Laws of Exponents

You can demonstrate the laws of exponents with either Simplify or Combine + Powers. You can also use Combine + Exponential for the first of these equations. These laws work for real or complex exponents and for other expressions as well.

$\blacktriangleright$ Simplify (or Combine + Powers)

2x2y =  2x+y                

$\left(\vphantom{ 3^{x}}\right.$3x$\left.\vphantom{ 3^{x}}\right)^{{y}}_{}$ = 3xy                

${\dfrac{{a^{x}}}{{a^{y}}}}$ = ax-y

Scientific Notebook normally returns exponential expressions in the form  ef(x) rather than exp f (x). However, when the exponent f (x) is sufficiently complicated, the linear form exp f (x) is returned. The following example illustrates these two behaviors.

$\blacktriangleright$ Simplify (or Combine + Powers)

$\left(\vphantom{ e^{a+b}}\right.$ea+b$\left.\vphantom{ e^{a+b}}\right)^{{3c}}_{}$ =  e3$\scriptstyle \left(\vphantom{ a+b}\right.$a + b$\scriptstyle \left.\vphantom{ a+b}\right)$c

ex2-3xye2x+5 =  exp$\left(\vphantom{ x^{2}-3xy+2x+5}\right.$x2 - 3xy + 2x + 5$\left.\vphantom{ x^{2}-3xy+2x+5}\right)$