Exponential Functions

f$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ = L$\left\{\vphantom{
f}\right.$f$\left.\vphantom{
f}\right\}$$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$
eat ${\dfrac{{1}}{{s-a}}}$


teat ${\dfrac{{1}}{{\left( s-a\right) ^{2}}}}$


tneat ${\dfrac{{n!}}{{\left( s-a\right) ^{n+1}}}}$


, n a positive integer

${\dfrac{{e^{bt}-e^{at}}}{{t}}}$     ln${\frac{{s-a}}{{s-b}}}$
                
f$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ = L$\left\{\vphantom{
f}\right.$f$\left.\vphantom{
f}\right\}$$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$
${\dfrac{{1}}{{\sqrt{\pi t}}}}$e-a2/4t ${\dfrac{{e^{-a\sqrt{s}}}}{{\sqrt{s}}%
}}$


${\dfrac{{a}}{{2\sqrt{\pi t^{3}}}}}$e-a2/4t     e-a$\scriptstyle \sqrt{{s}}$


${\dfrac{{e^{at}-e^{bt}}}{{a-b}}}$ ${\dfrac{{1}}{{\left( s-a\right) \left(
s-b\right) }}}$


${\dfrac{{ae^{at}-be^{bt}}}{{a-b}}}$ ${\dfrac{{s}}{{\left( s-a\right) \left(
s-b\right) }}}$