Solving a Right Triangle

You can solve a right triangle with sides a, b, c and opposite angles α, β, γ, respectively, if you know the value of one side and one acute angle, or the value of any two sides.


\begin{example}
To solve the right triangle with one side of length $c=2$\ and ...
...\frac{%
1}{9}\pi $\ $\left( =\,1.8794\right) $.
\end{enumerate}
\end{example}


\begin{example}
To solve a right triangle given two sides, say $a=19$\ and $c=2...
... \frac{19}{23}$, $\beta =\arccos \frac{19}{23}.$
\end{enumerate}
\end{example}

For a numerical result, evaluate these functions numerically, or choose Numeric rather than MenuDialogExact from the Solve submenu in the final step. You need to specify intervals for α and β, such as $\left[\vphantom{
\begin{array}{c}
\sin \alpha =a/c \\
\alpha \in \left( 0,\pi /2\right)
\end{array}
}\right.$$\begin{array}{c}
\sin \alpha =a/c \\
\alpha \in \left( 0,\pi /2\right)
\end{array}$$\left.\vphantom{
\begin{array}{c}
\sin \alpha =a/c \\
\alpha \in \left( 0,\pi /2\right)
\end{array}
}\right]$ and $\left[\vphantom{
\begin{array}{c}
\cos \beta =a/c \\
\beta \in \left( 0,\pi /2\right)
\end{array}
}\right.$$\begin{array}{c}
\cos \beta =a/c \\
\beta \in \left( 0,\pi /2\right)
\end{array}$$\left.\vphantom{
\begin{array}{c}
\cos \beta =a/c \\
\beta \in \left( 0,\pi /2\right)
\end{array}
}\right]$, before applying Solve + Numeric or you may get a solution greater than ${\frac{{\pi }}{{2}}}$. Specifying these intervals gives the solution

b =  12.96, α =  .9721 , β = .5987