 / 26

Scripts
disk file command sequences

Blocks
compound statements

Exceptions
error handling

1.33 aliases

Aliases are one of the most powerful and most used features of ←↩
csh.

Let’s start with a simple one:

alias dc DiskCopy

From now on, you can type ’dc’ wherever you’d have typed
DiskCopy before, e.g. yoy may issue ’dc df0: to dh1:’.
This alias will be forgotten next time you boot, so you
best put this line in your s:login.sh.

Next level: Arguments included. Sometimes you’ll want to
insert the string that was passed to the aliased command
at a different location than appended to the end.

alias rm "%f echo -n \"Sure? \";input a;if $a = y;rm $f;endif

Here, when you issue a ’rm’, the argument(s) are stored in
the local variable f. Then the command line is evaluatet.
Note the backslashes in front of the quotes inside,
they’re needed to prevent the quotes from terminating the
very first quote. Don’t forget that this command line is
parsed twice: Once when doing the ’alias’ command,
removing the outer quotes, and once when executing the
alias. To check how the alias you just defined really
looks, type ’alias rm’:

rm %f echo -n "Sure? ";input a;if $a = y;rm $f;endif

Note we have called ’rm’ from the alias. Aliases can call
each other, but direct recursions are prevented (except
inside blocks, see below)

The next level is several arguments. We want to teach the
’pri’ command to accept process names as well as process
numbers:

alias pri "%task%prio pri @clinum( $task ) $prio

In case this alias is called with more than 2 arguments,



csh.doc.hyper 19 / 26

the last variable gets all the rest.

Very common is the use of ’foreach’ in aliases. With it,
you can give programs that can only handle one argument at
a time the capability to handle any number of arguments.

alias tg "%a foreach i ( $a ) \"Turbogif $i

A special feature of the alias execution is that if you
use * instead of %, wild card expansion will be suppressed
for this alias, so you can pass * ? and the like to the
programs like normal characters. LHA, for example, does
the wild card expansion by itself.

alias lha "*a lha $a

What happens if you have defined

alias sc "search *.c

and you call this alias with ’sc -c MyFunc’? The -c
option will be interpreted as a file name. The solution:

alias sc "%a search @opt( $a ) *c @arg( $a )

Finally, it is possible to give a block of commands
instead of a quoted command line. This could look like
this:

alias rm {%f echo -n "Sure? ";input a;if $a = y;\rm $f;endif

Note we don’t need to escape the quotes anymore, but we
have to escape the ’rm’ command to prevent recursive
calling of the alias ’rm’. Blocks can be spread over
several lines in script files. See

Blocks
for more.

Aliases may be arbitrary long and receive an arbitrary
number of arguments.

Some aliases are predefined whenever you start a new csh.
These are:

cdir
Use "cdir directory" to clear the screen, set CD to directory,
and list it.



csh.doc.hyper 20 / 26

cls
Simply clear the screen.

dswap
Exchanges current and the previous current directory. For use in
scripts as the symbol for last current directory may change.

exit
Leave Shell and exit CLI.

manlist
Display a list of possible arguments to man.

rx
Executes a REXX script. Prevents unwanted starting of ’rxrec’.

1.34 scripts

Scripts are text files, where each line is a valid csh
command. Scripts are used for two things: Doing large
programs in csh, and doing things you’d like to be done on
startup. There are some commands that only work in
scripts (at the moment), for example ’label’ and ’goto’.
Scripts are executed using the ’source’ command.

Scripts files would usually receive a .sh suffix and NOT
have their s-bit set. Now if such a file is anywhere in
your $_path, it gets invoked. Example:

mkdir ram:foo
echo >ram:foo/bar.sh "echo Hello World!"
set _path ram:foo
bar

---> Hello World!

A very good place to put your scripts is the CSH:
directory which is in $_path by default.

Other shells’ scripts are supported as well. If a file
has the ’s’ bit set, csh reads the first line. If this
line start with /* , it is assumed to be a REXX script.
If it starts with #! or ;! , the rest of the line will
be the command used to execute the script. If none of the
above is true, it is assumed to be an AmigaDOS script and
c:Execute will be used to execute it. Example beginnings
for Sksh and csh (you need the latter if you don’t like
the .sh extension):

#!SKsh -c source
#!csh -c source

The maximum line length on a script is 512 bytes. If you
want more, you can concat lines by adding \ to the very
end of your line, so the next line will be appended to



csh.doc.hyper 21 / 26

this one.

If the last character of a line is {, all following lines
will be appended to this one until the matching } is found
at the very end of a line. Example:

foreach i ( a b c ) {
foreach j ( 1 2 3 ) {

echo "*****
echo $i
echo $j

}
}

The arguments passed to a script are stored in $_passed.
Note this variable is global, you might want to store a
local copy somewhere.

