General Functions

f$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ = L$\left\{\vphantom{
f}\right.$f$\left.\vphantom{
f}\right\}$$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$
eatf$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ F$\left(\vphantom{ s-a}\right.$s - a$\left.\vphantom{ s-a}\right)$


f$\left(\vphantom{ t-a}\right.$t - a$\left.\vphantom{ t-a}\right)$u$\left(\vphantom{ t-a}\right.$t - a$\left.\vphantom{ t-a}\right)$ e-asF$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$


f$\scriptstyle \left(\vphantom{ n}\right.$n$\scriptstyle \left.\vphantom{ n}\right)$$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ snF$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$ - s$\scriptstyle \left(\vphantom{
n-1}\right.$n - 1$\scriptstyle \left.\vphantom{
n-1}\right)$f$\left(\vphantom{ 0}\right.$ 0$\left.\vphantom{ 0}\right)$ - ... - f$\scriptstyle \left(\vphantom{
n-1}\right.$n - 1$\scriptstyle \left.\vphantom{
n-1}\right)$$\left(\vphantom{ 0}\right.$ 0$\left.\vphantom{ 0}\right)$


tnf$\left(\vphantom{ t}\right.$t$\left.\vphantom{ t}\right)$ $\left(\vphantom{ -1}\right.$ -1$\left.\vphantom{ -1}\right)^{{n}}_{}$${\frac{{d^{n}}}{{ds^{n}}}}$F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$


$\int_{{0}}^{{t}}$f$\left(\vphantom{ \tau }\right.$τ$\left.\vphantom{ \tau }\right)$g$\left(\vphantom{ t-\tau }\right.$t - τ$\left.\vphantom{ t-\tau }\right)$     F$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$G$\left(\vphantom{ s}\right.$s$\left.\vphantom{ s}\right)$



See the Reference Library (under Help) for more information about mathematics and science.