Powers

f$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ = L$\left\{\vphantom{
f}\right.$f$\left.\vphantom{
f}\right\}$$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$
1 ${\dfrac{{1}}{{s}}}$


t ${\dfrac{{1}}{{s^{2}}}}$


tn ${\dfrac{{n!}}{{s^{n+1}}}}$


, n a positive integer

t-1/2     $\sqrt{{\dfrac{\pi }{s}}}$


t1/2 ${\dfrac{{\sqrt{\pi }}}{{2s^{3/2}}}}$


tα ${\dfrac{{\Gamma \left( \alpha +1\right) }}{{s^{\alpha +1}}}}$, α > - 1