Powers and Radicals

To raise complex numbers to powers, use common notation for powers and apply Evaluate.

$\blacktriangleright$ Evaluate

i2 = -1 4pt

$\left(\vphantom{ 3+2i}\right.$3 + 2i$\left.\vphantom{ 3+2i}\right)^{{4}}_{}$ = -119 + 120i 4pt

$\left(\vphantom{ 3+2i}\right.$3 + 2i$\left.\vphantom{ 3+2i}\right)^{{-4}}_{}$ = - ${\frac{{119}}{{28561}}}$ - ${\frac{{120}}{{28561}}}$i 4pt

$\left(\vphantom{ \dfrac{2}{5}-\dfrac{3}{4}i}\right.$${\dfrac{{2}}{{5}}}$ - ${\dfrac{{3}}{{4}}}$i$\left.\vphantom{ \dfrac{2}{5}-\dfrac{3}{4}i}\right)^{{5}}_{}$ = ${\frac{{113221}}{{%
400000}}}$ + ${\frac{{43737}}{{128000}}}$i 4pt

$\left(\vphantom{ 0.4-.75i}\right.$0.4 - .75i$\left.\vphantom{ 0.4-.75i}\right)^{{5}}_{}$ = . 28305 + . 3417i 4pt

$\sqrt{{2.34-i}}$ = 1. 5628 - . 31994i 4pt

$\left(\vphantom{ 2.5+0.5i}\right.$2.5 + 0.5i$\left.\vphantom{ 2.5+0.5i}\right)^{{\frac{4}{5}}}_{}$ = 2. 088 + . 3325i pt

$\left(\vphantom{ a+bi}\right.$a + bi$\left.\vphantom{ a+bi}\right)^{{-1}}_{}$ = ${\frac{{a}}{{a^{2}+b^{2}}}}$ - i${\frac{{b}}{{%
a^{2}+b^{2}}}}$ 4pt

$\left(\vphantom{ 0.16-3i}\right.$0.16 - 3i$\left.\vphantom{ 0.16-3i}\right)^{{-1}}_{}$ = 1. 7727×10-2 + . 33239i 4pt

$\left(\vphantom{ 8i}\right.$8i$\left.\vphantom{ 8i}\right)^{{\frac{1}{3}}}_{}$ = ${\frac{{1}}{{2}}}$$\sqrt[3]{{8}}$$\sqrt{{3}}$ + ${\frac{{1}}{{2}}}$i$\sqrt[3]{{8}}$ 4pt

$\sqrt{{2+3i}}$ = ${\frac{{1}}{{2}}}$$\sqrt{{\left( 4+2\sqrt{13}\right) }}$ + ${\frac{{%
1}}{{2}}}$i$\sqrt{{\left( -4+2\sqrt{13}\right) }}$

$\sqrt[3]{{i}}$ = ${\frac{{1}}{{2}}}$$\sqrt{{3}}$ + ${\frac{{1}}{{2}}}$i

$\sqrt{{1+i}}$ = ${\frac{{1}}{{2}}}$$\sqrt{{\left( 2+2\sqrt{2}\right) }}$ + ${\frac{{1}}{{2}}}$i$\sqrt{{%
\left( -2+2\sqrt{2}\right) }}$


Note that Evaluate returns a different answer for $\left(\vphantom{ \frac{2}{5}-\frac{3}{4}i}\right.$${\frac{{2}}{{5}}}$ - ${\frac{{3}}{{4}}}$i$\left.\vphantom{ \frac{2}{5}-\frac{3}{4}i}\right)^{{5}}_{}$ and $\left(\vphantom{ 0.4-.75i}\right.$0.4 - .75i$\left.\vphantom{ 0.4-.75i}\right)^{{5}}_{}$. The fraction displayed for $\left(\vphantom{ \frac{2}{5}-\frac{3}{4}i}\right.$${\frac{{2}}{{5}}}$ - ${\frac{{3}}{{4}}}$i$\left.\vphantom{ \frac{2}{5}-\frac{3}{4}i}\right)^{{5}}_{}$ is the exact answer, and the number displayed for $\left(\vphantom{ 0.4-.75i}\right.$0.4 - .75i$\left.\vphantom{ 0.4-.75i}\right)^{{5}}_{}$ is the best 5-digit approximation to the exact answer.

For some roots you can obtain the answer in simpler form by applying Simplify after (or in place of) Evaluate.

$\blacktriangleright$ Evaluate

$\left(\vphantom{ 8i}\right.$8i$\left.\vphantom{ 8i}\right)^{{\frac{1}{3}}}_{}$ = ${\frac{{1}}{{2}}}$$\sqrt[3]{{8}}$$\sqrt{{3}}$ + ${\frac{{1}}{{2}}}$i$\sqrt[3]{{8}}$

$\blacktriangleright$ Simplify

$\left(\vphantom{ 8i}\right.$8i$\left.\vphantom{ 8i}\right)^{{\frac{1}{3}}}_{}$ = $\sqrt{{3}}$ + i

$\blacktriangleright$ Evaluate Numerically

$\left(\vphantom{ 8i}\right.$8i$\left.\vphantom{ 8i}\right)^{{\frac{1}{3}}}_{}$ = 1. 7321 + 1.0i

Tip    To enter the 3 in $\sqrt[3]{{1+i}}$, do one of the following.

- or -

You can find the real and imaginary parts of a complex number with the functions $\func$Re and $\func$Im. When you enter these functions in mathematics mode, they will automatically turn gray.

$\blacktriangleright$ Evaluate

$\func$Re$\left(\vphantom{ \dfrac{a+bi}{c+di}}\right.$${\dfrac{{a+bi}}{{c+di}}}$$\left.\vphantom{ \dfrac{a+bi}{c+di}}\right)$ = ${\dfrac{{ac}}{{c^{2}+d^{2}}}}$ + ${\dfrac{{bd}}{{c^{2}+d^{2}}}}$ 6pt = ${\dfrac{{ac+bd}}{{c^{2}+d^{2}}}}$

$\func$Im$\left(\vphantom{ \dfrac{a+bi}{c+di}}\right.$${\dfrac{{a+bi}}{{c+di}}}$$\left.\vphantom{ \dfrac{a+bi}{c+di}}\right)$ = ${\dfrac{{bc}}{{c^{2}+d^{2}}}}$ - ${\dfrac{{ad}}{{c^{2}+d^{2}}}}$ 6pt = ${\dfrac{{bc-ad}}{{c^{2}+d^{2}}}}$

${\dfrac{{a+bi}}{{c+di}}}$ = ${\dfrac{{ac+bd}}{{c^{2}+d^{2}}}}$ + i$\left(\vphantom{ \dfrac{bc-ad}{%
c^{2}+d^{2}}}\right.$${\dfrac{{bc-ad}}{{%
c^{2}+d^{2}}}}$$\left.\vphantom{ \dfrac{bc-ad}{%
c^{2}+d^{2}}}\right)$ 6pt

$\func$Re$\left(\vphantom{ \dfrac{3.6+6i}{5-3.25i}}\right.$${\dfrac{{3.6+6i}}{{5-3.25i}}}$$\left.\vphantom{ \dfrac{3.6+6i}{5-3.25i}}\right)$ = - 4.2179×10-2

$\func$Im$\left(\vphantom{ \dfrac{3.6+6i}{5-3.25i}}\right.$${\dfrac{{3.6+6i}}{{5-3.25i}}}$$\left.\vphantom{ \dfrac{3.6+6i}{5-3.25i}}\right)$ = 1.1726