Matrices Modulo m

To reduce a matrix A modulo m, enter the expression A$\limfunc$modm and evaluate it.


$\blacktriangleright$ Evaluate

$\left[\vphantom{
\begin{array}{cc}
5 & 8 \\
9 & 4
\end{array}
}\right.$$\begin{array}{cc}
5 & 8 \\
9 & 4
\end{array}$$\left.\vphantom{
\begin{array}{cc}
5 & 8 \\
9 & 4
\end{array}
}\right]$$\limfunc$mod3 = $\left[\vphantom{
\begin{array}{cc}
2 & 2 \\
0 & 1
\end{array}
}\right.$$\begin{array}{cc}
2 & 2 \\
0 & 1
\end{array}$$\left.\vphantom{
\begin{array}{cc}
2 & 2 \\
0 & 1
\end{array}
}\right]$

$\left(\vphantom{
\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}
}\right.$$\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}$$\left.\vphantom{
\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}
}\right)^{{-1}}_{}$$\limfunc$mod11 = $\left(\vphantom{
\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}
}\right.$$\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}$$\left.\vphantom{
\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}
}\right)$

$\left(\vphantom{
\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}
}\right.$$\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}$$\left.\vphantom{
\begin{array}{ccc}
3 & 7 & 5 \\
5 & 4 & 8 \\
2 & 0 & 5
\end{array}
}\right)$ $\left(\vphantom{
\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}
}\right.$$\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}$$\left.\vphantom{
\begin{array}{ccc}
9 & 9 & 3 \\
2 & 5 & 1 \\
3 & 3 & 10
\end{array}
}\right)$$\limfunc$mod11 = $\left(\vphantom{
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
}\right.$$\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}$$\left.\vphantom{
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
}\right)$



\begin{example}
The
\index{Hamming code@Hamming code}Hamming
(7,4) code
oper...
... 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}
\right] \bigskip $
\end{example}


\begin{example}
The matrix product $\mathbf{c}P\limfunc{mod}2=\left[
\begin{a...
...gin{array}{cccc}
1 & 0 & 1 & 1
\end{array}
\right] $.\bigskip
\end{example}


\begin{example}
A \textsl{two-by-two }
\index{Block cipher@Block cipher}\text...
... 2
\end{array}
\right] .
\end{displaymath}
\bigskip\medskip
\end{example}