itbpF50.75pt21.75pt6ptex3.wmfSimplify $\left(\vphantom{ x^{2}-6x+\left( \frac{-6}{2}\right) ^{2}}\right.$x2 -6x + $\left(\vphantom{ \frac{-6}{2}}\right.$${\frac{{-6}}{{2}}}$$\left.\vphantom{ \frac{-6}{2}}\right)^{{2}}_{}$$\left.\vphantom{ x^{2}-6x+\left( \frac{-6}{2}\right) ^{2}}\right)$ + $\left(\vphantom{
y^{2}+10y\left( \frac{10}{2}\right) ^{2}}\right.$y2 +10y$\left(\vphantom{ \frac{10}{2}}\right.$${\frac{{10}}{{2}}}$$\left.\vphantom{ \frac{10}{2}}\right)^{{2}}_{}$$\left.\vphantom{
y^{2}+10y\left( \frac{10}{2}\right) ^{2}}\right)$

  1. Enter the first expression:

    1. ClickitbpF19.8125pt18.9375pt2ptparens.wmfor, from the Insert menu, choose Brackets and choose OK.

    2. Type x, clickitbpF19.5625pt18.8125pt2ptsupscrip.wmfor, from the Insert menu, choose Superscript.

    3. Type 2,and press spacebar.

    4. Type -6x+, clickitbpF19.8125pt18.9375pt2ptparens.wmf, and then clickitbpF19.5625pt18.8125pt2ptfraction.wmfor, from the Insert menu, choose Fraction.

    5. Type -6, press Tab, type 2,and press spacebar twice.

    6. ClickitbpF19.5625pt18.8125pt2ptsupscrip.wmf, type 2,and press spacebar twice.

  2. Type the second expression:

    1. Type + , clickitbpF19.8125pt18.9375pt2ptparens.wmf, type y, clickitbpF19.5625pt18.8125pt2ptsupscrip.wmf, type 2,and press spacebar.

    2. Type +10y, clickitbpF19.8125pt18.9375pt2ptparens.wmf, and then clickitbpF19.5625pt18.8125pt2ptfraction.wmf.

    3. Type 10, press Tab, type 2, press spacebar twice, clickitbpF19.5625pt18.8125pt2ptsupscrip.wmf, and type 2.

  3. ClickitbpF22.4375pt21.0625pt2ptsimplify.wmfor, from the Maple menu, choose Simplify. Maple simplifies the mathematics:

$\left(\vphantom{ x^{2}-6x+\left( \frac{-6}{2}\right) ^{2}}\right.$x2 -6x + $\left(\vphantom{ \frac{-6}{2}}\right.$${\frac{{-6}}{{2}}}$$\left.\vphantom{ \frac{-6}{2}}\right)^{{2}}_{}$$\left.\vphantom{ x^{2}-6x+\left( \frac{-6}{2}\right) ^{2}}\right)$ + $\left(\vphantom{
y^{2}+10y\left( \frac{10}{2}\right) ^{2}}\right.$y2 +10y$\left(\vphantom{ \frac{10}{2}}\right.$${\frac{{10}}{{2}}}$$\left.\vphantom{ \frac{10}{2}}\right)^{{2}}_{}$$\left.\vphantom{
y^{2}+10y\left( \frac{10}{2}\right) ^{2}}\right)$ = x2 -6x + 9 + y2 + 250y