For examples on how to write complex scripts, see demo.sh

1.35 blocks

Blocks have several functions: They create a context for
local variables, they can be used to redirect groups of
commands, they can spread over several lines in scripts,
they can replace aliases that are only used in one place,
and they simplify nesting a lot.

Local context:
alias foo "local x; set x hi
foo
alias bar {local $y;set y hi
bar

After the foo command, your current context (e.g. the
script this alias is issued in) will have a local variable
x which could be altered by mistake by other aliases, but
after the bar command, nothing has changed in the world
outside the alias.

Redirection:
{echo "Contents of bar.txt:";cat bar.txt} | more

This will redirect both the echo and the cat command to
more.

Multi line blocks:
foreach i ( a b c ) {

foreach j ( 1 2 3 ) {
echo "*****
echo $i
echo $j

}
}

These lines in a script will be concatenated, leaving in
line end marks. They’ll all count as one single argument
to the first ’foreach’. There’s no limit on the size of



csh.doc.hyper 22 / 26

such a block.

Alias replacement:
class gif action view={%a foreach i ( $a ) "Turbogif $i

Here, an alias with an argument gets defined, but it’s
forgotten every time after execution.

Nesting:
fornum a 1 2 "fornum b 1 2 \"fornum c 1 2 \\"echo \\\\"#
fornum a 1 2 {fornum b 1 2 {fornum c 1 2 {echo "#

These tw lines to the same. As soon as csh sees the
opening brace, it stops parsing until it finds the
matching closing brace. This means you don’t have to
escape (but a \ in front) anything inside, just type the
commands as if you wanted to execute them from the command
line.

1.36 exceptions

If no _except variable exists, any command which fails causes the
rest of the line to abort as if an ABORTLINE had been executed. If
the _except variable exists, it is of the form:

"nnn;commands..."

where nnn is some value representing the minimum return code
required to cause an error. Whenever a command returns a code
which is larger or equal to nnn, the commands in _except are
executed before anything. WHEN _except EXISTS, THE COMMAND LINE
DOES NOT ABORT AUTOMATICALLY. Thus, if you want the current line
being executed to be aborted, the last command in _except should be
an "abortline".

Exception handling is disabled while in the exception handling
routine (thus you can’t get into any infinite loops this way).

Thus if _except = ";", return codes are completely ignored.

Example:

set _except "20;abortline"

1.37 classes

File classes are good for two things: Identifying files and
command overloading. The latter means that the same command
with files of different type performs completely different
actions.

Identification
or how to recognize a file type



csh.doc.hyper 23 / 26

Actions
or how to overload commands

Superclasses
or how to become more common

1.38 identification

You can define a class of files using several ’class’ commands.
Here a simple example:

class picture suff=.pic suff=.iff suff=.ilbm
class anim suff=.anim

From now on, everything with the suffix .pic, .iff or .ilbm will
be identified as a picture. Please note that there may be no blanks
between the names and the ’=’, and that blanks inside the names
must be put in quotes. So these are the ways to identify a file:

suff=.doc True if the suffix of the file is .doc
name=readme True if the file is "readme"
name="mod.*" True if the name starts with ’mod.’
offs=14,DC..C4FD True if the bytes starting at $14 are $DC,

anything, $C4, $FD (all numbers hexadecimal!).
Each pair of dots means one byte ignored.

chars True if 90% of the bytes in the file are 32..127
or 9..13

default Always true, used to define the default type

Note that only the first character is examined, so ’s’ = ’suff’.
One class can be identified by more than one ’class’ statement.
They are looked at in the same sequence they were entered. So to
make sure that an zoo archive misnamed as .lzh is identified
correctly, use the following ’class’ statements:

class zoo offs=14,DCA7C4FD
class lzh offs=2,2D6C68..2D
class zoo suff=.zoo
class lzh suff=.lzh

Moreover, there is a builtin class ’dir’, which means directory.
Now we know many file types. But what to do with them? This is
where we define ’actions’.

1.39 actions

There may be one or more ’class’ commands that define what actions
need to be taken in various cases for that specific class:

class zoo actions view="zoo -list" extr="zoo -extract"
class lzh actions view="lz l" extr="lz e"



csh.doc.hyper 24 / 26

Whenever somebody tries to ’view’ a test.zoo, the command
’zoo -list test.zoo’ will be issued, but if he tries to
view test.lzh, then ’lz l test.lzh’ will be executed. Note
that any command supplied here goes through the normal csh
parser, so AmigaDOS and csh paths will be searched. Aliases
with arguments are allowed here, too, so whatever the user
typed will be stored in the variable after the ’%’.

