Distributions and Densities

A cumulative distribution function F$\left(\vphantom{ x}\right.$x$\left.\vphantom{ x}\right)$ of a random variable X is the function F$\left(\vphantom{ x}\right.$x$\left.\vphantom{ x}\right)$ = P$\left(\vphantom{ X\leq x}\right.$Xx$\left.\vphantom{ X\leq x}\right)$, the probability that Xx. If F(x) has a derivative f (x), then f (x) is nonnegative and is called the probability density function of x. The inverse distribution function G(α) satisfies G$\left(\vphantom{ F\left( x\right) }\right.$F$\left(\vphantom{ x}\right.$x$\left.\vphantom{ x}\right)$$\left.\vphantom{ F\left( x\right) }\right)$ = x and F$\left(\vphantom{ G\left( \alpha \right) }\right.$G$\left(\vphantom{ \alpha }\right.$α$\left.\vphantom{ \alpha }\right)$$\left.\vphantom{ G\left( \alpha \right) }\right)$ = α. The Scientific Notebook names for these functions are obtained by adding Dist, Den, or Inv to the name of the distribution. For example, $\func$NormalDist, $\func$NormalDen, and $\func$NormalInv are the three functions for the normal distribution. Such function names will automatically turn gray when typed in mathematics mode.



Subsections