How do I tell a file that I want to ’view’ it? There comes the
second command used for object oriented features:

action view test.zoo

will first identify the type of that file and then apply, if
possible, the ’view’ action to it. Of course, this works best
inside an alias: alias v "action view" will define a v-command
that views all types of files known to cshell. Similarly, you
can define alias xtr "action extr" and use this command to
extract files from any type of archive.
There is one action that will be sent to every file that you
try to start but is not executable. This action is ’exec’.
Assume you have defined the class ’picture’, then after

class picture actions view=ShowIFF exec=ShowIFF

you can display a picture using Mostra by just typing its name.
More builtin actions like ’rm’ and ’dir’ may be implemented,
so don’t use command names for action names.

The batch file class.sh defines a few useful classes.

1.40 superclasses

Assume you have a class for .c files, one for .h files, and
one for .asm files. You might want to make the difference
between them when identifying them, but in the end, they’re
all ASCII, aren’t they? You can stat this with the command

class c_source suff=.c is=ascii

Now whenever an action on a file of the type c_source fails,
the file is interpreted as of type ascii, and the same
action is attemted again. This goes on until a class has no
more superclass.

1.41 keymaps

You define a keymap as a collection of key/function pairs
using the ’keymap’ command. Both are given as numbers.
There can be several keymaps which activate each other,
but at first we only edit keymap 0, which is active at the



csh.doc.hyper 25 / 26

beginning. All keys you define will eventually overwrite
the old definitions in an existing keymap.

Examples:

keymap 0 66=49 # the B key will beep
keymap 0 2=16 # ^B key will erase line
keymap 0 1122=35 # ESC-b will show matching files
keymap 0 9=31 521=30 # Swaps TAB and SHIFT-TAB

@{ " Key codes " link keycodes } : How to specify a key
@{ " Edit funcs " link editfuncs } : How to specfiy an editing operation
@{ " Command types " link commandtypes} : How to specify other funcs

1.42 keycodes

1..255 The corresponding ASCII character
256 Up Arrow
257 Down Arrow
258 Right Arrow
259 Left Arrow
260 Help
261..270 F1..F10 (unshifted)

Modifiers (add them to the key code)

512 SHIFT (mainly necessary for arrows and fkeys)
1024 ESC (was pressed & released before this key)

1.43 editfuncs

- Movement Move cursor...
0 CursLeft 1 left
1 CursRight 1 right
2 WordLeft 1 word left
3 WordRight 1 word right
4 BegOfLine to beginning of line
5 EndOfLine to end of line

- Deleting Delete...
10 Backspace char left from cursor
11 Delete char right from cursor
12 BkspcWord word left from cursor
13 DelWord word right from cursor
14 DeleteToSOL to start of line
15 DeleteToEOL to end of line
16 DeleteLine whole line

- History insert
20 Back Move one line back in history
21 Forward Move one line forward in history



csh.doc.hyper 26 / 26

22 Beg Move to first line in history
23 End Move to last line in history
24 Complete History retrieve like ’!’
25 Exec Execute history line & bring up next
26 Tail Insert previous line except first word
27 Bottom Go below last history command
28 DupWord Duplicates the last word on this line

- Completion
30 Normal Insert first matching file (or cycle)
31 Partial Insert common substring of all matching files
32 All Insert all matching files
33 Directory Find dir in quick cd list
34 LastCD Insert last current directory
35 Show Shows all matching files

- Special
40 Insert Toggle Insert/Overwrite
41 Quit Silently perform ’quit’
42 Help Silently perform ’help’
43 Refresh Redraw current line
44 Execute Execute current line
45 Leave Edit new line, store this in hist
46 EOF Terminate shell
47 NOP Do nothing
48 Echo^O Echoes a ^O
49 Beep Echoes a ^G

- Other
50 Fkey Execute command associated to last fkey
51 Menu Execute command associated to last menu
52 Undo Undoes last edit
53 Repeat Repeats last function
54 SwapChar Swaps the two chars left of cursor

1.44 commandtypes

Command types

0 +x Editing function x, see above descriptions
512 +x Setmap x, x=0..7
1024+x Insert key x, x=1..255
1536+x Macro x x=1..15 (unimplemented)
2048+x String x x=1..15 (unimplemented)


	csh.doc.hyper
	C-Shell documentation
	installation
	final
	support
	introduction
	credits
	author
	Availability
	features
	goodies
	scrolling
	closegad
	menus
	rback
	prompt
	Differences to AmigaDOS
	Differences to UNIX
	restrictions
	startup
	editing
	completion
	fkeys
	terminal
	parser
	wildcards
	Pipes
	history
	Command execution
	commands
	functions
	variables
	programming
	aliases
	scripts
	blocks
	exceptions
	classes
	identification
	actions
	superclasses
	keymaps
	keycodes
	editfuncs
	commandtypes


